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Testing for Long Memory and Nonlinear Time Series: A
Demand for Money Study

by

D. Bond, M.J. Harrison and E.J. O’Brien§

1 Introduction

The importance of the concepts of stationarity and regime stability in eco-
nomic and financial time-series modelling is well established. However, re-
cent concerns about the interrelationship between these two concepts, and
the associated problems for applied work, have ensured that they remain a
significant focus for research. Early studies, such as those by Bhattacharya,
et al. (1983) and Perron (1989), highlighted the difficulty of distinguishing
between time series generated by difference stationary processes and those
generated by nonlinear but stationary processes. Since then, an increasing
research emphasis has been on the problem of distinguishing between long
memory and nonlinearity. The developing interest in long memory models
has been stimulated, in particular, by a growing awareness of the limita-
tions of the simple I(1)/I(0) framework. For example, Baillie and Bollerslev
(2000) and Maynard and Phillips (2001) show how the low power of famil-
iar unit root tests, such as those introduced by Dickey and Fuller (1981),
could lead to incorrect inference in the Fama (1984) regression model of the
relationship between future spot and forward exchange rates, and how the
empirical work could be set in a framework of fractional integration using
a long memory model. Long memory models and fractional (co)integration
are now popular in several other areas of the applied literature; see, for ex-
ample, Gil-Alana (2003), Liu and Chou (2003), Dittmann (2004), and Masih
and Masih (2004). A major problem with such models is that it is not easy
to distinguish them empirically from models with regime switching or more
general nonlinearities; see, for instance, Diebold and Inoue (2001).

In the theoretical literature, two main strands of discussion have devel-
oped. The first is that of testing for difference stationarity when the processes
are in fact nonstationary; see Perron and Qu (2004) for references. The sec-
ond concerns testing for structural breaks when long memory is a possibility;
see Nunes, et al. (1995), Krämmer and Sibbertsen (2002), and Hsu (2001).
Recent work by Mayoral (2005) and Dolado, et al. (2005b) has developed
specific tests for difference stationarity against the alternative of stationarity
with a structural break. All of these studies use conventional parametric
techniques for either modelling or testing for nonlinearities. The recent de-
velopment of random field regression has also provided a suite of tests for
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structural breaks, nonlinearity and time-varying parameters; see, for exam-
ple, Hamilton (2001) and Dahl (2002). The strength of this alternative ap-
proach is that it does not rely on any functional form being specified prior
to estimation.

The purpose of this paper is to compare the performance of traditional
integration analysis, the fractional integration approach and random field
regression-based inference, using a standard economic model and a well-
known time-series dataset. The discussion is structured as follows. In Section
2, the theoretical background to fractional integration and random field re-
gression is briefly explained. In Section 3, the three techniques are applied
to the Johansen and Juselius (1990) money demand data. Finally, in Section
4, the results of the analysis are discussed and some practical conclusions
drawn.

2 Theoretical Background

2.1 Fractional integration

Traditional testing for a unit root means a choice between what Maynard
and Phillips (2001) call ‘extreme alternatives’. The standard null hypothesis
is that the series under consideration has a unit root, hence is only station-
ary after differencing. This knife-edge restriction, as Jensen (1999) puts it,
appears to be far too stringent in many cases. The long-run behaviour of the
random variable yt in the simple AR(1) model with drift,

yt = α + ρyt−1 + εt, εt ∼ (0, σ2), (1)

is quite different when ρ = 1 from when ρ = 0.999. In the first case the
impact of the innovation εt is permanent, whereas in the second case the
effect disappears geometrically.

To address this issue, the concept of fractional integration, introduced into
time-series analysis by Granger and Joyeux (1980), has come to the fore; see
the review article by Baillie (1996) for a good introduction. Put simply, in
classical integration theory, a random series {yt}∞t=0 is said to be integrated
of order d, where d is an integer, if the series has to be differenced d times
to induce stationarity. In the case of fractional integration the restriction
that d is an integer is relaxed. Applying a Taylor series expansion to ∆d =
(1−L)d around L = 0, where L is the lag operator, leads to the more general
differencing formula for an integrated series of order d:

∆dyt = yt − d yt−1 +
1

2!
d(d − 1)yt−2 − 1

3!
d(d − 1)(d − 2)yt−3 + . . .

+
(−1)j

j!
d(d − 1)...(d − j + 1)yt−j + ... (2)

In the case of 0 < d < 1, it follows that not only the immediate past value of
yt, but values from previous time periods, influence the current value. Such
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series are said to have long memory. If 0 < d < 0.5, then {yt} is stationary;
and if 0.5 ≤ d < 1.0, the series is nonstationary.

A fundamental estimation problem is posed by the fact that Equation
(2) is highly nonlinear in d. Parametric approaches to the estimation of
d are computationally intensive as they often involve the estimation of a
T × T covariance matrix, where T is the size of the sample, and so face is-
sues of robustness in large samples. In the case of the maximum likelihood
approach, estimation also requires the stationarity restriction 0 < d < 0.5.
Nonparametric approaches have been suggested, utilizing the frequency do-
main. These approaches are usually robust to nonstationarity but suffer from
small sample bias.

A few econometric packages provide software to handle the estimation of
the fractional integration parameter, d. Initially, the software tended to be
for nonparametric methods, such as the log-periodogram regression method
(gph) introduced by Geweke and Porter-Hudak (1983). Now, a wider range
of methods is available. For example, in the Ox-based ARFIMA package
of Doornik and Ooms (1999), both parametric and nonparametric methods
are provided. Exact maximum likelihood estimation (eml) is implemented
using the approach suggested by Sowell (1992), which employs recursive eval-
uations of hypergeometric functions relating to the autocorrelation function
(acf) that have negligible computational cost compared to estimating the
full covariance matrix for the likelihood function. To take account of the
problems with nuisance parameters, as discussed by Barndorff-Nielsen and
Cox (1994, Chapter 4), the An and Bloomfield (1993) modified profile likeli-
hood estimator (mpl) is also implemented. Both the eml and mpl methods
are only applicable when d < 0.5, so the package also provides an approxi-
mate maximum likelihood estimator based on minimizing the sum of squared
näıve residuals, which was developed by Beran (1995). Chung and Baillie
(1993) called this estimator the conditional sum of squares estimator but
Doornik and Ooms (1999) refer to it as nonlinear least squares (nls). To
complement these parametric estimators, the ARFIMA package provides
two standard nonparametric methods. The first is gph and the second is the
Gaussian semiparametric method (gsp) discussed in Robinson and Henry
(1998). Other methods that are gaining popularity include the modified log-
periodogram estimator (mlp) of Kim and Phillips (1999) and the generalized
minimum distance estimator (gmd) of Mayoral (2003).

