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Abstract: Finite sample critical values of the rescaled range or R/S statistic may be obtained by
bootstrapping. The empirical size and power performance of these critical values is good. Using the
post blackened, moving block bootstrap helps to replicate the time dependencies in the original
data. The Monte Carlo results show that the asymptotic critical values in Lo (1991) should not be
used.

I  INTRODUCTION

The modified rescaled range or R/S statistic is used to detect long memory in
financial, economic, hydrological and other time series (Lo, 1991; Beran,

1994; Baillie, 1996). The R/S statistic for an I(0) time series 
    

xt{ }t=1
T , divided by

the square root of the sample size T, is just the maximum range of the partial
sum of the standardised series 

    
ST (t) = T−1/2 (xt − x) /

)σx :
s=1

t
∑

  
T−1/2R/S = max  ST (t)

0≤t≤T
 −  min ST (t)

0≤t≤T
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where 
  
x = xt

t=1

T
∑  is the sample average and     

)σx  is a consistent estimate of the

standard deviation of   xt . The modified R/S statistic proposed by Lo (1991) uses
a consistent estimator of the long run standard deviation, such as the Newey-
West (1987) estimator, rather than the ordinary standard deviation to standard-
ise the series. Asymptotically, if the I(0) time series xt satisfies some weak
regularity conditions such as those set out in Lo (1991), the limiting distribution
of T–1/2 R/S is the maximum range of a standard Brownian bridge or “tied down”
Brownian process:

T–1/2R/S   
⇒ max Wb (r)

r
− min Wb (r)     0 ≤ r ≤ 1

r

where ⇒  denotes weak convergence, W(r) is a Brownian process and Wb(r) =
W(r) – rW(1) is a standard Brownian bridge. The regularity conditions underlying
this result are standard in the unit root literature and permit a fair degree of
dependence and heterogeneity. ARMA and/or GARCH processes are permitted.

II  FINITE SAMPLE CRITICAL VALUES FOR R/S

Unfortunately, as Lo (1991), Harrison and Treacy (1997) and others show,
the finite sample distribution of R/S is not well approximated by its asymptotic
distribution even when T is large and the time series xt is i.i.d.. Moreover, very
few exact/finite sample results for the distribution of R/S are known. One
exception is Anis and Lloyd (1976) who derived the expected value of the R/S
statistic when the xt are i.i.d. normal.

Harrison and Treacy (1997) calculated the small sample distribution of R/S
using 100,000 random draws from three i.i.d. distributions — the standard
normal, the uniform and the log-normal distributions — for various sample
sizes ranging from 25 to 500. They fitted four moment Beta approximations to
their results for the two symmetric distributions and derived approximate small
sample critical values for R/S. Unfortunately, the Beta approximation for the
asymmetric, log-normal distribution is poor. Of course, Harrison and Treacy
(1997) may have inadvertently considered a very unfavourable set of parameters
for the log-normal distribution. Conniffe and Spencer (1999) suggest two other
useful approximations to the small sample distribution of R/S. Their approxi-
mations are not sample size specific but the derivations assumed normality so
their results may not be robust to departures from normality.
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III  BOOTSTRAPPING THE R/S STATISTIC

The problem with the various approximations to the finite sample distribution
of the R/S statistic is that they may be distribution and, in the Harrison and
Treacy case, sample size specific. This problem can often be overcome by using
the bootstrap to obtain finite sample critical values etc. for the R/S statistic.
The bootstrap approach involves resampling the data which is an option in many
econometric packages and, in any case, is easy to programme. The bootstrap
may be used to automatically obtain distribution and sample size specific, higher
order or better approximations to the small sample distribution of a great many
statistics, including the R/S statistic. See Efron and Tibshirami (1993). The
reason why the bootstrap works in this case is because T–1/2 R/S is asymptotically
pivotal, since its distribution does not depend on unknown parameters. This
means that the bootstrap distribution will generally provide a better approxi-
mation to the finite sample distribution of R/S than the asymptotic distribution
tabulated in Lo (1991). Moreover, a large number of bootstrap samples/replications
may not be required.

As researchers are predominantly interested in obtaining critical values for
the R/S statistic we concentrate on this. The Monte Carlo results presented in
the next section show that critical values based on the bootstrapped R/S statistic
have good small sample size and power properties for both symmetric and
asymmetric distributions, with and without fat tails, when the data are
independent and when they are dependent etc. Thus, for example, the bootstrap
handles the difficult i.i.d. log-normal case in Harrison and Treacy (1997) without
any problems. The Monte Carlo results suggest that as few as 99 bootstrap
replications are required to obtain reasonably accurate critical values.

