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ABSTRACT 

Recent research provides controversial evidence on the stability of 
yield-curve based binary probit models for forecasting U.S. 
recessions. This paper reviews so far applied specifications and 
presents new procedures for examining the stability of selected 
probit models. It finds that a yield-curve based probit model that 
treats the binary response (a recession dummy) as a 
nonhomogeneous Markov chain produces superior in-sample and 
out-of-sample probability forecasts for U.S. recessions and that this 
model specification is stable over time. Thus, the failure of yield-
curve based forecasts to signal the 1990-1991 and 2001 recessions 
should not be attributed to parameter instability, instead the 
evidence suggests that these events were inherently uncertain. 
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1 Introduction

Predicting recessions is an important task for business and policy makers that condition

their decisions on their assessment of the future state of the economy. A number of

papers indicate that a simple probit model using predictive information from the yield

curve, the spread between short and long-term interest rates, provides superior probability

forecasts for the NBER dated recessions in the U.S., at least for forecast horizons ranging

from a month to a year ahead.1 However, Chauvet and Potter (2005) note that the

standard yield-curve based probit model has di¢ culty in signaling the 1990-1991 and

2001 recessions. They argue this negative result is due to parameter instability in the

relationship between the yield curve and future economic activity. Against this assertion,

Estrella, Rodrigues and Schich (2003) �nd no evidence of instability, while Chauvet and

Potter (2005) argue their results may be misleading, because their breakpoint tests do

not properly account for serial dependence in the errors of the probit model. Chauvet

and Potter (2005) then apply a probit model formulated through an autoregressive latent

variable with business cycle speci�c error variances and �nd that the predictive content of

the yield curve for U.S. recessions is subject to structural breaks. Whether one assumes

such breaks are present or not has marked implications for the way recession forecasts

should be made.2 Therefore, it is important to reassess the disparate evidence on the

stability of the predictive relationship between the yield curve and U.S. recessions.

This paper conducts such an analysis by using an alternative statistical modeling

approach to that of Chauvet and Potter (2005). The starting point of the analysis is

to incorporate dynamics to the standard yield-curve based probit model by adding as a

regressor a lagged value of the underlying binary recession indicator. Thus, e¤ectively,

the state of the economy is modeled by a nonhomogeneous Markov chain of order one,

with transition probabilities changing with the value of the yield-curve. The performance

of this simple dynamic probit model is assessed against a variety of models with richer

forms of dynamics. Some of the more general models incorporate speci�c restrictions on

1E.g., Estrella and Hardouvelis (1991), Estrella and Mishkin (1998), Estrella, Rodrigues and Schich
(2003).

2In particular, if one assumes breaks, then future forecasts must rely heavily on the most recent data,
while older data may be disregarded.
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the duration of recession and expansion periods that result from the rules of the NBER

dating of business cycle turning points. Of central importance are extensions that allow for

parameter changes across business cycles, some with more general patterns of instability

than those considered by Chauvet and Potter (2005). Finally, tests for breakpoints at

known and unknown dates are conducted. By considering all of these extensions and

stability tests we seek to obtain more robust inference about structural changes in the

predictive content of the yield curve and the serial dependence of the U.S. business cycle

phases.

Despite the fact that we consider a wide range of models that allow richer forms of

parameter instability than previous models, we obtain no convincing evidence for break-

points, especially when the serial dependence of the recession series is taken into account.

It turns our that the above mentioned nonhomogeneous Markov chain of order one is

su¢ cient for capturing the serial dependence of the recession series, richer forms of dy-

namics, like higher-order Markov chains, do not contribute to forecasting performance.

Thus, it seems that simple �rst-order Markov dynamics provide a good approximation for

the purpose of forecasting whether the recession series is truly a high-order process, or

even an in�nite-order process as in the model of Chauvet and Potter (2005). The bonus

of the simple dynamic model is that it is straightforward to interpret, estimate and apply

for making multiperiod ahead forecasts. As the paper illustrates, the same does not hold

in the case of the model of Chauvet and Potter (2005).

As the �nal step, the paper compares the out-of-sample forecasting performance of the

simple dynamic yield-curve based probit model with that of the standard static probit

model. This exercise makes three points. The �rst point is to show how some practical

puzzles, like the lack of real time recession observations, are resolved when dynamic models

are applied. The second point is to show what type of probability forecasts of recessions

are likely to be useful in practice. The third point is to demonstrate how the static model

may yield misleading or implausible recession probability forecasts due to the fact that it

neglects the apparent serial dependence of the business cycle phases of the economy. In

particular, the static model tends to exaggerate the predictive content of the yield curve

so as to produce false recession signals. By contrast, it is shown that the simple dynamic
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probit model produces forecasts that are more in line with the actual uncertainty that

surround speci�c recessions. Overall, these considerations � together with the lack of

evidence for structural instability �suggest that the failure of the yield curve to signal

the most recent U.S. recessions may simply derive from the fact that these events were

improbable ex-ante.

2 Recession Probability Forecasting

This section lays out the standard yield-curve based probit model for forecasting U.S.

recessions and then describes how Chauvet and Potter (2005) extend the model so as take

serial dependence and parameter instability into account. After pointing out puzzling

features in the Chauvet and Potter (2005) approach, an alternative approach based on

Markov type probit models is introduced.

2.1 Previous Approaches

The object of interest is the binary time series yt that indicates the presence (yt = 1) or

absence (yt = 0) of a recession in the U.S. at month t. The bulk of previous empirical

analyses considers NBER dated recessions, and this line is followed in this paper as well.

The main goal is to forecast the probability of a recession a year (i.e., 12 months) ahead.

The key predictor is the yield curve, xt, the spread between long- and short-term interest

rates (see Section 3.1 for the applied interest rate data).

2.1.1 Standard Yield-Curve Probit Model and Its Critique

Consider forecasting the probability that a recession hits at month t (i.e., yt = 1) given

that observations until 12 months earlier (i.e., (ys; xs); s � 12) are available.3 The stan-

dard yield-curve based recession forecasting model is a probit model of the form

P (yt = 1) = �(�0 + �1xt�12); (1)

where P (�) denotes probability and �(�) is the cumulative standard normal distribution

function. A number of papers �nd the model (1) useful for forecasting U.S. recessions
3In practice, NBER business cycle turning points are announced with delay so that one is uncertain

about whether the economy is currently in recession or not. This problem is discussed in Section 3.4.
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a year (or less) ahead (the most cited papers are Estrella and Hardouvelis (1991) and

Estrella and Mishkin (1998)). Nevertheless, Chauvet and Potter (2005) argue that the

predictive performance of the model (1) is not stable over time. In particular, they note

that the model has di¢ culty in signalling the 1990 recession. They argue that this negative

result might derive from structural changes in the predictive relationship between the yield

curve and economic activity. They point out various potential reasons for such structural

changes, like a shift in the volatility of the U.S. economy during 1980s, as documented by

McConnell and Perez-Quiros (2000) and others.