Inference is also problematical as none of the usual procedures is appro-
priate. The classical asymptotics of the I(0) case do not apply when time
series are fractionally integrated, and neither does the standard cointegra-
tion approach. In the I(1) case, conventional tests depend on the statistics
converging to known functionals of Brownian motion. When d �= 1, however,
these are replaced by functionals of fractional Brownian motion. Taking the
approach of testing for I(1) against I(d) is also problematical, since tests such
as the adf test of Dickey and Fuller (1981), while consistent, have very low
power; see Diebold and Rudebusch (1991), and Hassler and Wolters (1994).
Furthermore, the precision with which the parameters are estimated hinges
on the correct specification of the model; see Hauser, et al. (1999). The
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situation becomes even more complex when the concept of fractional cointe-
gration is entertained. As Phillips (2003, p. c30) points out, ‘The problems
presented by these models of fractional cointegration seem considerably more
complex than the I(1)/I(0) . . . case that is now common in applications’.

An interesting group of tests, based on the adf test, has been introduced
by Dolado, et al. (2002) and these have been further developed in Dolado,
et al. (2005a, 2005b) and Mayoral (2005). The latter two papers consider
the important case of testing for long memory against structural breaks and
use a modified adf framework. This framework considers the t-test statistic
on the ordinary least squares (ols) estimator of φ in the generalized adf

equation

∆d0yt = φ∆d1yt−1 +

p∑
i=1

ζi∆yt−i + εt. (3)

For testing purposes d0 is set equal to 1. Dolado, et al. (2002) show that
if 0.5 ≤ d1 < 1, then the t-statistic for the null hypothesis H0 : φ = 0
has an asymptotic standard normal distribution; and if 0 ≤ d1 < 0.5, the
t-statistic follows a nonstandard distribution of fractional Brownian motion.
In practice, d1 is unknown so a consistent estimator of it has to be used.
Dolado, et al. (2002) prove that provided a T− 1

2 consistent estimator of d1 is
used, the t-statistic has a normal distribution asymptotically for 0 ≤ d1 < 1.

Several papers have pointed out the difficulty of distinguishing difference
stationary series from nonlinear but stationary series. Examples include Per-
ron (1989), Harrison and Bond (1992), Teverosky and Taqqu (1997), Diebold
and Inoue (2001), and Perron and Qu (2004). Others consider the role of
testing for difference stationary processes when the series is in fact nonlinear
and stationary. Most of this research uses the alternative of a structural
break in the series. In Nunes, et al. (1995), Hsu (2001), and Krämmer
and Sibbertsen (2002), the reverse of testing for structural breaks in long
memory models is considered. Recent work, such as that by Mayoral (2005),
and Dolado, et al. (2005b), has explicitly tested for difference stationarity
against the alternative of stationarity with a structural break. All of these
works use traditional parametric techniques for either modelling or testing
for nonlinearities. An alternative approach to the analysis of nonlinearity is
to use random field regression models. The strength of this approach is that
it does not rely on any functional form being specified prior to estimation
and testing. Random field regression is discussed in the next subsection.

2.2 Random field regression

The paper by Hamilton (2001) introduced the idea of using random field mod-
els to estimate nonlinear economic relationships. A by-product of Hamilton’s
approach was a new test for nonlinearity based on the Lagrange multiplier
principle.
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2.2.1 Estimation

The basic random field regression model is of the form

yt = µ(xt) + εt, εt ∼ N(0, σ2), t = 1, 2, . . . , T, (4)

where xt is a k-vector of observations on the explanatory variables at time t,
and the functional form µ(xt) is unknown, being assumed to depend on the
outcome of a Gaussian random field. Stationary random fields have been used
for a long time in spatial data analysis and are closely related to thin-plate
splines and universal kriging. Hamilton’s specification could be viewed as a
thin-plate spline smoother. In his paper, Hamilton suggests representing the
conditional mean function, µ(xt), as consisting of two components. The first
is the usual linear form, while the second is a nonlinear component, treated
as stochastic and hence unobservable. Both the linear and nonlinear com-
ponents contain unknown parameters that need to be estimated. Hamilton
chooses the conditional mean function to be

µ(xt) = α0 + α′xt + λm(x̄t), (5)

x̄t = g � xt, (6)

where g is a k-vector of parameters and � denotes the Hadamard prod-
uct. It is the function m(x̄t) that is specifically referred to as the random
field, and there are several possible specifications for this. Hamilton (2001)
showed how, under fairly general misspecification, it is possible to obtain a
consistent estimator of the conditional mean under fairly weak conditions.
In addition, Dahl (2002), Dahl and González-Rivera (2003) and Dahl and
Hylleberg (2004) show that the random field approach has relatively better
small sample fitting and forecasting abilities than a wide range of parametric
and nonparametric alternatives.

Perhaps the most parsimonious representation of m(x̄t) is that which
views it as a realization of a simple Gaussian random field. These fields have
the advantage that they can be fully described by their first two moments:

E (m (x̄t)) = 0, (7)

E (m (x̄t)m (x̄s)) = H (dL∗ (x̄t, x̄s)) , (8)

where dL∗ (x̄t, x̄s) ∈ R+ is a distance measure. An additional simplifying
assumption is that the realization of the functional form occurs prior to, and
therefore independently of, all observations on xt and εt. Hamilton (2001)
chooses a generalized version of the so-called spherical covariance function
used in geostatistical literature:

Hk (hts) =

{
Gk−1(hts,1)

Gk−1(0,1)
hts ≤ 1

0 hts > 1
, (9)

