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Abstract

In this paper, we estimate a health care demand function for 18
OECD countries for the period 1972-1995. We consider a demand side
approach where health expenditure depend on per capita GDP and the
relative price of health care. We use panel data unit root and stationar-
ity tests to characterize our data. Then, we test cointegration between
our variables with Kao[16] panel data cointegration tests. As we accept
cointegration, we compare different estimators (OLS, FMOLS, DOLS).
Results give conflicting evidence for the value of health expenditure in-
come elasticity. The least biaised estimator gives a value that exceeds
unity.
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1 Introduction

One major characteristic of developped economies is the growing share of
health care expenditure in GDP. By consequence, to control, and as much
as possible to limit, the increase of those expenditure has became one major
issue of governments. In order to do so, we need to know which are the
main determinants of health care expenditure and what is their impact. To
put things broadly, health care expenditure are usually explained either by
a supply or a demand approach. In the former, health care expenditure de-
pend on technical progress and the behavior of medical practitioners through
induced demand. In the latter, which is chosen in our paper, health care
expenditure depend on the level of per capita GDP and the relative price of
health care.

As concerning the effect of per capita income, one major question of
health economics (and applied econometrics) is the value of health care ex-
penditure income elasticity. If this elasticity is greater than unity, health
care are a luxury good and their increase is a natural outcome of economic
growth. This hypothesis was put forward by Newhouse[15]. On an empirical
ground, the estimation of health care expenditure income elasticity is very
much controversial. First results were obtained with cross-sectional mod-
els. With those models, estimates of the GDP elasticity are usually around
unity or slightly less suggesting health care are a necessity(Gerdtham et
Jonsson[7]). However, cross-sectional models impose unrealistic homogene-
ity assumption. Hitiris and Posnett[11] use time series data and find ”an
income elasticity of health spending at or around unity”. However, Hansen
and King[10] show that Hitiris and Posnett’s time series are non-stationary.
In this case, the critical assumptions of stationary data in OLS regression
are violated, which casts some doubts on previous empirical results. Hansen
and King[10], Blomqvist and Carter[4], Murthy and Okunade[20], Okunade
and Karakus[22] use a country-by-country framework to estimate health
care determinants. In those papers, it appears that most series do contain a
unit root and that cointegration between health care expenditure and their
determinants is only accepted for few countries.

Recent advances in econometrics, the aim of which is to put altogether
time series and panel data econometrics, give us new methods of test and
estimation1. Roberts[26] applied a dynamic heterogenous panel data estima-
tor to a panel of OECD countries and reported a long-run per capita GDP
elasticity exceeding unity. Gerdtham and Löthgren[8] applied panel data

1see Baltagi and Kao[1], Banerjee[2] for a synthesis.
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unit root and cointegration tests to estimate the relation between health
care expenditure and per capita GDP for a sample of 21 OECD countries
for the period 1960-1997. Those unit root and cointegration tests have an
asymptotic normal distribution and, more importantly, are more powerfull
than tests that use only time-series. Gerdtham and Löthgren[8]’s results are
in favor of cointegration but they do not discuss how to estimate of these
cointegrating relations.

In our paper, we use a panel of 18 OECD countries for the period 1972-
1995. Our first objective is to check the hypothesis of cointegration between
health care expenditure, GDP and the relative price of health care. There-
fore, we apply Kao[16]’s residual-based cointegration tests. Our results show
we can reject the hypothesis of no-cointegration. Our second objective is to
compare different methods of estimation of the cointegrating relation. Kao
and Chiang[17] show that the asymptotic laws of OLS, fully modified OLS
(FMOLS) and dynamic OLS (DOLS) in cointegrated panel data are normal.
Their Monte Carlo results show that the DOLS outperforms both the OLS
and FMOLS estimators in term of mean biaises. We apply these different
estimators and compare their results.

This paper has four sections. In section 2, we present our regressions
of health care expenditure determinants and comment our data. In section
3, we proceed to a preliminary analysis. We apply individual and panel
data unit root or stationarity tests to each series. We complete this section
by a country-by-country cointegration analysis. In section 4, we review the
asymptotic properties of panel data cointegration tests and of OLS, FMOLS
and DOLS estimators in a cointegrated panel. In section 5, we present our
empirical results.

2 The determinants of heath care expenditure

We choose a demand function approach to estimate the determinants of
health care expenditure. Therefore, per capita health care expenditure are
explained by per capita GDP and the relative price of health care. To
include all the other country-specific factors which may influence the level
of health care expenditure, country-specific intercepts are introduced. As
most studies on this subject, this model is essentially ad hoc and the choice
of right hand side variables is influenced by the numerous contributions on
the possible determinants of health care spending2.