The initial assertion of Chauvet and Potter (2005) is in contrast with evidence by

Estrella, Rodrigues and Schich (2003). Estrella et al. (2003) examine the stability of

(1) using classical tests for an unknown single breakpoint and �nd that the model is

stable, even if there is evidence that corresponding yield-curve based forecasting models

for continuous variables like the GDP growth rate are instable. As a response to this,

Chauvet and Potter (2005) refer to their earlier paper Chauvet and Potter (2002) that

�nds strong evidence of structural instability when the probit model in (1) is estimated

using the Gibbs sampler. Furthermore, although their applied models consider only a

single break, they obtain evidence of the presence of multiple breakpoints. Chauvet and

Potter (2005) argue that the di¤erence in the results may derive from serial dependence

in the errors of the probit model against which their Bayesian inference may be more

robust than the classical tests of Estrella et al. (2003). They point out that the NBER

recession indicator is necessarily serially dependent, because the NBER business cycle

turning points are determined under the restriction that recessions and expansions are at

least six months long, and that a complete cycle lasts at minimum 15 months. Thus, the

model in (1) is misspeci�ed in the sense it entails that any serial dependence in yt derives

entirely from that of the yield-curve.

2.1.2 Autoregressive Latent Variable Formulation with Time Varying Para-
meters

To obtain robust inference on the stability of yield-curve based recession forecasts, Chau-

vet and Potter (2005) extend the standard yield-curve probit model to account for: (i)
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time varying parameters due to the existence of multiple breakpoints across business

cycles, and (ii) the presence of autocorrelated errors. According to their de�nition, a

business cycle starts at the �rst month of an expansion period and lasts until the �nal

month of the subsequent recession period. Let tc indicate the last month of business cycle

c and de�ne

st = �c; 0 < �c <1; for t 2 (tc�1; tc]; c = 1; :::; n; (2)

where n is the number of business cycles in the sample. Now, the extended probit model

of Chauvet and Potter (2005) assumes

yt = I(y
�
t > 0) (3)

with

y�t = �y
�
t�1 + �0 + �1xt�12 + st"t; (4)

where "t is an i.i.d. standard normal variable. The variable y�t is regarded as a latent

continuous stochastic process, and a recession hits whenever this unobserved process ex-

ceeds zero, otherwise there is an expansion. Notice that the model is equivalent to the

standard probit model in (1) when � = 0 and st = 1 in (4). The fact that y�t is in general

autoregressive results in serial dependence in the binary series yt. In addition, due to

changes in st, the variance of the innovation process of the latent variable y�t is speci�c to

the business cycle. These features are discussed in more detail below.

2.1.3 Issues with Latent Autoregressive Variable Probit Model

The latent variable in (4) may be interpreted as the state of the economy that depends

on various macroeconomic variables, like the real GDP and the rate of unemployment.

Given that the state of the economy exhibits persistence, it is natural to model it by an

autoregressive model as in (4). While this framework has intuitive appeal it is rather

di¢ cult too see what the dynamics of the (observed) binary series are, and how the

predictor, here the yield curve, a¤ects the probability of a recession in the future. One

may wish, for example, to understand how past recession observations drive the probability

of a recession.
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To obtain some insights into the model of Chauvet and Potter (2005), consider a simple

case, where the latent variable is a mean zero Gaussian AR(1) process (i.e., �0 = �1 = 0

and st = 1 in (4)). The �rst point to note is that while in this case y�t is a Markov chain,

the �clipped� series yt is not, because the underlying transformation is not one-to-one

(see Kedem 1980). Thus, it turns out that the probability distribution of yt depends on

the whole history yt�1; yt�2; :::. To understand the dynamics of the binary series and to

forecast its future values, one wishes to know the joint probability of the binary series.

For two- and three dimensional probabilities, closed form expressions are known, while for

four and higher dimensions no closed form expressions are available (see Kedem (1980)).

Thus, �guring out conditional probabilities of future values of the binary series given past

observations is challenging even if � was known.

It is possible to connect moments of the latent Gaussian AR(1) process with moments

of the clipped process as follows

�k =
2

�
sin�1(��k); (5)

where �k and �
�
k, respectively, is the autocorrelation function of yt and y

�
t (Kedem (1980,

p. 34)). From equation (5) one sees the inequality j�kj � j��kj, which shows that pairwise

dependence in the clipped series is weaker than that in the latent series. Note that because

yt is stationary with E(yt = 1) = P (yt = 1) = 1
2
and �1 = �, we have the relationship

P (yt = 1jyt�1 = 1) = 1
2
+ 1

�
sin�1(�). Thus, the parameter � can be estimated by

estimating the transition probability P (yt = 1jyt�1 = 1) using observations on the clipped

series. Kedem (1976) shows that a consistent estimator for P (yt = 1jyt�1 = 1) is obtained

by treating the binary series as a �rst-order Markov chain. In line with this results,

Keenan (1982) �nds that for predicting a future value of the binary process, it su¢ ces

to treat the binary series as a Markov chain. These points suggest that for forecasting

as well as for understanding the dynamics of the binary process obtained by clipping a

Gaussian AR(1) process, it su¢ ces to treat the binary series as a Markov chain.

When the regressor is included in the latent variable model or when the variance of

the underlying innovation series is allowed to change over time, it is even more di¢ cult

to analyze the dynamic properties of the binary process than in the above case, where
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the latent variable is a mean zero Gaussian AR(1). Results like (5) are not available and

there is no way to obtain as simple estimation procedures as the one above. To obtain a

feasible approach, Chauvet and Potter (2005) apply Bayesian numerical methods. Their

estimation and forecasting procedures entail multiple integration over the unobserved

state, and therefore, are computationally demanding. Related complications are likely

to reduce one�s scope for alternative model speci�cations and forecasts. Thus, there is

a greater risk that an inferior forecast model is chosen. In view of these points, the

model of Chauvet and Potter (2005) is somewhat troublesome to apply for modeling and

forecasting binary time series. On the other hand, the above points on the simple latent

variable model suggest that treating the underlying binary series as Markovian may be a

reasonable approach for capturing the dynamics of the binary series and for forecasting

its future values, even if the true process was of in�nite order. Of course, the true process

is unknown and therefore one should nevertheless consider alternative forecasting models.

These points in part motivate the approach discussed in the subsequent section.

2.2 Markov Chain Approach

2.2.1 Basic Models and an Extension

The starting point is a simple dynamic generalization of the conventional static probit

model in (1). Let It = fyt; yt�1:::; xt; xt�1; :::g be the information set available at time t.