Gk (hts, r) =

∫ r

hts

(
r2 − z2

)k
2 dz, (10)
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hts = dL∗ (x̄t, x̄s) t, s = 1, 2, . . . , T, (11)

where Hk(hts) is the t-sth entry in the T × T covariance matrix H.
As m (x̄t) is not observable, the approach is to draw likelihood-based infer-

ence about the unknown parameters of the model, say, ϕ = {α0, α, λ, g, σ},
by observing the realizations of yt and xt. The likelihood function can be
derived by re-writing equations (4) and (5) for all observations, in an obvious
notation, as

y = Xβ + ν, (12)

ν ∼ N
(
0, λ2H + σ2IT

)
, (13)

where

ν ′ = [λm (x̄1) + ε1, λm (x̄2) + ε2, λm (x̄3) + ε3, . . . , λm (x̄T ) + εT ]. (14)

Thus maximizing the likelihood function to obtain estimates of ϕ is a gener-
alized least squares problem. Letting ζ = λ

σ
and W (X; g; ζ) = ζ2H + σ2IT ,

the profile log-likelihood function associated with the least squares problem
can be obtained as

η (y,X, g; ζ) = −T

2
ln(2π) − T

2
lnσ2 (g; ζ) − 1

2
ln |W (X; g; ζ) | − T

2
, (15)

while
β̃ (g; ζ) =

[
X′W (X; g; ζ)−1 X

]−1 [
X′W (X; g; ζ)−1 y

]
, (16)

σ̃2 (g; ζ) =
1

T
[y − Xβ (g; ζ)]′ W (X; g; ζ)−1 [y − Xβ (g; ζ)] . (17)

The profile log-likelihood function is maximized with respect to (g; ζ) using
standard maximization algorithms, though as Bond, et al. (2005) point out,
care needs to be taken when maximizing the log-likelihood due to compu-
tational pitfalls. Once estimates for g and ζ have been obtained, equations
(16) and (17) can be used to obtain estimates of β and σ.

2.2.2 Testing

The model proposed by Hamilton suggests that a simple approach to checking
for nonlinearity is to test the null hypothesis H0 : λ2 = 0 (or λ = 0), using the
Lagrange multiplier principle. Hamilton (2001) derived the appropriate score
vector of first derivatives and the associated information matrix. Details of
the procedure are given by Hamilton (2001), and summarized in Bond, et al.
(2005), but the main steps of the test are presented here for convenience.

• Set gi = 2√
ks2

i

, where s2
i is the variance of explanatory variable xi,

excluding the constant term whose variance is zero.

• Calculate the T×T matrix, H, whose typical element is Hk

(
1
2
‖x̄t − x̄s‖

)
,

i.e., the function Hk(hts) defined in (9).

• Use ols to estimate the standard linear regression y = Xβ + ε and
obtain the usual residuals, ε̂, and standard error of estimate, σ̂2 =
(T − k − 1)−1ε̂ ′ε̂.
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• Finally, compute the statistic

κ
2 =

[ε̂′Hε̂ − σ̂2tr(MH)]2

σ̂4
{
2tr ([MHM− (T − k − 1)−1 Mtr(MH)]2)

} , (18)

where M = IT −X(X′X)−1X′ is the familiar symmetric idempotent
matrix.

As κ
2 A∼ χ2

1 under the null hypothesis, linearity (λ2 = 0) would be rejected
if κ

2 exceeded the critical value, χ2
1,α, for the chosen level of significance, α.

Otherwise the null of linearity would not be rejected. For example, at the 5
per cent significance level, the null would be rejected if κ

2 > 3.84. In this case
the alternative nonlinear specification given by (5) would be preferred. The
identification of a specific form of nonlinearity is aided by the estimate of the
conditional expectation µ(xt) and, specifically, the ζ̃ and g̃i. The matter is
explained in Hamilton (2001, Section 5) and illustrated in the three examples
in his Section 7.

3 An Empirical Case Study

3.1 Methodology

To investigate the application of both the new long memory tests and the
random field approach, a standard applied economics problem, namely, the
estimation of a demand for money function, is considered in this section.
The well-known datasets for Denmark and Finland, provided by Johansen
and Juselius (1990), are used.

The standard I(1)/I(0) analysis is conducted first, in Subsection 3.2.1.
The univariate analysis of the series, using the augmented Dickey-Fuller
(adf) testing strategy proposed by Dolado, et al. (1990) is implemented
to determine whether the individual series are trend stationary or difference
stationary.1 The unit root tests due to Kwiatkowski, et al. (1992) (kpss), El-
liott, et al. (1996) (ers), and Ng and Perron (2001) (np) are also employed.
Both the Engle and Granger (1987) error correction (ecm) and Johansen
(1988) vector autoregression (var) approaches are used to investigate the
possibility of cointegration, with the augmented Engle-Granger (aeg) test,
the cointegrating regression Durbin-Watson (crdw) test of Sargan and Bhar-
gava (1983 ), and the ecm test due to Banerjee, et al. (1986) being used
in the former case. The p-values from MacKinnon (1996), MacKinnon, et
al. (1999), Ericsson and MacKinnon (2002), and standard normal tables are
used, as appropriate. The effect of applying Johansen’s (2002) small sam-
ple correction is also examined. This correction is based on the Bartlett
(1937) correction and assumes that the errors are normal, independent and
identically distributed.

1Although the data are quarterly, the issue of possible seasonal integration has been
ignored for simplicity. A more detailed examination of the issue of unit roots might allow
for this by using the procedures of Hylleberg, et al. (1990) or Osborn, et al. (1988).

8



Having conducted the standard cointegration analysis, the long memory
and fractional integration analysis is undertaken, in Subsection 3.2.2. Only
univariate analysis is attempted, due to the complexity of fractional cointe-
gration models, which was pointed out in the quotation from Phillips (2003)
given in Subsection 2.1. In particular, it seems unlikely that the series in
either of the two cases considered all have the same level of fractional inte-
gration. The ‘over differenced’ ARFIMA model, using ∆yt rather than yt,
is estimated, as recommended by Smith, et al. (1997), to avoid the problems
associated with drift. Four estimates of d are calculated using the Doornik
and Ooms (1999) ARFIMA package, namely, the eml, nls, gph and gsp

estimates. The fact that the first of these requires d < 0.5 is another reason
for using the ‘over-differenced’ model. The mpl estimate is not obtained as
there are no ‘nuisance’ parameters in the model being estimated. The esti-
mates of d are then used in the fractional Dickey-Fuller (fdf ) and fractional
augmented Dickey-Fuller (fadf) tests, with the Schwarz (Bayesian) informa-
tion criterion (sic) being used as the basis for the choice of the lag length for
the test. Finally, in Subsection 3.2.3, the random field regression approach
is applied to the two cases, using the Gauss code provided by Hamilton at
his website, http://weber.ucsd.edu/˜jhamilto/.