Newhouse[15] made the hypothesis that an industrial nation’s per capita
2See Gerdtham and Jonsson[7].
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GDP is the main determinant of its health care expenditure. In line with
this hypothesis, we firstly consider the following model 1 where health care
expenditure are explained by a country-specific effect and per capita GDP :

HCEi,t = αi + βYi,t + ui,t, t = 1, ..., T, i = 1, ..., N (1)

where HCEi,t and Yi,t respectively denotes health care expenditure and
GDP per capita in logarithm.

We consider model 2 where the relative price of health care is added to
per capita GDP :

HCEi,t = αi + βYi,t + γPi,t + ui,t, t = 1, ..., T, i = 1, ..., N (2)

where Pi,t is the relative price of health care expenditure in logarithm, i.e.
the ratio of the health price index to the GDP deflator. Pi,t is included to
separate price and income effects.

We use annual data for a sample of 18 countries on the period 1972-
1995. Data are extracted from the 2001 OECD[21] Health Data. They
include per capita health care expenditure, per capita GDP and a indicator
of the relative price of health care. In order to proceed to an international
comparison, data are estimated in GDP purchasing power parity (PPP).
In common with most studies on this subject, all of these variables are in
natural logarithm.

3 Preliminary analysis

In this section, we proceed to a preliminary analysis of our data set. In a
first step, we characterize our series with both individual and panel data unit
root and stationarity tests. Then we investigate the cointegrating properties
of these series for each country.

3.1 Individual and panel unit root tests

In this first step, we check if there is a unit root for health care expenditure,
per capita GDP and the relative price of health care. We apply standard
augmented Dickey-Fuller (ADF) test and Im, Pesaran and Smith[12] (IPS)
panel data unit root test. Then, we consider Kwiatkovsky, Phillips, Schmidt
and Shin[18] stationarity test and its extension to panel data by Hadri[9].
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3.1.1 Tests of the null of unit root

A standard approach to test for a unit root for each individual time series
is to estimate an (ADF) equation (including here a time trend) :

∆xi,t = αi +δit+βixi,t−1 +
pi∑

j=1

γi,j∆xi,t−j + εi,t, t = 1, ..., T, i = 1, ..., N (3)

where ∆xi,t = xi,t − xi,t−1 and t indicates time trend. The number of lags
pi included to eliminate the residual serial correlation is chosen according to
the k −max criterion.

The null hypothesis H0 : βi = 0 that the series xi,t can be characterized
by a difference stationary I(1) process is tested against the alternative hy-
pothesis Ha : βi < 0 of trend stationarity. The test statistic is the t−statistic
of the βi estimate. As the t−statistic of the β̂i doesn’t have the usual zero-
mean t−distribution under the null hypothesis, tables of critical values have
been calculated by Monte-Carlo methods.

Im, Pesaran and Smith[12] propose a unit root test which exploit the
panel dimension of the data set. This test use the average of the N ADF
individual t-statistics for β̂i :

¯tNT =
1
N

N∑
i=1

ti,T (pi) (4)

where ti,T (pi) is the ADF t-statistic for country i from each country-specific
ADF regression with pi lags. The IPS evaluates the null hypothesis that all
of the series contain unit roots :

H0 : βi = 0, for all i

against the alternative that some series are stationary :

Ha : βi < 0, i = 1, ...N1, βi = 0, i = N1 + 1, ..., N.

This formulation of the alternative hypothesis allows for βi and the error
structure to differ accross groups and also for some of the individual series
to have unit roots under the alternative. If the null hypothesis cannot be
rejected, we conclude that the panel data series are difference stationary.
IPS convert the t-bar statistic into a Z-bar statistic :

Zt̄ =
√

N
(t̄NT − E(t̄NT )√

V ar(t̄NT )
(5)
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where

E(t̄NT ) = (
1
N

)
N∑

i=1

E(tiT (pi) | βi = 0)

and

V ar(t̄NT ) = (
1
N

)
N∑

i=1

V ar(tiT (pi) | βi = 0),

assuming the country-specific ADF tests t-statisitcs are independant3. IPS
expect Zt̄ to weakly converge to standard normal distribution under the
null hypothesis and diverge under the alternative as both N and T tend to
infinity such that N

T → k, where k is a positive constant.

3.1.2 Tests of null of stationarity

Kwiatkovski et alii [18] proposed a stationarity test which has a null hypoth-
esis of (trend) stationarity and an alternative of unit root with deterministic
trend. Each series is decomposed into the sum of a deterministic trend, a
random walk and a stationary error component :

xi,t = ri,t + δit + εi,t (6)

where ri,t is the random walk :

ri,t = ri,t−1 + ui,t (7)

ui,t are n.i.d.(0, σ2
u). ui,t and εi,t are mutually independent across i. The

initial value ri,0 is treated as a fixed unknown and play the role of a het-
erogenous constant. The KPSS test is a one-sided LM-test for the null
hypothesis of trend stationarity : H0 : σ2

u = 0 against the alternative of
difference stationarity : Ha : σ2

u > 0.