Then, consider the one-period ahead probit model

P (yt = 1jIt�1) = �(�0 + �1yt�1 + �2xt�12): (6)

The model in (6) is analogous to one applied by Kauppi and Saikkonen (2007) for fore-

casting U.S. recessions at the quarterly frequency. As the models in the previous section,

it is designed for making recession forecasts 12 months ahead, while the subsequent sec-

tion shows how such forecasts are obtained from the model in an iterative manner. It is

easy to see that under (6) the binary series yt is governed by a �rst-order Markov chain,

with transition probabilities varying as a function of the regressor xt�12, the lagged yield

curve. Given that the model (6) turned out to have superior predictive performance in the

analysis of Kauppi and Saikkonen (2007), it is regarded as the baseline dynamic probit
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model in what follows. Nevertheless, the results of Kauppi and Saikkonen (2007) do not

prove that (6) is superior in the case of monthly data, and therefore, we will assess the

model against various alternative dynamic speci�cations.

First, to capture more complicated dynamic dependencies, one can extend (6) so as

to attain higher-order Markov chains. For example, the model

P (yt = 1jIt�1) = �(�0 + �1yt�1 + �2yt�2 + �3yt�1yt�2 + �4xt�12)

results in a nonhomogeneous Markov chain of order two, with time varying transition

probabilities. By adding further lags of yt and all of their interaction terms one may specify

a Markov chain of any desired order (e.g., Kaufmann 1987). One problem with this route

is that the number of parameters grows exponentially with the order of the Markov chain.

Thus, in order to estimate the parameters of a high-order Markov chain one must have a

large number of observations. In the application of the present paper, one is faced with

the fact that various interaction terms between lagged yt�s, which are needed for higher-

order Markov chains, tend to be linearly dependent so that it is impossible to estimate

higher-order Markov chains without considerable (zero) restrictions on the coe¢ cients of

the interaction terms, or equivalently, on the underlying transition probabilities.

An alternative strategy for increasing the order of the process is to employ autore-

gressive formulations for the modeling of the dependence of the conditional probability

P (yt = 1jIt�1) on lagged yt�s. Such extensions are considered by Kauppi and Saikkonen

(2007) and Rydberg and Shephard (2003). Although these models can break the Markov

property, they are straightforward to estimate using standard techniques and to apply for

computing multiperiod ahead forecasts (see Kauppi and Saikkonen (2007)). However, in

the present application it turns out that such extensions do not yield superior forecasting

performance compared with �nite order models. Thus, we do not consider such extensions

in this paper.

At this point, it is useful to note that the Chauvet and Potter (2005) model formulates

the impact of the regressor xt�12 in the fashion of an autoregressive distributed lag model.

Such a formulation may o¤er a parsimonious and preferable alternative, if many lags of

the regressor are needed for predicting the binary response. Even if this was the case, one
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may want to keep with the Markov property of the underlying binary series. This wish is

met by the following new extension to the baseline model (6)

P (yt = 1jIt�1) = �(�0 + �1yt�1 + �t); (7)

where

�t = �1�t�1 + :::+ �p�t�p + �2xt�12: (8)

To ensure stationarity, one assumes that �1; :::; �p in (8) are such that the roots of the

characteristic equation 1� �1z � :::� �pzp lie outside the unit circle. Unlike the autore-

gressive models considered by Kauppi and Saikkonen (2007) and Rydberg and Shephard

(2003), the one de�ned by (7) and (8) does not break the Markov property of the under-

lying binary series.

2.2.2 Minimum Duration Restrictions

There is one more interesting extension to the baseline model (6). This derives from the

fact, pointed out by Chauvet and Potter (2005), that the NBER business cycle turning

points are determined under the restriction that recessions and expansions are at least six

months long, and that a complete business cycle lasts at least 15 months. Interestingly,

while Chauvet and Potter (2005) regard these duration restrictions as a reason for serial

dependence in the recession series, their proposed dynamic model does not impose these

restrictions. In fact, the minimum duration restrictions on the binary series are likely

to entail that the latent series model in (4) is augmented with complicated additional

nonlinearities. Such a model is likely to be even more di¢ cult to handle than the one

applied by Chauvet and Potter (2005). By contrast, it is straightforward to incorporate

duration restrictions into the Markov type models considered here. For example, to

account for the minimum duration of expansion and recession periods, one may apply the

model

P (yt = 1jIt�1) = �
�
(�0 + �1yt�1 + �2xt�12) (1� I0t � I1t ) + �3I1t + �4I0t

�
; (9)

where I1t (I
0
t ) is an indicator function for whether the economy has been in a recession

(expansion) at least one and at most �ve most recent months prior to month t. To
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ensure that a recession and an expansion lasts at least six months, one sets �3 =1 and

�4 = �1, respectively, so that P (yt = 1jIt�1) = j, if I
j
t = 1, j = 1; 0. Notice that the

model (9) implies that the yield curve has no impact on the probability of a recession

when I1t = 1 or I
0
t = 1. The idea of the model is to avoid conditioning the recession state

on the regressors yt�1 and xt�12 in situations where yt is �predetermined�by the NBER

business cycle dating rules. Intuitively, the model may allow one to obtain more accurate

estimates of the degree of serial dependence of the recession series and the predictive

content of the yield curve.

2.2.3 Structural Changes Across Business Cycles

This section introduces model extensions for capturing various forms of structural changes.

In line with the model of Chauvet and Potter (2005), one may replace the baseline model

(6) with

P (yt = 1jIt�1) = �(
�0
st
+
�1
st
yt�1 +

�2
st
xt�12); (10)

where st is given in (2).4 Clearly, changes in st translate into changes in the scale of the

parameters of the regressors in (10). Without loss of generality let the �rst business cycle

be the reference period and normalize �1 = 1. Then, if �c; (c > 1); is larger (smaller)

than one, the intercept and the coe¢ cients of both of the regressors yt�1 and xt�12 are

smaller (larger) during the business cycle c than they are during the �rst business cycle

of the sample.

The above formulation of instability across business cycles is restrictive in the sense

that the scale of all of the regression coe¢ cients is governed by one parameter, �c. To

allow for more �exibility, one may apply the following model

P (yt = 1jIt�1) = �(
X
j2C0

�0jcjt +
X
j2C1

�1jcjtyt�1 +
X
j2C2

�2jcjtxt�12); (11)

where cjt are business cycle speci�c indicator functions such that cjt = 1 for the months of

the jth business cycle and cjt = 0 otherwise and the sets Ck contain the applied selections

of business cycle indices in each case. By the model (11) the intercept and the coe¢ cients

4Notice that (10) is equivalent to assuming P (yt = 1jIt�1) = �t(�0 + �1yt�1 + �2xt�12), where �t(�)
is the cumulative distribution function of N(0; s2t ).
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of the regressors yt�1 and xt�12 may change across business cycles in a variety of ways.

In practice, one must specify the index sets Ck in a parsimonious manner and so that the

resulting regressors are not linearly dependent.