3.2 Demand for money in Denmark and Finland

3.2.1 Standard analysis

The well documented instability of the demand for money function in many
countries has led to several studies that place the analysis of money demand
in the I(1)/I(0) framework; see, for example, Astley and Haldane (1997),
Fiess and McDonald (2001), Mark and Sul (2003), and Choi and Saikkonen
(2004). Following Johansen and Juselius (1990), a simple demand for money
function can be specified for Denmark and Finland as

mt = α + β1yt + β2pt + β3it + β4bt + εt, (19)

where mt is the logarithm of some measure of money demand, yt is the
logarithm of real income, pt is the logarithm of the inflation rate, it is the
deposit interest rate and bt is the bond rate at time t. For Finland, β4 is
assumed to be zero as no data are available.

Tables 1 and 2 give the results of the Dolado, et al. (1990) unit root testing
strategy for the Danish and Finnish variables, respectively.2 For Denmark,
all of the data series appear to be clearly I(1). However, for the Finnish
data, only the mt and yt variables seem to be I(1), though the inference is
marginal for yt. In the case of Finland’s mt variable, the constant in the
adf test is only marginally insignificant, but if it is treated as significant,
the adf test still supports the null of a unit root, with a test statistic of
-0.760 and an associated p-value of 0.826. By contrast, the unit root null is
rejected decisively for Finland’s pt and it series. It is noteworthy, though,
that if, for these last two variables, the Akaike information criterion (aic)

2All tables are presented in Appendix A1.
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is used instead of the sic, the choice of lag lengths for the adf tests, and
the test results, are different: the suggestion then is that, like mt and yt, the
Finnish price and interest rate variables are also I(1).

To investigate further, the kpss, ers and np alternative unit root tests
were conducted. While the latter two tests have as their null hypothesis that
the series has a unit root, the first has the null that the series is stationary
and the alternative hypothesis that it has a unit root. For the Danish data
the additional tests broadly confirm the findings of Table 1. In only a few
cases does the kpss test fail to reject the null hypothesis of stationarity.
One case is that of the money demand variable, mt, when Parzen kernel
estimation is used and no trend is specified. The other is that of the income
variable, yt , when a trend is allowed for in the specification. In this latter
case, the result holds for any of the spectral estimation methods, but not for
the moment estimators. For the Finnish data the results are less clear. For
all variables, the np test, which it has been argued has better power than
standard I(1)/I(0) tests, tends to reject the null hypothesis of a unit root.
This is often supported by the kpss and ers tests.3

On the assumption that the variables are I(1), which seems to be a far
safer assumption to make for Denmark than for Finland, the Engle-Granger
two-step approach to cointegration gives the estimated levels models, and
associated aeg and crdw test results for the ols residuals, presented in
Table 3. Using the 5 per cent significance level, there is little evidence for
both countries that a cointegrated money demand relationship might exist.
Only in the case of Finland, when pt and it are ignored in view of the fact
that they seem to be I(0) using the Dolado, et al (1990) procedure and the
supplementary unit root checks, is cointegration of mt and yt suggested by
the aeg and crdw tests, but even then only marginally.

The estimates of parsimonious error correction models, using the lag of
the residuals from the levels regression models as the error correction terms,
are given in Table 4. The models are statistically acceptable in the sense
that they are supported by a range of misspecification diagnostics. Only in
the case of the equations for Finland is there are marginal suggestion of het-
eroscedasticity. However, with R2 values around 0.5, the fits are quite poor
and there is a high incidence of insignificance of the estimated coefficients. In
particular, the coefficients on the error correction terms are highly insignif-
icant, with three out of the four being perversely signed; and the ecm test
decisively rejects cointegration in all cases. Even in the one case for Finland
in which the aeg and crdw tests suggest the possibility of cointegration,
the ecm test rejection is unambiguous.

The Danish data have been used extensively by Johansen and it is clear
from his various results that the argument that there is a cointegrating money
demand relationship depends largely on the var specification and the test
statistic used; see Johansen (1988), Johansen and Juselius (1990), and Jo-
hansen (2002). Table 5 gives a summary of the results that can be obtained
for Denmark using Johansen’s approach and a var lag length of one, as sug-

3The details of the supplementary unit root tests are available on request from the
authors.
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gested by the sic and the adjusted likelihood-ratio test.4 As can be seen,
a range of specifications concerning intercepts and trends was examined for
variants of the model with and without seasonal dummy variables. Exam-
ination of the various var estimates suggested that the specification with
unrestricted intercept and trend was the most appropriate. Moreover, given
that the data used were quarterly, the variant with seasonal dummies was
also preferred. There is variability in the suggested number of cointegrating
relationships across the range of specifications used, and between the trace
test and the maximal eigenvalue test used to ascertain this number. The sur-
prise is that despite the results from the static cointegrating regressions and
error correction models, which overwhelmingly point to no cointegration, all
of the results in Table 5, except one, suggest at least one cointegrating vector.
In the case of the preferred specification, the suggestion is of one cointegrat-
ing relationship, in contrast to the outcome produced by the Engle-Granger
approach.