Let ˆεi,t be the residuals from the OLS regression of xi,t on a constant and
a linear deterministic trend. The KPSS statistic for each individual series is
:

ηi =
1

T 2

∑T
t=1 S2

it

σ̂2
i

(8)

3The values of E(ti,T (pi)) and V ar(ti,T (pi)) have been calculated by stochastic simu-
lation and are reported in Im, Pesaran and Smith[12].
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where Sit =
∑t

j=1 ε̂ij is the partial sum of the residuals and σ̂2
i is a consistent

estimator of the long-run variance of the disturbance term εi,t defined as
σ2

i = limT→∞ T−1(S2
iT ) 4.

Hadri[9] defines a panel LM test-statistic ˆLM τ for stationarity as the
average of the individual test-statistics :

ˆLM τ =
1
N

N∑
i=1

ηi (9)

=
1
N

N∑
i=1

(
1

T 2

∑T
t=1 S2

it

σ̂2
i

) (10)

Hadri[9] shows that given the defined assumptions on ui,t and εi,t, the
test statistic ˆLM τ is asymptotically normaly distributed under the null hy-
pothesis of stationarity :

Zτ =
√

N( ˆLM τ − ητ )
ζτ

⇒ N(0, 1) (11)

where ητ = 1
15 and ζ2

τ = 11
6300 and ”⇒” represents convergence in distribu-

tion.

3.1.3 Results

ADF test results are displayed in table 1. They show that for most individ-
ual health care expenditure and per capita GDP series, we cannot reject the
hypothesis of unit root. In the case of health care expenditure, this hypoth-
esis is only rejected for Australia and Austria. As concerning the relative
price of health care, the hypothesis of unit root is rejected in five cases :
Australia, Canada, Iceland, Netherland for a 5% significance level and also
Denmark and the United-States for a 10% significance level. Results from
IPS panel data unit root test show that we cannot reject the null hypothesis
of unit root for health care expenditure and per capita GDP. However, we
can reject this hypothesis for the relative price of health care. series.

Results for stationarity are displayed in table 2. As with the ADF unit
root test, they clearly show that we reject the hypothesis of trend station-
arity for health care expenditure and per capita GDP. As concerning the

4We use a Bartlett window and the lag truncation parameter l4 =E[(4(T/100)1/4] to
estimate σ2

i .
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relative price of health care, we reject this hypothesis for most countries
when the significance level is 5%. For this variable, the hypothesis of sta-
tionarity is accepted for Australia, Austria, Canada, Denmark, and Iceland.
Therefore, these results confirm the ADF conclusions. When we consider
Hadri[9] panel data stationarity test, we reject the hypothesis of trend sta-
tionarity for health care expenditure, per capita GDP and the relative price
of health care. Notice that, because of the short time span, we do not
consider the hypothesis of a time break in the deterministic trend of the
series.

3.2 Country-by-country cointegration analysis

In this section, we investigate the cointegrating properties between health
care expenditure, per capita GDP and the relative price of health care ex-
penditure for each country.

We apply Johansen[13] [14] maximum likelihood ratio tests to each coun-
try. The lag number is set to one because of the short time span. There
is no constraint on the intercept, which means there is a constant in the
cointegration regression and a time trend in the deterministic part of the
series. Results are presented in table 6 and table 7. When we consider only
cointegration between health care expenditure and nper capita GDP, the
number of cointegrating relation is equal to two or sometimes zero. These
results are not compatible with previous on unit root or stationarity tests.
Table 7 shows that for most countries we accept the hypothesis of one coin-
tegrating relation between health care expenditure, per capita GDP and the
relative price of health care. In the case of Irland and Luxemburg, there
is no cointegration relation and with Canada we accept the hypothesis of
three cointegrating relations. In this former case, it would mean that health
care expenditure, per capita GDP and the relative price of health care are
stationary which contradicts previous results.

4 Panel cointegration tests and estimation

4.1 OLS, FMOLS and DOLS in panel data

In this section, we make a short presentation of the properties of OLS, DOLS
and FMOLS estimation methods with cointegrated panels. These properties
have been established by Kao and Chiang[17], Phillips and Moon[25] and
Pedroni[24].