2.2.4 Multiperiod Ahead Forecasts

This section shows how the models considered in the previous section are applied for

making probability forecasts for an h periods ahead observation of a binary series given

information available at the time of forecasting. First, notice that, in the mean square

sense, an optimal h periods ahead forecast of yt based on information at time t � h

is E(ytjIt�h) = P (yt = 1jIt�h). By this relation and the law of iterated conditional

expectations, we have

E(ytjIt�h) = E(P (yt = 1jIt�1)jIt�h) = E(� (zt) jIt�h); (12)

where zt is determined by the considered model (e.g., zt = �0+�1yt�1+�2xt�12). Clearly,

any of the speci�cations in the previous section for zt give readily the optimal one-step

ahead prediction.

Multiperiod ahead forecast with h � 2 are computed iteratively. To illustrate this,

consider the new model given by equations (7) and (8). In this case, zt in (12) can be

written as

zt = �0 + �1yt�1 +
tX
s=1

�s�2xt�12�s (13)

where �j = �1�j�1 + ::: + �p�j�p; for j > 1, �1 = 1, and �j = 0 for j < 1. Provided that

h � 12, the variables xt�12�s in (12) are available at the time of forecasting, while the

variable yt�1 is not observed at date t � h. Hence, to evaluate the conditional expecta-

tion in (12) one must compute the probabilities of all possible �paths�or realizations of

yt�h+1; yt�h+2; :::; yt�1 that lead to yt = 1. De�ne the vector notation

ytt�k = (yt�k; yt�k+1; :::; yt) for k = 0; 1; 2; :::

and the Cartesian product Bk = f1; 0gk for k = 1; 2; ::: In other words, the set Bk contains

all possible k-vectors with components either zero or one (k = 1; 2; :::). Then notice that

P (ytjIt�h) =
X

yt�1t�h+12Bh�1

P (yt�h+1jIt�h)
h�1Y
j=1

P (yt�h+1+jjIt�h; yt�h+jt�h+1); for h � 2; (14)
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where P (yt�h+1+jjIt�h; yt�h+jt�h+1) is the conditional probability of yt�h+1+j given It�h and

the event yt�h+jt�h+1. Each of the conditional probabilities on the right hand side of (14) can

be computed straightforwardly using the underlying speci�cation of zt, while the forecast

is E(ytjIt�h) = P (yt = 1jIt�h).

In addition to forecasting whether a particular month is a recession month one is

often interested in forecasting the probability that an expansion continues until a speci�c

month (See Section 3.4). Such probabilities are straightforward to compute by removing

probabilities of speci�c realizations of (yt�k; yt�k+1; :::; yt) from the sum in (14) (cf. Kauppi

and Saikkonen (2007)).

3 Empirical Analysis

This section applies the above presented Markov chain approach to the real data, which

are described in Section 3.1. Section 3.2 discusses estimation results for baseline models

and their extensions, while Section 3.3 examines the stability of leading model variants.

Finally, Section 3.4 illustrates how certain practical issues in forecasting are resolved and

then conducts an analysis of out-of-sample forecasting performance.

3.1 The Data

As noted above, we analyze a monthly binary time series for U.S. recessions that is

obtained from the NBER business cycle turning points. A recession period starts from an

NBER �trough�month and lasts until the month preceding the subsequent NBER �peak�

month.5 All those months that are not included in a recession period are classi�ed as

expansion months.

As for the yield curve, we apply the di¤erence between the ten year Treasury bond rate

(constant maturity) and the three month Treasury bill rate (secondary market).6 Estrella

and Trubin (2006) �nd that this de�nition of the yield curve is superior in comparison

with various alternative long- and short-term interest rates.

For the most part, the analysis is conducted using recession observations on the period

5For the dates of the peaks and troughs see http://www.nber.org/cycles/.
6The raw data are available at http://www.federalreserve.gov/releases/h15/data.htm.
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from January 1955 through November 2001. This period matches closely with the one

considered by Chauvet and Potter (2005) and covers eight U.S. recessions. Given this data

period, the �rst business cycle covers the expansion period from January 1955 through

July 1957 and the subsequent recession period from August 1957 through April 1958.

The second business cycle starts in May 1958, lasts through the corresponding expansion

period and the subsequent recession period, and so on for the remaining business cycles.

The �nal complete business cycle starts in April 1991, right after the 1990-1991 recession,

and lasts until November 2001, the last month of the 2001 recession. At the time this

analysis is completed (April 2008), it is commonly believed that the U.S. economy has not

been in a recession from December 2001 through December 2007, while many observers

suspect it may turn so during 2008. Nevertheless, the analysis here focuses on the sample

that ends in November 2001.

3.2 Baseline Estimation Results

3.2.1 Benchmark Models

Estimation results for the probit model in (6) are given in Table 1. The results here and

below are obtained by using the maximum likelihood estimation procedures described

in the appendix. The estimates of column (1) of Table 1 are for the static model that

assumes (6) with the restriction �2 = 0, while the results of column (2) are for the

dynamic model without such restriction. In both models, the parameter estimates are

signi�cantly di¤erent from zero at standard con�dence levels. A decrease in the yield

curve at month t� 12 increases the likelihood of a recession at month t. The estimation

results of the dynamic probit model indicate positive serial dependence in the recession

series: the likelihood of a recession at month t is much larger when the economy was in

a recession at the previous month than it it is otherwise. The pseudo R2 reported in the

table is a measure of the over-all �t of the model.7 As the R2 in an OLS regression, it lies

between 0 and 1 and corresponds roughly to the hypothesis that all coe¢ cients except for

7Denote by Lu the unconstrained maximum value of the likelihood function L and by Lc the corre-
sponding maximum value under the constraint that all coe¢ cients are zero except for the constant. The
pseudo R2 measure is de�ned as pseudo R2 = 1 � (log(Lu)= log(Lc))�2 log(Lc)=T , where T denotes the
sample size (Estrella 1998).
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the constant term are zero. According to the pseudo R2, the dynamic probit yields more

accurate in-sample predictions than the static model.

Figure 1 plots the estimated probabilities that the economy is in a recession state in

a particular month from January 1955 to November 2001, for the models in columns 1

and 2 of Table 1. These are probabilities of recessions at t conditional on the value of the

yield curve at t � 12 and whether the economy is in recession or not at t � 1 (dynamic

probit). Clearly, the dynamic probit model captures the recession series more accurately

than the static probit model. The �t of the static probit is indistinguishable from the

one of the corresponding static probit model of Chauvet and Potter (2005, panel (a) of

Figure 2). Interestingly, the �t of the dynamic model is very similar to those of the latent

autoregressive probit models of Chauvet and Potter (2005, panel (c) and (d) of Figure

2). A close inspection indicates that the present speci�cation provides a slightly better

�t to the recession data than the latent autoregressive probit models. This suggests that

the present model does not fail to capture any patterns in the recession series that are

captured by the latent variable autoregressive probit models. Finally, it must be noted

that Figure 1 does not yet illustrate how forecasts based on the dynamic probit perform

out-of-sample. In particular, multiperiod ahead forecasts cannot condition on the lagged

recession state (i.e., yt�1) and thus the iterative forecast formulae of Section 2.3 must be

applied. The performance of out-of-sample forecasts is analyzed in Section 3.4.