For the Finnish data, the summary results of the Johansen procedure on
the full model are given in Table 6. There is similar variability in the number
of cointegrating relationships suggested for the different specifications and
tests to that noted for Denmark, though it is not quite as marked. The
preferred specification is again that with unrestricted intercept, unrestricted
trend and seasonal dummies, for which case the number of cointegrating
relationships indicated is two, again in stark contrast to the earlier indications
of no cointegration. As Johansen has pointed out, the interpretation of the
findings for the Finnish data poses particular problems. Accordingly, two
alternative reduced models for Finland were also investigated: one taking
pt to be I(0) in the var analysis, and the other treating both pt and it as
I(0). The summary results for these cases are given in Table 7 and Table 8,
respectively. Table 7 contains consistent indications of a single cointegrating
vector across all var specifications and tests, though once again this finding
contradicts the indications from the aeg, crdw and ecm tests. Slight
variability in the results for different specifications and tests is seen in Table
8, but in this case no cointegration is suggested for the preferred specification.
This finding conflicts with the corresponding aeg and crdw results, which
indicate a possibility of cointegration, but it is in agreement with the ecm

test result.
The Johansen bias-correction factor was calculated only for the preferred

var specification in the case of Denmark, and for the preferred specification
of the full and the two reduced models in the case of Finland. Table 9 presents
the Danish results. Although the correction factor relates only to the trace
test, details of the maximum eigenvalue test are also given. The correspond-
ing results for the full Finnish model and the two reduced versions are given
in tables 10, 11 and 12, respectively. Interestingly, when the adjusted critical
value is used for the trace test, the result for Denmark changes to one sug-
gesting no cointegrating relationships, in accordance with the aeg, crdw

and ecm test findings. Thus there is conflict between the trace test and the

4The aic and unadjusted likelihood-ratio test suggested a lag length of two. The choice
of lag length one has the advantage of economizing on degrees of freedom.
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maximum eigenvalue test in the case considered, the latter indicating one
cointegrating relationship. The correction factors are close to unity for the
Finland cases, probably due to the larger sample size. Even so, the outcome
for the full Finnish model is similar to that for Denmark, the modified trace
test indicating the reduced number of one cointegrating relationship, while
the maximum eigenvalue test indicates two. However, the correction has no
effect in the cases of the two reduced models. In particular, as the correction
would increase the critical value of the trace statistic, and as the test sta-
tistic for the second reduced model already lies well below the uncorrected
critical value, as can be seen from Table 12, the correction factor was not
even computed for this final case. The conclusion suggested by the modified
Johansen procedure remains that the number of cointegrating vectors is one
and zero for the first and second reduced Finnish models, respectively.

It can be seen from these various results that the traditional analysis is
somewhat confusing. Examination of the Danish data seems to suggest that
all variables are I(1) and, using the Engle-Granger two-step procedure, that
cointegration does not hold and error correction models are not appropriate.
Yet, using the original Johansen var approach, there are strong indications
of cointegration, which are only challenged if a bias corrected trace test is
undertaken. The Finnish data give rise to some similar findings, although in
contrast to the Danish case, unit root tests suggest that some of the series are
possibly not I(1). When allowance is made for this possibility, the Engle-
Granger approach marginally supports cointegration. However, when the
Johansen technique is applied in this case, it gives contrary results, whether
or not a modified trace test is used, indicating that there is no cointegration.

3.2.2 Fractional integration

Having raised concerns over the standard I(1)/I(0) analysis, the next step is
to consider the possibility of fractional integration. Table 13 gives the results
of the fractional analysis for the Danish data. For each variable, a range of
estimates of d is provided, as well as the results of the fdf and fadf tests.
The corresponding results for the Finnish data are given in Table 14.

It can be seen from the results that there is little evidence in support
of the Danish data being anything other than I(1), which accords with the
findings of the previous standard analysis. It is possible, if just the para-
metric estimators of d are considered, to argue that the Danish bt variable
is fractionally integrated, whereas for the Finnish data it would appear that
three of the four variables are fractionally integrated, namely, mt, pt and it.
It will be recalled that unit root tests decisively rejected the unit root null
for the latter two variables. The results for Finland’s yt variable also give
indications that it is fractionally integrated, but the fadf result in this case
has the wrong logical sign. Overall, the investigation of fractional integration
suggests that the Finnish data series are not generated by I(1) processes but
that the Danish data are.
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3.2.3 The Hamilton approach

In light of the possibility that the emerging difficulties may be related to
parameter instability, or some other type of nonlinearity, of what may be
stationary data generating processes, simple recursive residual plots for the
Danish and Finnish versions of model (19) were produced; these are depicted
in figures 1 and 2, respectively, in Appendix A2. Guided by these graphs,
simple Chow breakpoint tests for the Danish and Finnish models were im-
plemented and the results of these are given in Table 15. Finally, Hamilton’s
random field approach was used to explore the likely form of the two models,
and this leads to some interesting results. Clearly, the graphs and Chow
tests provide strong initial evidence for structural instability in both mod-
els. Hamilton’s lm test statistics for nonlinearity for the Danish and Finnish
models were 15.338 and 123.810, respectively, which are significantly greater
than the 5 per cent critical χ2

1 figure of 3.84, again suggesting that the mod-
els should not be simple linear models. Detailed results from the Hamilton
procedure are given in Table 16.

Given the earlier findings, the Hamilton results from the Danish data
are rather disappointing, in so much as both σ and ζ estimates are not
statistically significant on the basis of an asymptotic t-test. It could be
argued, along the lines of Dahl and González-Rivera (2003), that this is
due to nuisance parameter problems, given that under the null of linearity,
the gi parameters are unidentified. If the statistical insignificance of σ̃ and
ζ̃ is ignored, the significant coefficient of pt in the linear and the nonlinear
components of the Danish model strongly suggests that this inflation variable
is the prime source of any parameter instability. This is in line with some of
the results in Johansen and Juselius (1990).

In the case of Finland, the results in Table 16 are more satisfying. Both σ̃
and ζ̃ are statistically significant, in agreement with the implied value of λ in
the lm test, and suggesting that there is significant nonlinearity in the money
demand relationship. In the Finnish case, it is the income variable, yt, that
proves significant in both the linear and nonlinear parts of the model and,
therefore, that needs to be investigated further. The cross plots of mt against
pt for Denmark, and of mt against yt for Finland, given in figures 3 and 4,
respectively, in Appendix A2, hint at the possibility of a piecewise linear
regression being an adequate model for the money demand relationships.

In the case of Denmark, such a model is

mt = α+β1yt+β2pt+β3 (pt − p1)D1t+β4 (pt − p2) D2t+β5it+β6bt+εt, (20)

p1 = −0.44, D1t = 0, pt ≤ p1,
D1t = 1, pt > p1,

p2 = 0.26, D2t = 0, pt ≤ p2,
D2t = 1, pt > p2.

(21)

For Finland, an alternative model is

mt = α + β1it + β2pt + β3yt + β4 (yt − y1) D1t + εt, (22)
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y1 = 4.3, D1t = 0, yt ≤ y1,
D1t = 1, yt > y1.