Consider the following fixed-effect panel regression :

8



yi,t = αi + x
′
i,tβ + ui,t, i = 1, ..., N, t = 1, ..., T (12)

where yi,t are 1×1, β is an M×1 vector of the slope parameters, αi are the
intercepts, and ui,t are the stationary disturbance terms. We assume that xi,t

are M×1 integrated processes of order one for all i, where xi,t = xi,t−1+εi,t.
Under these specifications, we have a system of cointegrated regressions, i.e.
yi,t is cointegrated with xi,t with the assumptions that yi,t, and xi,t are
independent across cross-sectional units and wi,t = (ui,t, ε

′
i,t)

′
is a linear

process that satisfies the assumptions in Kao and Chiang[17] . The long-run
covariance matrix, Ω, of wi,t can be expressed as :

Ω =
∞∑

j=−∞
E(wi,jw

′
i,0)

= Σ + Γ + Γ
′

=

[
Ωu Ωuε

Ωεu Ωε

]

where :

Γ =
∞∑

j=1

E(wi,jw
′
i,0) =

[
Γu Γuε

Γεu Γε

]
(13)

and

Σ = E(wi,0w
′
i,0) =

[
Σu Σuε

Σεu Σε

]
(14)

are partitioned conformably with wi,t. We define the one-sided long-run
covariance

∆ = Σ + Γ

=
∞∑

j=0

E(wi,jw
′
i,0)

with

∆ =

[
∆u ∆uε

∆u ∆ε

]
Kao and Chiang[17] derive limiting distributions for the OLS, FMOLS and
DOLS estimators in a cointegrated regression. The OLS estimator of β is

β̂OLS = [
N∑

i=1

T∑
t=1

(xi,t − x̄i)(xi,t − x̄i)
′
]−1[

N∑
i=1

T∑
t=1

(xi,t − x̄i)(yi,t − ȳi)
′
] (15)
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where x̄i = ( 1
T )
∑T

t=1 xi,t and ȳi = ( 1
T )
∑T

t=1 yi,t. The FMOLS estimator is
constructed by making corrections for endogeneity and serial correlations to
the OLS estimator β̂OLS . Let Ω̂εu and Ω̂ε be consistent estimates of Ωεu and
Ωε. The endogeneity correction is achieved by modifying the variable yi,t

with the transformation

ŷ+
i,t = yi,t − Ω̂uεΩ̂−1

ε εi,t

= αi + x
′
i,tβ + ui,t − Ω̂uεΩ̂−1

ε εi,t

The serial correlation correction term has the form

∆̂+
εu = (∆̂εu∆̂ε)

(
1

−Ω−1
ε Ω̂εu

)
= ∆̂εu − ∆̂εΩ̂−1

ε Ω̂εu,

where ∆̂εu and ∆̂ε are kernel estimates of ∆εu and ∆ε. Therefore the FMOLS
estimator is

β̂FM = [
N∑

i=1

T∑
t=1

(xi,t − x̄i)(xi,t − x̄i)
′
]−1[

N∑
i=1

(
T∑

t=1

(xi,t − x̄i)(ŷ+
i,t − T ∆̂+

εu)] (16)

At last, the DOLS estimator can be obtained by running the following
regression :

yi,t = αi + x
′
i,tβ +

q2∑
j=−q1

cij∆xi,t+j + vi,t

Kao and Chiang[17] show that the asymptotic distributions of estimators
using the OLS, FMOLS and DOLS are the following :

√
NT (β̂OLS − β)−

√
NδNT ⇒ N(0, 6Ω−1

ε Ωuε), (17)
√

NT (β̂FMOLS − β) ⇒ N(0, 6Ω−1
ε Ωuε), (18)

√
NT (β̂DOLS − β) ⇒ N(0, 6Ω−1

ε Ωuε), (19)

where
Ωuε = Ωu − ΩuεΩ−1

ε Ωεu,

and ⇒ represents convergence in distribution. The asymptotic law of the
OLS estimator depends on δNT which has the following expression :

δNT = [
1
N

N∑
i=1

1
T 2

T∑
t=1

(xi,t−x̄i,t)(xi,t−x̄i,t)
′
]−1×[

1
N

N∑
i=1

Ω
1
2
ε (
∫ 1

0
W̃i(r)dW

′
i (r))Ω

− 1
2

ε Ωεu+∆εu],
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where Wi(r) is a standard Brownian motion, and ,

W̃i = Wi(r)−
∫ 1

0
Wi(r)dr.

Kao and Chiang[17] show that :

δNT → −3Ω−1
ε Ωεu + 6Ω−1

ε ∆εu

where → represents convergence in probability. Therefore, the asymptotic
distribution of the OLS estimator has a non-zero mean. Kao and Chiang[17]
defined the bias-corrected OLS, β̂+

OLS as :

β̂+
OLS = β̂OLS −

δ̂NT

T

such that √
NT (β̂+

OLS − β) ⇒ N(0, 6Ω−1
ε Ωuε)

where
δ̂NT = −3Ω̂−1

ε Ω̂εu + 6Ω̂−1
ε ∆̂εu.