3.2.2 Alternative Dynamic Models

The analysis above demonstrates that the simple dynamic model in (6) provides much

better in-sample performance than the standard static probit model. It is reasonable to

ask whether alternative and more general dynamic speci�cations might yield even better

in-sample performance than the simple models. Table 2 presents estimation results for

models where the impact of the yield curve is formulated in an autoregressive manner

(see equations (7) and (8)). Column (1) of Table 2 reports estimation results for a model

that assumes (7) with �1 = 0 and (8) with p = 1. While the autoregressive parameter

is positive and statistically signi�cant, the Schwarz (1978) Bayesian information criterion

(BIC) indicates that the model is inferior to the baseline static model of column (1)
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of Table 1.8 When the lagged recession series is allowed in (7), the estimate of the

autoregressive coe¢ cient in (8) is negative. This result may be di¢ cult to interpret, while

again the BIC suggests that the simple dynamic formulation without the autoregressive

formulation is better. Column (3) of Table 2 shows that adding another autoregressive lag

in (8) does not improve the overall performance of the model. Similar considerations with

other dynamic speci�cations, like models with higher-order Markov chains, lead to the

same conclusion �the simple dynamic model ranks the best especially when the in-sample

performance is evaluated by BIC.

Finally, to explore whether restrictions on the duration of business cycle phases make

a di¤erence to the in-sample performance, the speci�cation in (9) is estimated under the

restrictions �3 = 1 and �4 = �1 so that P (yt = 1jIt�1) = j, if Ijt = 1, j = 1; 0.9 The

estimates (and robust standard errors) of the unrestricted parameters in (9) are �1:63

(0:20) for �0, 2:75 (:24) for �1, and �:405 (:14) for �2. Comparing these estimates with

those in column (2) of Table 1, one sees that the coe¢ cient of the yield-curve is slightly

larger (in absolute value) and the one of the lagged recession is a bit smaller in the

presence than in the absence of the duration restrictions. While these di¤erences make

sense, they are very small. The parameter estimates do not make a noticeable di¤erence

to measures of in-sample predictive accuracy. Hence, we conclude that the minimum

duration restrictions on expansions and recessions are likely to be of little importance for

forecasting in practice.

3.3 Stability Analysis

This section investigates whether the baseline forecasting models considered in the previ-

ous section are stable over time. As in Chauvet and Potter (2005), we �rst examine the

possibility that the predictive content of the yield curve and the serial dependence of the

recession series change across business cycles.

8See Inoue and Kilian (2006) for motivation to using BIC as a criterion for selecting a forecasting
model.

9The corresponding (log) likelihood function is obtained from (8) in the appendix by removing �pre-
determined�observations with Ijt = 1, j = 0; 1.
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3.3.1 Business Cycle Speci�c Parameters

As the �rst cut, we apply the model formulation in (10) that allows for the scale of the

regression coe¢ cients to change with the business cycle. Table 3 reports corresponding

estimation results for the static and dynamic probit speci�cations. In the case of the

static model (column 1), the scale parameters, �c, are allowed to vary across each of

the business cycles of the sample with the exception that the 1980 and 1982 business

cycles are combined together. This additional restriction is imposed, because otherwise

the estimated value of the scale parameter of the 1980 business cycle turns out to be

excessively large.10 The fact that the estimated scale coe¢ cients in column (1) di¤er

rather much from unity suggests that the impact of the yield curve changes across business

cycles. Also, a robust Wald test for the hypothesis that all of the scale coe¢ cients are

jointly equal to one rejects the null hypothesis at the 1% signi�cance level.11 These results

are in line with the Bayesian evidence of Chauvet and Potter (2002).

The picture changes quite a bit when the static speci�cation is replaced by the simple

dynamic speci�cation (see column (2) of Table 3). Indeed, in the presence of yt�1, the

estimates of the scale coe¢ cients are fairly close to one. The largest deviation from unity is

obtained for the 1980-82 business cycle. Nevertheless, the corresponding 95% con�dence

interval (the estimate plus-minus two times its standard error) as well as those of the

other scale coe¢ cients cover unity. Also, a robust Wald test for the hypothesis that all of

the scale coe¢ cients are equal to one is no longer rejected. These �ndings indicate that

the impact of the regressors do not depend on the business cycle provided that the serial

dependence of the recession series is taken into account. Thus, the evidence here gives no

support to the form of business cycle speci�c breaks considered by Chauvet and Potter

(2005).

In addition to the model (10), in which only the scale of the parameters changes across

10This result may indicate that the relationship between the yield curve and the economy is completely
ambiguous during the early 1980s. On the other hand, the result may derive from the fact that this time
period contains relatively few observations, which may result in additional uncertainty to the estimation.
Nevertheless, it makes sense to combine the 1980 and 1982 business cycles into one and thereby avoid
estimation uncertainty coming from too few observations.
11The Wald test was constructed using a robust estimator of the variance covariance matrix of the

maximum likelihood estimates (see the appendix).
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business cycles, several versions of the more �exible speci�cation in (11) were experimented

in an initial analysis. Each of the three types of interaction terms in (11) was allowed

at the time and various alternative choices of business cycles (sets Ck) were considered.

None of the estimated models indicate statistically signi�cant changes in the coe¢ cients

of the model with the exception of cases related to early 1980s. For example, according to

the estimation results of Table 4, the predictive impact of the spread variable is di¤erent

during the business cycle starting in 1980 compared with its estimated e¤ect during other

business cycle periods in the sample. This observation is consistent with what is observed

in the context of the estimation results in column (2) of Table 3. Overall, the evidence

here suggests that the predictive relationship between U.S. recessions and the yield curve

experiences a transitory break in the beginning of the 1980s.

3.3.2 Breakpoint Tests

The above analysis focuses on searching for structural breaks that are tied to business

cycle periods. Alternatively, there may be a structural change that is not related to a

speci�c business cycle and it is worth investigating whether the models studied above

are subject to instabilities at any date during the sample period. Estrella, Rodrigues

and Schich (2003) conduct such tests for the static formulation of the yield-curve based

probit model. The following conducts similar tests for the static and the dynamic model

formulation in the present sample.