In finite samples, the empirical size of the R/S test statistic based on boot-
strapped critical values is generally an order of magnitude closer to the nominal
size of the test than the asymptotic critical values generated by Lo (1991).
Horowitz (1994) shows that the difference between the true and the bootstrapped
critical values is of the order O(T–1), as opposed to O(T–1/2) in the case of the
asymptotic critical values. In particular, this result holds in the presence of
short memory processes such as stationary AR, MA, ARMA, ARCH, GARCH
etc. processes.

These short memory processes were examined using the post blackened,
moving block bootstrap discussed in Davidson and Hinkley (1997) which appears
to adequately capture the dependence structure of the data, even using a small
number of bootstrap replications. The moving block bootstrap involves
resampling possibly overlapping blocks of xt. There are some problems with the
moving block bootstrap (Maddala and Kim, 1998), but the post blackened version
works well in practise. Post blackening involves (i) pre-whitening the xt series
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by fitting an AR model with a suitably large number of lags to the time series;
(ii) resampling blocks of residuals from this estimated model using the moving
block bootstrap and then (iii) post blackening these resampled residuals using
the estimated parameters of the AR model in order to generate the bootstrapped
sample of the x’s. Note that the AR model is only used as a device to pre-whiten
the data and is not put forward as a model of the DGP.

In finite samples, the empirical size of the R/S test statistic based on these
bootstrapped critical values is good with short memory processes. The empirical
power of the bootstrapped R/S statistic is also good when fractionally integrated
series, the main long memory processes considered in the literature, were
examined. This result is at odds with the theoretical result in Wright (1999),
who examined the local asymptotic power of the rescaled range and other related
tests for fractional integration. He suggested that these tests are poor since
they have only trivial asymptotic power against fractionally integrated I(d)
alternatives with d = O(T–1/2). However, it is easy to show that this limiting
result is not a good approximation when dealing with the size of samples which
are common in economics, say T in the range 100 to 1000.

IV  SOME MONTE CARLO RESULTS

The Monte Carlo results set out in the tables illustrate the good small sample
performance of bootstrapped critical values of R/S. Details of the data generation
processes etc. used are given in the notes to the tables. Tables 1 and 2 refer to
the i.i.d. distributions examined by Harrison and Treacy (1997). Table 1 sets
out the empirical size of the R/S test statistic at the nominal 5 and 1 per cent
levels using (i) bootstrapped critical values, (ii) the Beta approximation based
critical values in Harrison and Treacy (1997, Table 10) and (iii) the asymptotic
critical values in Lo (1991). The empirical size of the bootstrapped tests is good.
Table 2 shows that a small number of bootstrap replications is sufficient to
obtain reasonably accurate critical values.

In Tables 3 to 5, the empirical size of the R/S test statistic for various AR(1),
MA(1) and GARCH models using bootstrapped and asymptotic critical values is
examined. The bootstrap is performed using the post blackened, moving block
resampling method. Results for residual resampling are also available. The
nominal and empirical sizes of the test based on bootstrapped critical values
are close.
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Table 1: The Empirical Size of the R/S Statistic
Some Monte Carlo Results for the IID Normal, Uniform and Log-Normal

Cases (1000 Replications, 99 Bootstrap Replications)

Bootstrapped Critical Harrison & Treacy’s Lo’s Asymptotic
Distribution Sample Values Critical Values Critical Values

Size T
5 Per Cent 1 Per Cent 5 Per Cent 1 Per Cent 5 Per Cent 1 Per Cent

100 5.7 0.9 5.2 0.8 1.0 0.3
Standard 200 6.5 1.1 6.6 1.3 3.7 0.7

Normal 500 4.8 0.2 4.8 0.3 3.3 0.9
N(0, 1) 1000 4.6 1.1 4.3 1.0 4.3 1.0

100 3.2 0.4 3.5 0.5 1.5 0.1
Uniform 200 5.9 1.3 5.8 1.2 3.3 0.4

Range [0, 1] 500 5.5 1.1 5.9 1.1 3.9 0.5
1000 5.2 0.7 4.0 0.6 4.0 0.6

100 3.4 1.0 — — 1.2 0.1
Log-Normal 200 4.5 0.5 — — 1.4 0.2
ez, z~N(0, 1 ) 500 4.9 1.0 — — 2.3 0.4