(23)

In both equations (20) and (22), εt is a standard white noise error. The
resulting ols estimates, with standard errors given in parentheses, are

mt = 6.66
(0.67)

+0.93
(0.11)

yt+0.54
(0.14)

pt+1.25
(0.17)

(pt − p1)D1t−0.65
(0.16)

(pt − p2) D2t+0.61
(0.58)

it−1.48
(0.31)

bt,

(24)
and

mt = 1.77
(0.27)

+ 0.31
(0.12)

it − 0.32
(0.46)

pt + 0.30
(0.06)

yt + 0.88
(0.09)

(yt − y1)D1t (25)

for Denmark and Finland, respectively. In both cases the extra nonlinear
terms are highly significant. Furthermore, the R2 values are about 0.95 for
both equations and the misspecification diagnostics for nonnormality, het-
eroscedasticity and functional form are also satisfactory. However, there are
significant indications of first-order autocorrelation from the Durbin-Watson
test, as well as fourth-order autocorrelation from the relevant Lagrange mul-
tiplier test.5 Moreover, when the Hamilton test for nonlinearity is applied to
these revised equations, the sample values of the lm statistics for the Danish
and Finnish models are 42.987 and 18.354, respectively, which are still higher
than the critical χ2

1 value of 3.84. This finding contradicts the indications
provided by the first test for nonlinearity (Reset), which suggests that a lin-
ear functional form is appropriate. Though the substantial fall in the value
of the Hamilton test statistic for the Finnish data is encouraging, Hamilton’s
method suggests that both models are still not adequately specified. Clearly,
were the application more than an illustrative case study, further work would
be required to discover better nonlinear specifications for the money demand
functions.

4 Summary and Conclusions

This paper has drawn attention to some of the pitfalls involved in using
the conventional I(1)/I(0) framework for economic and financial modelling
of time-series data, an approach involving well-known unit root tests and
the cointegration testing and modelling procedures of Engle and Granger
(1987), and Johansen (1988), that has been applied widely during the last
decade or so. The practical difficulties of untangling the issues of stationar-
ity, fractional integration, nonlinearity, and parameter instability have been
highlighted. In addition, the paper has discussed some of the recent research
directed at resolving these problems and providing alternative, or at least
complementary, approaches to modelling. Brief accounts have been given of
the theory underlying fractional integration and long memory models, and of
the estimation and testing methods in the random field regression approach
proposed by Hamilton (2001). Some guidance has also been provided on the
several methods of estimating and testing the order of fractional integration

5The detailed misspecification diagnostic results are available on request from the au-
thors.
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and the software necessary for the implementation of these and the Hamilton
method.

A key element in the paper has been the presentation of a case study
intended to illustrate the application of these newer techniques and contrast
their findings with those of the standard cointegration modelling approach.
The study used the data previously analyzed by Johansen and Juselius (1990)
in connection with demand for money functions in Denmark and Finland.
The results obtained from the various techniques exemplify the problems with
the standard approach and the alternative conclusions that might be reached
by using different techniques. The findings, using the standard approach,
were as follows.

• Though adf tests, implemented using the procedure of Dolado, et al.
(1990), appear to suggest unit roots for most variables, they are sensi-
tive to the specification of the test equation and the information crite-
rion used to choose lag length in the case of some variables, especially
for Finland.

• When the matter of unit roots was explored further, using the eps,

kpss and np tests, unit roots for the Danish variables tended to be
confirmed but not for the Finnish variables.

• Proceeding on the assumption that all variables are I(1), the Engle-
Granger two-step procedure does not support cointegration in general,
a result that is confirmed by ecm tests conducted in an error-correction
framework for the money demand relationship for each country. How-
ever, the Engle-Granger approach does suggest cointegration for the
version of the Finland model that treats two of the variables, pt and it,
as I(0).

• Using the Johansen approach without its small sample bias-correction
factor, there is considerably stronger evidence of cointegration in the
case of Denmark, though the number of cointegrating vectors suggested
varies, depending on the var specification chosen. For the preferred
var specification, one cointegrating vector is suggested for Denmark.
The picture that emerges for Finland is similar, although for the ver-
sion of the model that treats the pt and it variables as I(0) , the Jo-
hansen method suggests no cointegration, contradicting the finding of
the Engle-Granger procedure in this case.

• The Johansen correction factor has a marked effect on the result in the
case of the small sample of data for Denmark, the modified trace test
agreeing with the conclusion from the Engle-Granger procedure that
there is no cointegrating demand for money relationship. However, it
was noted that the modified trace test provides a different signal from
the maximum eigenvalue test, which indicates cointegration. As might
be expected, the Johansen correction has no effect on the findings for
Finland, which are based on a much larger sample.
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These results are puzzling, not withstanding the relatively small size of
the Danish sample used and the known low power of unit root tests. In
particular, the contradictory results from the Engle-Granger and Johansen
procedures concerning the existence of cointegrating relationships, in the case
of both countries, is curious.

Checking for fractional integration by means of a range of estimators of
the fractional integration parameter, as well as the new fdf and fadf tests
of Dolado, et al. (2002), confirms the I(1) nature of the Danish variables and
the lack of a unit root for the variables in the case of Finland. It is difficult
to say why the bias-corrected Johansen technique fails to find cointegration
in the former case and yet suggests it in the latter.

Assuming that the Finnish data are not I(1), and hence can not be simply
cointegrated, what type of model is appropriate? The possibility of station-
arity with regime shifts or some other kind of nonlinearity arises. This was
explored, for both countries in fact, by means of recursive residual analysis
and Chow tests, as well as by the Hamilton procedure, which is more appro-
priate for general, unknown forms of nonlinearity. These methods produce
strong evidence of structural change/nonlinearity, if underlying stationarity
is entertained. However, an attempt to re-specify the money demand equa-
tions as piecewise linear regressions, which was suggested by examination of
the data, was not very successful. Clearly, further work would be necessary
to find an adequate nonlinear functional form, were this alternative approach
to be the preferred one.