Tests are conducted for the presence of known as well as unknown breakpoints. Fol-

lowing Andrews and Fair (1988), the applied tests derive from the Lagrange multiplier

(LM) statistic

LM =
1

T!1(1� !2)
S1(�̂)0 bJ (�̂)�1S1(�̂)

where !i indicates the proportion of the data before (i = 1) or after (i = 2) the breakpoint,

!1 + !2 = 1. The vector S1(�̂) is obtained from the �rst derivative of the log likelihood

function (the score function) given in (16) in the appendix, where the sum is taken over the

�rst portion (!1) of the full sample and the parameter vector � is replaced by its full sample

maximum likelihood estimate �̂. The matrix bJ (�̂) is a misspeci�cation robust estimator
of the covariance matrix of the score function (see (19) in the appendix). Andrews and
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Fair (1998) show that under regularity conditions with potential breakpoints known a

priori, LM has asymptotic chi-squared distribution with degrees of freedom equal to the

number of parameters, assuming all can change across subsamples. To test for a break

when the breakpoint is unknown one can apply the sup of LM , where the sup is taken

over an interior portion of the full sample that excludes observations (a fraction !0 of the

total observations) at each end. Andrews (1993) shows that the LM statistic converges

in distribution to the square of a standardized tied-down Bessel process under general

conditions. For a �xed breakpoint, this process has a chi-squared distribution. Tables of

critical values corresponding to the distribution of the sup of this process are tabulated

in Andrews (1993, 2003) and Estrella (2003).

Estrella et al. (2003) argue that October 1979 and October 1982, both associated

with speci�c shifts in the Federal Reserve�s monetary policy practices, are plausible can-

didates for breakpoints in a yield-curve based forecasting model for U.S. recessions. The

corresponding LM test statistics for the dynamic (static) model are 1:20 (1:92) for the

former date and 7:30 (1:14) for the latter date. These test statistic values appear to be

insigni�cant when evaluated against the null distribution of no structural change, the

chi-squared distribution with four (three) degrees of freedom for dynamic (static) model.

In the case of the static model, the sup LM statistic (assuming !0 = :25) is equal to 3:41

with the implied breakpoint date being December 1969, while the test does not reject the

null of no structural change even at the 10% signi�cance level (the critical value being

9:23, Estrella (2003, p. 1136)). The corresponding sup LM statistic for the dynamic

model is equal to 8.82 with the implied breakpoint date in November 1982. While the

estimated breakpoint in November 1982 is in line with common expectations, again, the

test does not reject the null of no structural change at the 10% signi�cance level (with

the critical value being 11:47, Estrella (2003, p. 1136)). The main conclusion from these

test results is that they support the view that the above favored simple dynamic probit

model using the yield-curve does not experience a structural change during the sample

period. At most, given the above analysis of business cycle speci�c e¤ects, there is weak

evidence for a temporary break in the beginning of the 1980s, while this break should not

have substantial implications for the predictive relationship in the long term.
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3.4 Out-of-Sample Forecasts

3.4.1 Initial Arguments for Dynamic Models

The above analysis suggests that the predictive content of the yield curve for U.S. reces-

sions is stable over time especially when the applied model allows for serial dependence in

the recession series. Nevertheless, recent research has mostly applied static probit models

for predicting recessions. Some authors (e.g., Estrella et al. (2003)) motivate this ap-

proach by arguing that dynamic models are unrealistic models for forecasting recessions,

because they assume that the forecaster knows whether the previous or very recent months

were recessions. The beginning of a recession can usually be identi�ed only some time af-

ter the recession has started. Moreover, recession dating from NBER is typically available

with a lag of six months or more. Despite possible delays in recession dating, there are

at least two important points that motivate predicting recessions using a dynamic rather

than a static model.

The �rst point is that, if one does not know whether the economy is currently in reces-

sion or not, it is natural to modify the forecast horizon so as to start from the most recent

observation available. That is, in the presence of a publication lag in recession dating,

one is interested in predicting past, current as well as future states of the economy condi-

tional on all available information. In many cases, however, forecasts for future recessions

are made in a situation, where one assumes (even if this information is uncertain) that

the economy is in an expansion at the time of forecasting.12 Whatever the case, nothing

prevents from making the prediction based on a dynamic model conditional on available

information or conditional on alternative scenarios. Also, it should be pointed out that

recent research o¤ers various alternatively procedures for dating business cycle turning

points that work well in real time even if they cannot forecast future turning points (see

Chauvet and Piger (2008)). Thus, the publication lag of the NBER dating of business

cycles is not necessarily an insuperable obstacle for making forecasts based on real time

recession data.
12For example, in February 5, 2008, in a discussion at Econbrowser, Michael Dueker (from Federal

Reserve) says that one can be reasonably certain that the NBER will not classify the fourth quarter
of 2007 as a recessionary period and thus one can condition out-of-sample forecasts accordingly (see
http://www.econbrowser.com/archives/2008/02/predicting_rece.html).
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The second, even more important, point for favoring dynamic forecasting models is

the fact that static models may yield misleading probability predictions in the presence

of serial dependence of the recession and expansion states. To illustrate this point, it is

useful to consider actual out-of-sample forecasts. Suppose one wishes to predict whether

the economy is turning into a recession at any month from t�d+1 to t�d+h (d � 0; h > 0)

conditional on yield data through month t and knowing the state of the economy through

month t� d. Here t may be regarded as the month where the forecast is made and d as

the information lag in recession dating. Chauvet and Potter (2005) consider cases where

d = 3 and h = 15. For example, they argue that in March 2000 the public was certain

that the economy was in an expansion through December 1999, while there was lots of

uncertainty about the state of the economy from January 2000 on. In practice, d may

vary over time depending on circumstances in the economy. For simplicity, the following

forecasts assume d = 3 and h = 15 as in Chauvet and Potter (2005). Given that the yield

curve is known through month t, one can then generate the desired probability forecasts

for yt�2; yt�1; yt; yt+1; :::; yt+12 using one of the considered model speci�cations.

3.4.2 Month-by-Month Probability Forecasts

Recession forecasts for two 15 month periods are given in Figure 2, using the static and

dynamic baseline speci�cations. Column (1) (panels (a) and (c)) of the �gure plots pre-

dicted recession probabilities for each month from January 2000 to March 2001 using

yield data up to March 2000 and recession dates through December 1999, while column

(2) (panels (b) and (d)) plots corresponding probabilities for each month from January

2001 to March 2002 using yield data up to March 2001 and recession dates through De-

cember 2000. The �rst period covers all the 15 months immediately preceding the latest

known recession that started in April 2001 and �nished in November 2001, while the

second forecast period covers the 2001 recession altogether. Independent of the applied

model, it is rather di¢ cult to interpret the month-by-month predictions shown in Figure

2. All of the predicted recession probabilities in Figure 2 are below 0.5. Some of the

recession probabilities for actual recession months are smaller than those for some ex-

pansion months. The �gure illustrates the fact that none of the models is very good at
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distinguishing whether individual months are in a recession or not. This is not surprising

given that the yield curve evolves smoothly rather than in a discrete manner. One would

expect that the yield curve carries predictive power for the overall risk that the economy

is turning into a recession, while nothing suggests it could pinpoint the precise date at

which this happens. To see this point, alternative forecasting approaches must be applied.