Kao and Chiang[17] study the finite sample properties of the OLS, FMOLS
and DOLS estimators in cointegrated regressions. They show that the OLS
estimator has a non-negligible bias in finite sample, that the FMOLS estima-
tor does not improve over the OLS in general. At last, the DOLS estimator
outperforms the other estimators, particularly in terms of mean-bias.

4.2 Panel cointegration tests

Cointegration tests with panel data are much less known and used than
cointegration tests with time series. Here we present the residual-based
tests proposed by Kao[16] which test the null of no cointegration against
the alternative of cointegration. Kao[16] proposed two types of cointegration
tests in panel data, the Dickey-Fuller (DF) and the Dickey-Fuller augmented
(ADF) types. The DF type tests is calculated from the estimated residuals
of the cointegration regression as :

êi,t = γêi,t−1 + vi,t (20)

where êi,t is the estimated residuals from the estimated regression. The null
hypothesis of no cointegration takes the following form : H0 : γ = 1. The
OLS estimates of γ has the following expression :

γ̂ =
∑N

i=1

∑T
t=2 êi,têi,t−1∑N

i=1

∑T
t=2 ê2

i,t

(21)

Accordingly, four DF-types tests are constructed as follows :
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1. DFγ =
√

NT (γ̂−1)+3
√

N√
10.2

,

2. DFt =
√

1, 25tγ +
√

1, 875N ,

3. DF ∗γ =
√

NT (γ̂−1)+(3
√

Nσ̂2
vσ̂2

0v√
3+7.2σ̂4

vσ̂4
0v

,

4. DF ∗t = tγ+(
√

6Nσ̂v/2σ̂0v)√
(σ̂2

0v/2σ̂2
v)+(3σ̂2

v/10σ̂2
0v)

,

where σ̂2
v = Σu−ΣuεΣ−1

ε and σ̂2
0v = Ωu−ΩuεΩ−1

ε . While DFγ and DFt are
based on assuming the strict exogeniety of the regressors with respect to the
errors in the equation, DF ∗γ and DF ∗t are for cointegration with endogenous
regressors. For the ADF test, we can run the following ADF regression :

êi,t = γêi,t−1 +
p∑

j=1

ϑj∆êi,t−j + vi,tp. (22)

ADF =
tADF + (

√
6Nσ̂v/2σ̂0v)√

(σ̂2
0v) + (3σ̂2

v/10σ̂2
0v)

(23)

where tADF is the t-statistic of γ in the ADF regression. The asymptotic dis-
tribution of DFγ , DFt, DF ∗γ , DF ∗t , and ADF converge to a standard normal
distribution N(0, 1).

5 Estimation of health care determinants with a
panel data

Estimations and tests are run with the NPT 1.2 program given by Chiang
and Kao[5]. Results with Kao[16] panel data cointegration tests for model
1 and model 2 are reported in Table 3. For model 1, we reject the null
hypothesis of no cointegration with all test statistics. For model 2, we reject
the null hypothesis of no cointegration with all test statistics except DFt at
5% significance level. Therefore the hypothesis of cointegration among all
these variables is strongly supported.

The estimated coefficients are reported in table 4 for model 1 and table 5
for model 2. OLS estimates have the expected sign but the coefficient of
the relative price of health care expenditure, Pi,t, is not significant. How-
ever, as shown in previous section, OLS estimates are generally biaised due
to the endogeneity problem. Therefore, t-statistics do not have a usual t-
distribution and we cannot put much confidence on them. The adjusted
OLS estimated are not much different from OLS estimates. The value of
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the coefficient of Yi,t is quite the same and the coefficient of Pi,t becomes
positive but remains insignificant.

The FMOLS and DOLS estimator5 correct for the endogeneity bias. The
estimated coefficients from these two estimators appear to be very different
even if the asymptotic distributions of the FMOLS and DOLS are the same
as shown by Kao[16]. As a matter of fact, with the FMOLS estimator, the
coefficient of Yi,t is smaller than unity, which imply that health care is not a
luxury good, while the estimated coefficient of Yi,t exceeds to unity with the
DOLS estimator. In both cases, this coefficient is significant. As concerning
the effect of Pi,t, we can observe the same opposition. With the FMOLS
estimator, the coefficient of Pi,t is negative and significant while it remains
significant but becomes positive with the DOLS estimator. Therefore, these
results are in strong contradiction, and their implications for the health care
policy are very much different.

From an econometric point of view, however, Kao and Chiang[17] show
that the DOLS estimator outperform both the OLS and FMOLS estimators
in terms of mean biaises. By Monte-Carlo simulations, they show that the
FMOLS leads to a significant biaises and advocate the DOLS estimator. Kao
and Chiang[17] notice that the DOLS estimator differs from the FMOLS in
that it does not require initial estimation nor nonparametric correction.