In conclusion, the messages from this study appear to be that, first, stan-
dard I(1)/I(0) modelling strategies for economic and financial time series are
fraught with dangers. Secondly, complementary procedures designed to in-
vestigate the possibilities of fractional integration and nonlinearity are avail-
able and relatively easy to implement. Thirdly, fractional integration analysis
may confirm the existence of unit roots, but may also suggest fractional in-
tegration of different degrees for different variables. This is a complicated
situation that raises challenges for modelling. Fourthly, and recalling that
unit root tests may often indicate that a unit root exists when a series is
stationary but subject to level shifts, a general analysis of nonlinearity, such
as that offered by the Hamilton procedure, may be an attractive option that
can lead to acceptable alternative models. The moral would seem to be that
reliance on any one approach may not be a sensible practice in applied work,
and that practitioners would be well advised to consider using a range of
alternative methods and selecting models according to the balance of the
wider body of evidence produced.
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A Appendices

A.1 Tables

Table 1: Unit Root Tests, Denmark (T = 55)

Variable Test Statistic Constant Trend Lag Length

probability† using sic

mt 1.123
(0.930)

Not Significant Not Significant 2

yt 0.776
(0.878)

Not Significant Not Significant 0

pt 0.437
(0.664)‡

Significant Significant 0

it −0.616
(0.446)

Not Significant Not Significant 0

bt −0.982
(0.288)

Not Significant Not Significant 1

†MacKinnon (1996) one-sided p-values.
‡normal probability.

Table 2: Unit Root Tests, Finland (T = 106)

Variable Test Statistic Constant Trend Lag Length

probability† using sic

mt 1.720
(0.979)

Not Significant Not Significant 4

yt −1.951
(0.054)‡

Significant Not Significant 4

pt −4.200
(0.006)

n/a n/a 1

it −4.874
(0.001)

n/a n/a 0

†MacKinnon (1996) one-sided p-values.
‡normal probability.
n/a denotes not applicable.
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Table 3: Engle-Granger Levels Models

Coefficients

(t-statistics)

Variable Denmark (T = 55) Finland (T = 106)

Full Full Reduced 1 Reduced 2

c 4.472
(5.178)

−0.841
(−6.552)

−0.784
(−6.104)

−0.766
(−6.448)

yt 1.283
(9.135)

0.928
(31.988)

0.926
(31.300)

0.921
(35.021)

pt 0.004
(0.122)

−0.366
(−0.552)

−0.254
(−0.377)

-

it 0.569
(0.705)

0.375
(2.285)

- -

bt −2.601
(−7.370)

- - -

R2 0.926 0.926 0.922 0.922
CRDW

[critical values]
0.737
[1.19]

0.418
[0.58]

0.399
[0.48]

0.398
[0.38]

AEG test on residuals
[critical value]

−3.301
[−4.694]

−3.541
[−4.204]

−3.473
[−3.824]

−3.461
[−3.395]

Note: 5 per cent AEG and CRDW critical values.

23



Table 4: Error Correction Models

Coefficients

(t-statistics)

Variable Denmark (T = 55) Finland (T = 106)

Full Full Reduced 1 Reduced 2
c 0.008

(0.657)
0.004
(0.852)

0.004
(0.795)

0.004
(0.807)

∆mt−1 −0.088
(−0.710)

−0.166
(−1.873)

−0.158
(−1.779)

−0.161
(−1.806)

∆mt−4 0.387
(2.861)

0.093
(0.978)

0.099
(1.028)

0.098
(1.021)

∆yt 0.497
(2.815)

0.502
(4.412)

0.502
(4.367)

0.501
(4.371)

∆pt −0.233
(−0.449)

−0.416
(−1.218)

−0.392
(−1.140)

−0.372
(−1.084)

∆it −1.137
(−1.700)

0.247
(2.058)

0.222
(1.817)

0.221
(1.814)

∆bt −0.860
(−1.744)

- - -

ECM −0.009
(−0.082)

0.175
(2.852)

0.154
(2.571)

0.157
(2.636)

R2 0.498 0.532 0.525 0.526
DW 1.988 1.807 1.815 1.807

Serial correlation χ2(4) 5.119
[0.275]

6.460
[0.167]

5.187
[0.269]

5.553
[0.235]

Functional form χ2(1) 1.443
[0.230]

0.322
[0.570]

0.372
[0.542]

0.371
[0.542]

Normality χ2(2) 3.457
[0.178]

1.114
[0.573]

1.202
[0.548]

1.264
[0.532]

Heteroscedasticity χ2(1) 0.099
[0.753]

3.804
[0.051]

3.929
[0.047]

4.072
[0.044]

Note: For diagnostics, p-values in square brackets.
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Table 5: Number of Cointegrating Relations by Model, Danish Data

Test Type no inpts rest’d inpts unrest’d inpts unrest’d inpts unrest’d inpts
no trends no trends no trends rest’d trends unrest’d trends

0.05 and 0.10 significance levels, excluding seasonal dummies

Trace 3 4 3 3 3 4 3 3 1 2
Max-Eig. 1 2 3 3 3 4 3 3 0 1

0.05 and 0.10 significance levels, including seasonal dummies

Trace 4 4 3 3 3 3 2 3 1 2
Max-Eig. 1 2 2 3 2 3 2 3 1 1

Table 6: Number of Cointegrating Relations by Model, Finnish Data 1

Test Type no inpts rest’d inpts unrest’d inpts unrest’d inpts unrest’d inpts
no trends no trends no trends rest’d trends unrest’d trends

0.05 and 0.10 significance levels, excluding seasonal dummies

Trace 3 4 2 4 2 2 2 2 2 2
Max-Eig. 2 4 2 2 2 2 2 2 2 2

0.05 and 0.10 significance levels, including seasonal dummies

Trace 3 4 3 4 2 2 2 2 2 2
Max-Eig. 3 4 2 4 2 2 2 2 2 2
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Table 7: Number of Cointegrating Relations by Model, Finnish Data 2

Test Type no inpts rest’d inpts unrest’d inpts unrest’d inpts unrest’d inpts
no trends no trends no trends rest’d trends unrest’d trends