3.4.3 Probabilities of Continued Expansion

One possibility is to consider forecasting the probability that an expansion continues, say,

15 months, as in Chauvet and Potter (2005). Figure 3 plots such probabilities over a period

of nine years in advance to the 2001 recession. That is, at each month t in the �gure,

the �lled circle at the top of the stem indicates the probability that the economy stays in

an expansion from month t� 2 to month t+ 12 conditional on being in an expansion at

t�3. Panel (a) of Figure 3 shows that according to the static probit model the probability

of continued expansion next 15 months is well below 0.5 over a long period before the

economy really turns into a recession. For example, forecasts made during 1996 predict

that a recession hits in 15 months with less than 10% probability, while during 1998-1999

the probability of continued expansion is as small as 2-3%. Clearly, predictions based

on the static probit tend to alarm recessions too promptly. Given these false recession

signals long before the economy turns into a recession, it is not a big gain that the static

probit forecasts the 2001 recession right before it actually happens. In fact, the certainty

at which the static probit predicts the 2001 recession a year in advance is not in line with

conventional wisdom. Indeed, various authors argue that the 2001 recession was very

di¢ cult to anticipate well in advance.

The predictions of the dynamic probit model in panel (b) of Figure 3 are more con-

sistent with the reality. First, the predicted probabilities of continued expansion next

15 months remain relatively high during 1996 and 1989-1999. Thus, the dynamic probit

model seems to avoid making false recession signals. On the other hand, the probability

of continued expansion decreases in advance to the actual recession and thereby provides

a reasonable warning of an upcoming recession. The fact that the probability of continued

expansion remains above 0.5 is consistent with the common view that it was uncertain
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whether the economy is turning into recession or not in 2000.

Figures 4 and 5 present similar illustrations for the 1990-1991 and 1980 recessions.

The former recession is also commonly regarded as di¢ cult to forecast early in advance.

Still, predictions based on the static probit produce very sharp recession calls already

in 1986. Also, the sudden decline of the probability of continued expansion in late 1988

seems to call for a recession many months earlier than it actually happens. By contrast,

again, the dynamic probit does not produce too early signals of recessions, while it gives

a reasonable warning a year in advance to the 1990-1991 recession. As in the case of the

2001 recession, the weakness of the signal is consistent with the common view that the

1990-1991 recession was di¢ cult to predict. Figure 5 yields a similar conclusion on the

performance of the two forecasting models for the 1980 recession; the static model seems

to give strong recession signals too early. On the other hand, notice that the prediction

of the dynamic model is now sharper in advance to the 1980 recession than in the above

cases; this is consistent with the fact that the 1980 recession is commonly regarded as

easier to forecast than the 1990-1991 and 2001 recessions.

4 Conclusion

Recent research provides disparate evidence on the stability and dynamics of yield-curve

based probit models for forecasting U.S. recessions. This paper reviewed this evidence

and underlying modeling approaches. In particular, it was illustrated that dynamic pro-

bit models obtained by clipping a latent autoregressive process have problems in their

interpretation, practical implementation and �exibility. As an alternative approach, we

considered probit models with Markovian type dynamics and showed how such models

can be extended to capturing various forms of structural changes. We applied the new ap-

proach for examining whether the predictive content of the yield-curve for U.S. recessions

is stable over time. According to the empirical results, there is no evidence for parameter

instability provided that the apparent serial dependence of the recession indicator is taken

into account. It turned out that for forecasting purposes it is su¢ cient to apply a probit

model that treats the recession indicator as a nonhomogeneous �rst-order Markov chain
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where transition probabilities change with the yield curve.

Finally, the paper illustrated the out-of-sample predictive performance of the simple

dynamic probit speci�cation for U.S. recessions and compared it with that of the static

probit model applied in a number of previous empirical studies. The analysis showed how

the static probit model tends to exaggerate the predictive content of the yield curve so

as to produce false or too prompt recession signals and that the dynamic probit model

produces probability predictions that are more in line with the actual uncertainty that

surround speci�c recessions. In particular, the results are consistent with the assessment

that the 1990-1991 and 2001 recessions were inherently uncertain and thus di¢ cult to

predict in advance.

Appendix: Estimation Procedures

This section shows how the parameters of the Markov type models considered in section

2.2 are estimated by maximum likelihood (ML) and how corresponding robust standard

errors are obtained. While most of the procedures are readily available in the literature

(e.g., Kauppi and Saikkonen (2007)), this section shows what modi�cations are needed

when the regressor is speci�ed in an autoregressive form.

Consider the speci�cation given by equations (7) and (8). One observes the series yt

and xt for t = 1; :::; T and the initial values y0; x0; :::; x�p+1. Let � = (�0; �1; �2; �1; :::; �p; )
0.

Then the log-likelihood function (conditional on the initial values) is

l (�) =
TX
t=1

lt (�) =
TX
t=1

[yt log � (zt (�)) + (1� yt) log (1� � (zt (�)))] ; (15)

where zt is given in (13).13 The �rst derivative of the log-likelihood, or the score vector,

is given by

ST (�) =
@l (�)

@�
=

TX
t=1

[yt � �(zt)]�(zt)
�(zt)[1� �(zt)]

@zt
@�
; (16)

13The likelihood function in (15) is sometimes called the partial likelihood to re�ect the fact that it
does not require the complete knowledge of the joint distribution of the covariate, xt. Basically, partial
likelihood takes into account only what is known to the observer up to the time of actual observation.
(see Fokianos and Kedem 1998).
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where �(�) is the density function of the standard normal and

@zt
@�

=

26666664
@zt=@�0

@zt=@�1

@zt=@�2

@zt=@�

37777775 =
26666664

1

yt�1Pt
s=1 �sxt�sPt

s=1
@�s
@�
�2xt�12�s

37777775
Here @�s=@� is the vector of derivatives, (@�s=@�1; :::; @�s=@�p), with

@�s
@�i

= �1
@�s�1
@�i

+ :::+ �p
@�s�p
@�i

+ �s�i;
@�j
@�i

= 0; j � 1:

The ML estimator �̂ of � is obtained by maximizing the log-likelihood function in (15), or

equivalently, by solving the �rst order conditions ST (�) = 0, e.g., by applying the BHHH

algorithm. To enforce �t in (8) obeys stationarity conditions, one can reparametrize

�1; :::; �p in terms of partial correlations and then restrict these to lie within the interval

[�1; 1] (see Barndor¤-Nielsen and Schou (1973) and Monahan (1984)).