6 Conclusion

In this paper we use a panel and time-series framework to test the hypoth-
esis of cointegration between health care expenditure, per capita GDP and
the relative price of healt care. However, in a recent paper, Banerjee, Mar-
cellino and Osbat[3] show that a country-by-country analysis is a compulsory
initial step when we apply panel data cointegration tests. The number of
cointegrating relations at the individual level may biaised the results of the
panel data cointegration tests. Kao’s[16], Mc Coskey and Kao’s[19] and
Pedroni’s[23] cointegration tests, which are residual-based tests, make the
implicit assumption that there is zero or only one cointegration relation for
the whole sample of countries. Banerjee, Marcellino and Osbat[3] show if
there is for instance more than one cointegrating relation for a country and
zero for another, panel cointegration tests may lead us to accept the hy-
pothesis of one cointegrating regression for each country in the sample. Our
preliminary country-by-country cointegration analysis show that this condi-
tion is not satisfied here. However,we can ask if the Johansen cointegration
test can uncover the exact number of cointegration relations.

5The DOLS estimator was applied with one lead and two lags, that is to say (q1, q2) =
(1, 2). Results are not much different with (q1, q2) = (1, 1) or (q1, q2) = (2, 2)
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A second result of our paper is to apply different methods of estimation of
this cointegration relation in panel data. The FMOLS and DOLS estimators
lead to strongly different conclusions. With the FMOLS, health expenditure
have an income elasticity smaller than one while greater than one with the
DOLS. Furthermore, the effect of the relative price of health is negative
and significant with FMOLS but positive and significant with DOLS. So the
economic implications of these results are quite divergent. We must add
that Monte Carlo simulation indicate that the DOLS estimator is the least
biaised estimator. Besides, we concentrate herein on the demand side, but
future work should include supply side determinants of health expenditure.
We should also take account of possible structural break, particularly for
the relative price of health care.
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Table 1: Estimated lag orders, country-by-country ADF t-statistics and IPS
standardized panel data unit root tests based on ADF regressions with inter-
cept and time trend for 18 OECD countries 1972-1995.

Countries Health expenditure GDP Health care price
Lag order ADF test Lag order ADF test Lag order ADF test

Australia 2 −5, 21∗ 0 -1,14 1 −4, 11∗

Austria 4 −7, 43∗ 0 -0,55 0 -1,87
Belgium 0 -2,14 0 -1,11 0 -0,99
Canada 2 0,17 0 -1,16 3 −4, 43∗

Denmark 0 -0,88 3 -2,86 1 −3, 47∗∗

Finland 3 1,33 1 -2,52 4 -0,83
France 0 -0,29 4 -0,35 0 -0,66
Germany 0 -2,02 0 -0,31 0 1,55
Iceland 0 -0,44 0 -0,84 2 −4, 56∗

Ireland 0 -1,87 0 -1,87 0 -2,17
Italy 0 -0,26 0 -0,03 3 -3,06
Luxemburg 0 -1,05 1 -2,79 0 -0,53
Netherland 1 -3,15 0 -1,16 0 −6, 45∗

Norway 0 -1,19 1 -0,98 0 -2,40
Spain 1 -1,89 2 -1,57 0 -2,44
Switzerland 0 -0,81 0 -0,35 0 -2,49
UK 0 -1,12 0 0,09 0 -2,99
USA 1 -0,31 0 0,08 2 -3,57
Panel tests
Zt̄ 5,21 2,73 -2,77

Note (a) Lag orders are calculated according to the k-max criterion
with a maximum length of 5 periods. (b) For the individual tests, the
5% and the 10% critical values are -3.00 and -3.33 respectively (from
Fuller[6]) (c) For the IPS panel test, the 5% and the 10% critical
values are -1.645 and -1.282 respectively. (d)* and ** represent 5%
and 10% levels of significance.
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Table 2: KPSS test-statistic for individual countries and Hadri[9] standard-
ized panel data test of the trend stationarity test for 18 OECD countries
1972-1995.

Countries Health expenditure GDP Health care price
l4 l4 l4

Australia 0.2154∗ 0.2260∗ 0.0882
Austria 0.1642∗ 0.2260∗ 0.1134
Belgium 0.2077∗ 0.2188∗ 0.1586∗

Canada 0.2249∗ 0.2272∗ 0.0754
Denmark 0.2269∗ 0.2260∗ 0.0999
Finland 0.2082∗ 0.2130∗ 0.1898∗