0.05 and 0.10 significance levels, excluding seasonal dummies

Trace 1 1 1 1 1 1 1 1 1 1
Max-Eig. 1 1 1 1 1 1 1 1 1 1

0.05 and 0.10 significance levels, including seasonal dummies

Trace 1 1 1 1 1 1 1 1 1 1
Max-Eig. 1 1 1 1 1 1 1 1 1 1

Table 8: Number of Cointegrating Relations by Model, Finnish Data 3

Test Type no inpts rest’d inpts unrest’d inpts unrest’d inpts unrest’d inpts
no trends no trends no trends rest’d trends unrest’d trends

0.05 and 0.10 significance levels, excluding seasonal dummies

Trace 0 1 0 1 0 0 0 0 0 0
Max-Eig. 0 1 0 0 0 0 0 0 0 0

0.05 and 0.10 significance levels, including seasonal dummies

Trace 1 1 1 2 0 0 0 0 0 0
Max-Eig. 1 1 1 1 0 0 0 0 0 0
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Table 9: Johansen Results for Danish Data plus Modified Critical Values

Unrestricted Cointegration Rank Test (Trace)

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 111.641 82.230 77.550 112.803
r ≤ 1 r ≥ 2 55.809 58.930 55.010 -
r ≤ 2 r ≥ 3 29.843 39.330 36.280 -
r ≤ 3 r ≥ 4 7.640 23.830 21.230 -
r ≤ 4 r = 5 0.094 11.540 9.750 -

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypotheses Trace 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 55.831 37.070 34.160
r ≤ 1 r = 2 25.966 31.000 28.320
r ≤ 2 r = 3 22.203 24.350 22.260
r ≤ 3 r = 4 7.546 18.330 16.280
r ≤ 4 r = 5 0.094 11.540 9.750

Note: The correction factor is 1.372.
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Table 10: Johansen Results for Finnish Data 1 plus Modified Critical Values

Unrestricted Cointegration Rank Test (Trace)

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 85.122 58.930 55.010 63.998
r ≤ 1 r ≥ 2 42.621 39.330 36.280 42.712
r ≤ 2 r ≥ 3 12.207 23.830 21.230 -
r ≤ 3 r ≥ 4 2.247 11.540 9.750 -

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypotheses Trace 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 42.501 31.000 28.320
r ≤ 1 r = 2 30.414 24.350 22.260
r ≤ 2 r = 3 9.961 18.330 16.280
r ≤ 3 r = 4 2.247 11.540 9.750

Note: The correction factor is 1.086.
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Table 11: Johansen Results for Finnish Data 2 plus Modified Critical Values

Unrestricted Cointegration Rank Test (Trace)

Hypotheses Trace 0.05 Critical 0.10 Critical Modified 0.05
Statistic Value Value Critical Value

r = 0 r ≥ 1 43.798 39.330 36.280 40.313
r ≤ 1 r ≥ 2 10.795 23.830 21.230 -
r ≤ 2 r ≥ 3 2.052 11.540 9.750 -

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypotheses Trace 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 33.004 24.350 22.260
r ≤ 1 r = 2 8.742 18.330 16.280
r ≤ 2 r = 3 2.052 11.540 9.750

Note: The correction factor is 1.025.
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Table 12: Johansen Results for Finnish Data 3 plus Modified Critical Values

Unrestricted Cointegration Rank Test (Trace)

Hypotheses Trace 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r ≥ 1 8.827 23.830 21.230
r ≤ 1 r ≥ 2 0.300 11.540 9.750

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypotheses Trace 0.05 Critical 0.10 Critical
Statistic Value Value

r = 0 r = 1 8.527 18.330 16.280
r ≤ 1 r = 2 0.300 11.540 9.750

Table 13: Fractional Integration Analysis, Danish Data

MLE NLS GPH GSP FDF† FADF†

mt 1.159
(0.123)

1.176
(0.133)

1.168
(0.171)

0.993
(0.096)

-0.850 -1.490

yt 0.360
(0.281)

0.577
(0.276)

1.23
(0.171)

1.08
(0.096)

-0.076 2.267

pt 0.741
(0.301)

0.674
(0.231)

0.994
(0.171)

0.870
(0.096)

0.077 -1.569

it 0.574
(0.275)

0.521
(0.260)

1.171
(0.171)

1.084
(0.962)

-0.223 -1.125

bt 0.738
(0.278)

0.727
(0.218)

1.377
(0.171)

1.275
(0.096)

2.339 -2.191

†Based on the MLE estimator of d.
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Table 14: Fractional Integration Analysis, Finish Data

MLE NLS GPH GSP FDF† FADF†

mt 0.778
(0.090)

0.762
(0.090)

0.830
(0.112)

0.590
(0.069)

-2.94 -2.046

yt 0.559
(0.084)

0.570
(0.086)

0.745
(0.113)

0.523
(0.693)

1.250 8.502

pt 0.236
(0.099)

0.210
(0.096)

0.410
(0.114)

0.394
(0.113)

-6.45 -2.63

it 0.621
(0.108)

0.622
(0.103)

0.759
(0.112)

0.796
(0.069)

-2.73 -3.54

†Based on the MLE estimator of d.

Table 15: Simple Chow Breakpoint Tests

Denmark Finland

F-statistic 10.127
(0.000)

15.205
(0.000)

Log-likelihood ratio 69.400
(0.000)

70.273
(0.000)

Note: Two breakpoints each model.
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Table 16: Hamilton Analysis

Denmark Finland

Estimates
(standard error)

Estimates
(standard error)

Linear
c 7.338

(1.142)
−0.554
(0.348)

yt 0.781
(0.190)

0.877
(0.079)

pt 0.129
(0.061)

−0.826
(0.456)

it −0.066
(0.063)

0.133
(0.171)

bt −0.111
(0.039)

Non-linear
σ 0.009

(0.006)
0.050
(0.005)

ζ 5.376
(4.014)

1.289
(0.311)

yt 3.412
(2.335)

4.791
(0.748)

pt 6.490
(1.394)

0.009
(0.360)

it −0.00002
(0.510)

2.238
(2.167)

bt 0.000003
(0.569)
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A.2 Figures

-.10

-.05

.00

.05

.10

.15

75 76 77 78 79 80 81 82 83 84 85 86 87

Recursive Residuals ± 2 S.E.

Figure 1: Recursive residuals plot, Denmark
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Figure 2: Recursive residuals plot, Finland
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Figure 3: mt against pt, Denmark
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Figure 4: mt against yt, Finland
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