Asymptotic theory for �̂ is studied by Fokianos and Kedem (1998). They prove exis-

tence, consistency and asymptotic normality of �̂ under regularity conditions. When the

model is correctly speci�ed, we have the result

T 1=2(�̂ � �) d! N(0;J (�)�1); (17)

where J (�) = plimT!1 T
�1PT

t=1 (@lt (�) =@�) (@lt (�) =@�
0). In practice, the applied fore-

casting model may be misspeci�ed. Thus, it is useful to consider the standard extension

of (17) given by

T 1=2(�̂ � ��)
d! N(0;H (��)�1 J (��)H (��)�1); (18)

where H (�) = � plimT!1 T
�1PT

t=1 @
2lt (�) =@�@�

0 and �� is a value in the parameter

space of � assumed to maximize the probability limit of T�1l (�) (for details, see Section

9.3 of Davidson (2000)). In the case of a correctly speci�ed model J (�) = H (�) and

consistent estimators of this matrix are given by both T�1
PT

t=1 @
2lt(�̂)=@�@�

0 and

bH(�̂) = T�1 TX
t=1

(@lt(�̂)=@�)(@lt(�̂)=@�
0)
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In the case of a misspeci�ed model, the estimator bH(�̂) still estimates the matrix H (��)
consistently but consistent estimation of the matrix J (�)must account for potential serial

dependence of the �rst order conditions. For simplicity, denote @lt(�̂)=@� = d̂t: Then a

general estimator is given by

bJ (�̂) = T�1 TX
t=1

d̂td̂
0
t +

T�1X
j=1

wTj

TX
t=j+1

�
d̂td̂

0
t�j + d̂t�j d̂

0
t

�!
; (19)

where wTj = k (j=mT ) for an appropriate function k (x) referred to as a kernel function.

The quantity mT is the so-called bandwidth which for consistency is assumed to tend

to in�nity with T but at a slower rate. In the empirical application, the Parzen kernel

function (see Davidson (2000, p. 227)) is applied and, following the suggestion of Newey

and West (1994), mT is selected according to the rule mT = int(4(T=100)2=9), where

int(x) returns the integer part of x.

Using the estimators bH(�̂) and bJ (�̂) in conjunction with the asymptotic results (17)
and (18) one can construct standard Wald tests for hypotheses on the parameter vector �:

In particular, approximate standard errors for the components of the ML estimator �̂ can

be obtained in the usual way from the diagonal elements of the matrix bH(�̂)�1 bJ (�̂) bH(�̂)�1
or, if a correct speci�cation is assumed, from the diagonal elements of the matrix bH(�̂)�1.
Section 3.3.2 investigates parameter instability by applying an LM type test statistic that

uses the above results.
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Table 1. Estimation Results for Baseline Probit Models

(1) (2)

Static Dynamic

Predictor coe¤. s.e. coe¤. s.e.

Constant �:39 :15 �1:75 :19

Yield curve, xt�12 �:82 :12 �:33 :15

Recession, yt�1 � 3:2 :22

Pseudo R2 :23 :68

Log-likelihood �171:6 �60:8

BIC 177:9 70:3

Notes: The models are estimated using monthly data from January 1955

through November 2001 (563 observations). The reported standard errors

(s.e.�s) are robust to misspeci�cation and are computed with procedures de-

scribed in the appendix.
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Table 2. Estimation Results for Probit Models with Autoregressive E¤ects

(1) (2) (3)

Predictor coe¤. s.e. coe¤. s.e. coe¤. s.e.

Constant �:35 :17 �1:77 :21 �1:76 :24

Recession, yt�1 � 3:2 :23 3:2 :26

Yield curve, xt�12 �:52 :15 �:55 :27 �:51 :53

Autoreg. lag 1, �t�1 :40 :21 �:76 :36 �:66 :86

Autoreg. lag 2, �t�2 � � :11 1:03

Pseudo R2 :24 :68 :68

Log-likelihood �170:2 �60:6 �60:6

BIC 179:7 73:3 76:4

Notes: The models are given by equations (7) and (8), and are estimated using

monthly data from January 1955 through November 2001 (563 observations).

The reported standard errors (s.e.�s) are robust to misspeci�cation and are

computed with procedures described in the appendix.
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Table 3. Estimation Results for Probit Models with Business Cycle Speci�c Parameters

(1) (2)

Predictor coe¤. s.e. coe¤. s.e.

Constant �:10 :13 �1:67 :38

Recession, yt�1 � 3:3 :76

Yield curve, xt�12 �1:18 :84 �:41 :27

Scale coe¤. (�c):

Jan 55 - Apr 58 1 1

May 58 - Feb 61 2:31 2:52 1:19 :34

Mar 61 - Nov 70 :34 :27 :83 :23

Dec 70 - Mar 75 1:40 1:16 1:17 :33

Apr 75 - Jul 80 :93 :84 1:11 :33

Aug 80 - Mar 91 2:10 1:56 �

Aug 80 - Nov 82 � 1:41 :43

Dec 82 - Mar 91 � :95 :30

Apr 91 - Nov 01 :56 :45 :94 :25

Pseudo R2 :23 :72

Log-likelihood �185:1 �59:0

BIC 191:4 71:53

Notes: The models are estimated using monthly data from January 1955

through November 2001 (563 observations). The reported standard errors

(s.e.�s) are robust to misspeci�cation and are computed with procedures de-

scribed in the appendix.
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Table 4. Estimation Results for Probit Models with a Transient Structural Break

(1) (2)

Parameter coe¤. s.e. coe¤. s.e.

Constant �1:5 :20 �1:5 :2

Recession, yt�1 3:1 :25 3:1 :26

Interaction term yt�1 � c80 :20 :59

Yield curve, xt�12 �:63 :21 �:62 :21

Interaction term xt�12 � c80 :87 :29 :89 :29

Pseudo R2 :70 :70

Log-likelihood �56:4 �56:3

BIC 69:0 72:1

Notes: The models are estimated using monthly data from January 1955

through November 2001 (563 observations). �c80�is an indicator variable that

equals 1 for August 1980 through November 1982 and 0 otherwise. The re-

ported standard errors (s.e.�s) are robust to misspeci�cation and are computed

with procedures described in the appendix.
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Figure 1: Probability of Recession, In-sample Prediction (the shaded area indicate NBER-
dated recessions)
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Figure 2: Probability of Recession, Out-of-sample Predictions for January 2000 through
March 2001 (panels a and c) and January 2001 through March 2002 (panels b and d).
The shaded bars indicate NBER-dated recession months.
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Figure 3: Probability of Continuing Expansion Next 15 Months, Rolling Out-of-sample
Prediction (the shaded bars indicate NBER-dated recession months)
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Figure 4: Probability of Continuing Expansion Next 15 Months, Rolling Out-of-sample
Prediction (the shaded bars indicate NBER-dated recession months)
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Figure 5: Probability of Continuing Expansion Next 15 Months, Rolling Out-of-sample
Prediction (the shaded bars indicate NBER-dated recession months)
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