France 0.2268∗ 0.2229∗ 0.1620∗

Germany 0.2276∗ 0.2282∗ 0.1480∗

Iceland 0.2229∗ 0.2255∗ 0.0397
Ireland 0.1545∗ 0.1559∗ 0.1909∗

Italy 0.1910∗ 0.2256∗ 0.2008∗

Luxemburg 0.1899∗ 0.0855 0.1987∗

Netherland 0.1983∗ 0.2238∗ 0.1588∗

Norway 0.2261∗ 0.2319∗ 0.1247∗∗

Spain 0.1184 0.1934∗ 0.2084∗

Switzerland 0.2171∗ 0.2089∗ 0.1816∗

UK 0.2267∗ 0.2250∗ 0.2020∗

USA 0.2232∗ 0.2307∗ 0.1628∗

Panel tests
Zτ 16.58∗ 16.58∗ 9.8747∗

Note : (a) The laglenght of the Bartlett window variance estimator
is set to l4 = E[4(T/100)(1/4)]. (b) For the individual tests, the 5%
and the 10% critical values are 0.146 and 0.119 respectively (from
Kwiatkovski et alii [18]).) (c) For the panel test, the 5% and the 10%
critical values are 1.645 and 1.282 respectively. (d)* and ** represent
5% and 10% levels of significance.
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Table 3: Panel Data Cointegration Tests.

DFρ DFt DF ∗ρ DF ∗t ADF

model 1 −2, 838 −1, 983 −10, 118 −3, 335 −4, 019
(0, 002) (0, 023) (0, 000) (0, 000) (0, 000)

model 2 −1, 938 −1, 531 −7, 977 −2, 802 −3, 680
(0, 026) (0, 062) (0, 000) (0, 002) (0, 000)

Note : (a)Number in parenthesis are the p-values. (b) For the panel
test, the 5% and the 10% critical values are -1.645 and -1.282 respec-
tively. (c) For the ADF test, the lag order is set to unity. Results are
robust to different lag lenghts.

Table 4: Estimation Results, model 1.

OLS Adjusted OLS FMOLS DOLS (1,2)
Yi,t 1, 201 1, 202 0, 717 1, 343

(192, 14) (71, 01) (40, 78) (67, 61)

R̄2 0, 98 0, 98 0, 82 0, 88
Note : numbers in parenthesis are the t-statistics.

Table 5: Estimation Results, model 2.

OLS Adjusted OLS FMOLS DOLS (1,2)
Yi,t 1, 2097 1, 2103 0, 9417 1, 1446

(168, 55) (66, 27) (49, 42) (52, 23)
Pi,t −0, 0011 0, 0011 −0, 4603 0, 1458

(−0, 06) (0, 07) (−30, 21) (8, 32)

R̄2 0, 98 0, 98 0, 89 0, 90
Note: numbers in parenthesis are the t-statistics.
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Table 6: Country-by-Country Cointegration tests. Lag = 1