1000 4.8 1.2 — — 3.3 0.4

Table 2: The Effect of Varying the Number of Bootstrap Replications on the
Empirical Size of the R/S Statistic

Some Monte Carlo Results for the IID Normal, Uniform and Log-Normal
Cases (1000 Replications, 100 Observations)

Distribution No of Bootstrap Bootstrapped Critical Values
Replications B 5 Per Cent Level 1 Per Cent Level

99 4.6 1.0
Standard Normal 199 5.2 1.4

N(0, 1) 499 4.6 0.8
999 5.0 0.7

99 5.3 1.4
Uniform 199 5.0 1.3

Range [0, 1] 499 5.9 1.3
999 3.2 0.4

99 4.2 0.7
Log-Normal 199 4.0 0.6
ez, z~N(0, 1) 499 4.3 0.7

999 4.0 0.6
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Table 4: The Empirical Size of the Modified R/S Statistic in the MA(1) Case
Some Monte Carlo Results using the Post Blackened, Moving Block Bootstrap

(1000 Replications, 200/500 Observations)

Sample Value of MA(1) Bootstrapped Critical Lo’s Asymptotic

DGP Size T Parameter θ Values Critical Values

5 Per Cent 1 Per Cent 5 Per Cent 1 Per Cent
Level Level Level Level

0.50 4.8 1.5 1.2 0.0
MA(1) 200 0.75 4.2 0.7 0.2 0.0

Standard 0.90 4.7 0.6 0.7 0.3
Normal
Random 0.50 5.6 1.1 3.6 0.3
Errors 500 0.75 3.4 0.5 2.4 0.0

0.90 4.7 0.8 0.3 0.0

Notes: The MA(1) model is xt = ut + θut–1. See the Notes to Table 3 for details of the post blackened,
moving block bootstrap etc.

Table 5: The Empirical Size of the Modified R/S Statistic in the ARCH/
GARCH Case

Some Monte Carlo Results using the Post Blackened, Moving Block
Bootstrap (1000 Replications, 100 Observations)

DGP Bootstrapped Critical Values Lo’s Asymptotic Critical Values

5 Per Cent 1 Per Cent 5 PerCent 1 Per Cent

Level Level Level Level

ARCH(1) 5.4 0.7 0.3 0.1
GARCH(1,1) 4.1 1.4 0.4 0.0

GARCH(1,1) + MA(1) 5.4 1.7 0.3 0.1

Notes: The GARCH(1,1) + MA(1) model is xt = et + 0.5et–1, et = 
  

ht ut ,ht = 1+ 0.3et−1
2  + 0.4ht–1,

ut~N(0,1). The other two models are special cases. See the Notes to Table 3 for details of the post
blackened, moving block bootstrap etc.

Finally, in Table 6 the empirical power of the R/S test statistic is examined
when the data are generated as stationary and borderline non-stationary
fractionally integrated processes. The empirical power is as good as the power
obtained using the asymptotic critical values in Lo (1991). The empirical size
and power of the bootstrapped tests compare well with those of the KPSS test
(Kwiatkowski et al., 1992) as reported in Lee and Schmidt (1996). It would
certainly be interesting to see if bootstrapping improves the finite sample size
and power performance of the KPSS test statistic and other test statistics,
including those for parameter stability, which involve limiting Brownian bridge
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processes under the null. In summary, these results strongly suggest that the
use of Lo’s asymptotic critical values for the R/S statistic be replaced or
supplemented by the use of bootstrapped critical values obtained using the post
blackened, moving block bootstrap.

Table 6: The Empirical Power of the R/S Statistic in the Fractionally
Integrated Case

Some Monte Carlo Results using the Post Blackened, Moving Block
Bootstrap (1000 Replications, 200 Observations)

Fractional Bootstrapped Lo’s Asymptotic
Sample Difference Critical Values Critical Values
Size T Parameter d 5 Per Cent 1 Per Cent 5 Per Cent 1 Per Cent

Level Level Level Level

T = 200 d = 0.25 29.6 10.4 10.0 0.1
d = 0.50 70.9 44.1 57.8 5.5

T = 1000 d = 0.25 76.4 56.9 74.0 54.3
d = 0.50 88.6 75.2 99.9 99.5

Notes: The model is xt = (1 - L)–dut with ut ~ N(0,1). The fractionally integrated series were generated
using the Choleski decomposition of the variance-covariance matrix. See the Notes to Table 3 for
details of the post blackened, moving block bootstrap etc.
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