Test Statistic Critical value at 95%
λmax Trace Null hyp. λmax Trace

Australia 19.36∗ 23.59∗ r ≤ 0 14.07 15.41
4.23∗ 4.23∗ r ≤ 1 3.76 3.76

Austria 29.32∗ 33.77* r ≤ 0 14.07 15.41
4.45∗ 4.45∗ r ≤ 1 3.76 3.76

Belgium 25.59∗ 31.41∗ r ≤ 0 14.07 15.41
5.82∗ 5.82∗ r ≤ 1 3.76 3.76

Canada 33.38∗ 41.48∗ r ≤ 0 14.07 15.41
8.30∗ 8.30∗ r ≤ 1 3.76 3.76

Denmark 21.11∗ 27.91∗ r ≤ 0 14.07 15.41
6.80∗ 6.80∗ r ≤ 1 3.76 3.76

Finland 36.19∗ 38.40∗ r ≤ 0 14.07 15.41
2.21 2.21 r ≤ 1 3.76 3.76

France 31.06∗ 38.62∗ r ≤ 0 14.07 15.41
7.56∗ 7.56∗ r ≤ 1 3.76 3.76

Germany 16.85∗ 25.77∗ r ≤ 0 14.07 15.41
8.93∗ 8.93∗ r ≤ 1 3.76 3.76

Iceland 25.78∗ 34.39∗ r ≤ 0 14.07 15.41
8.61∗ 8.61∗ r ≤ 1 3.76 3.76

Irland 8.23 8.33 r ≤ 0 14.07 15.41
0.10 0.10 r ≤ 1 3.76 3.76

Italy 18.67∗ 26.42∗ r ≤ 0 14.07 15.41
7.44∗ 7.44∗ r ≤ 1 3.76 3.76

Luxembourg 9.35∗ 13.47∗ r ≤ 0 14.07 15.41
4.12∗ 4.12∗ r ≤ 1 3.76 3.76

Netherland 16.65∗ 22.21∗ r ≤ 0 14.07 15.41
5.56∗ 5.56∗ r ≤ 1 3.76 3.76

Norway 22.99∗ 33.70∗ r ≤ 0 14.07 15.41
10.71∗ 10.71∗ r ≤ 1 3.76 3.76

Spain 19.34∗ 22.02∗ r ≤ 0 14.07 15.41
2.68 4.14 r ≤ 1 3.76 3.76

Switzerland 15.20∗ 19.75∗ r ≤ 0 14.07 15.41
4.54∗ 4.54∗ r ≤ 1 3.76 3.76

United Kingdom 22.59∗ 26.54∗ r ≤ 0 14.07 15.41
3.95∗ 3.95∗ r ≤ 1 3.76 3.76

USA 29.43∗ 34.22∗ r ≤ 0 14.07 15.41
4.79∗ 4.79∗ r ≤ 1 3.76 3.76

(a) * denotes significant at 5% level.



Table 7: Country-by-Country Cointegration tests. Lag = 1

Test Statistic Critical value at 95%
λmax Trace Null hyp. λmax Trace

Australia 21.21∗ 36.85∗ r ≤ 0 20.97 29.68
11.21 15.64∗ r ≤ 1 14.07 15.41
4.43 4.43 r ≤ 2 3.76 3.76

Austria 31.06∗ 41.11∗ r ≤ 0 20.97 29.68
9.64 10.06 r ≤ 1 14.07 15.41
0.42 0.42 r ≤ 2 3.76 3.76

Belgium 26.97∗ 33.38∗ r ≤ 0 20.97 29.68
6.09 6.41 r ≤ 1 14.07 15.41
0.31 0.31 r ≤ 2 3.76 3.76

Denmark 21.28∗ 32.84∗ r ≤ 0 20.97 29.68
9.19∗ 11.56∗ r ≤ 1 14.07 15.41
2.36∗ 2.36∗ r ≤ 2 3.76 3.76

Canada 49.41∗ 70.30∗ r ≤ 0 20.97 29.68
16.97∗ 20.89∗ r ≤ 1 14.07 15.41
3.92∗ 3.92∗ r ≤ 2 3.76 3.76

Finland 39.82∗ 46.00∗ r ≤ 0 20.97 29.68
5.79 6.18 r ≤ 1 14.07 15.41
0.39 0.39 r ≤ 2 3.76 3.76

France 41.90∗ 54.13∗ r ≤ 0 20.97 29.68
7.75 12.23 r ≤ 1 14.07 15.41
4.48 4.48 r ≤ 2 3.76 3.76

Germany 19.05∗ 32.24∗ r ≤ 0 20.97 29.68
9.30 13.19 r ≤ 1 14.07 15.41
3.90 3.90 r ≤ 2 3.76 3.76

Iceland 33.78∗ 52.28∗ r ≤ 0 20.97 29.68
9.66 18.51∗ r ≤ 1 14.07 15.41
8.85 8.85 r ≤ 2 3.76 3.76

Irland 14.65 21.06 r ≤ 0 20.97 29.68
6.30 6.41 r ≤ 1 14.07 15.41
0.11 0.11 r ≤ 2 3.76 3.76

Italy 19.94 36.36∗ r ≤ 0 20.97 29.68
10.22 16.42∗ r ≤ 1 14.07 15.41
6.20 6.20 r ≤ 2 3.76 3.76

Luxembourg 18.16 23.92 r ≤ 0 20.97 29.68
5.75 5.76 r ≤ 1 14.07 15.41
0.01 0.01 r ≤ 2 3.76 3.76

Netherland 40.49∗ 56.83∗ r ≤ 0 20.97 29.68
10.61 16.35 r ≤ 1 14.07 15.41
5.74 5.74 r ≤ 2 3.76 3.76

Norway 27.83∗ 44.86∗ r ≤ 0 20.97 29.68
14.26∗ 17.02∗ r ≤ 1 14.07 15.41
2.76 2.76 r ≤ 2 3.76 3.76

Spain 21.26∗ 30.24∗ r ≤ 0 20.97 29.68
4.84 8.98 r ≤ 1 14.07 15.41
4.14 4.14 r ≤ 2 3.76 3.76

Switzerland 30.97∗ 43.51∗ r ≤ 0 20.97 29.68
7.02 12.54 r ≤ 1 14.07 15.41
5.54 5.54 r ≤ 2 3.76 3.76

United Kingdom 32.59∗ 42.39∗ r ≤ 0 20.97 29.68
5.52 9.80 r ≤ 1 14.07 15.41
4.28 4.28 r ≤ 2 3.76 3.76

USA 35.61∗ 63.00∗ r ≤ 0 20.97 29.68
23.70∗ 27.38∗ r ≤ 1 14.07 15.41
3.69 3.69 r ≤ 2 3.76 3.76

(a) * denotes significant at 5% level.


