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1 Introduction

We study the existence of pure strategy Nash equilibria in finite congestion

and coordination games. Player set is divided into two disjoint groups, called

men and women. A man choosing an action a becomes better off if the num-

ber of other men choosing a decreases, or if the number of women choosing

a increases. Analogously, a woman becomes better off if more men or fewer

women choose the same action as she does. In addition, there could exist

pairwise congestion or pairwise coordination effects depending on whether a

player becomes worse or better off when more couples (consisting of a man

and a woman) choose the same action as (s)he does. Existence proofs are

constructive: we build simple ”best reply” -algorithms that converge to an

equilibrium.

As an example, we can think of a group of women and men choosing

among the several bars or restaurants in a city. The decisions of the men

and women do not solely depend on the characteristics of bars (wine lists,

type of music played, etc.) but also on the number of other men and women

coming to the same bar. Women are the better off the more men choose the

same bar and the worse off the more other women choose the same bar, for

men vice versa. Or, the players could be males and females of some other

species searching for feeding and breeding grounds (see Milinsky (1988)).

For another example, think about actions being holiday resorts and play-

ers being consumers and firms. Firms decide where to build a hotel (or other

facilities) and customers choose where to spend their holiday. Competition

among firms in the same location is good for the customers, but they don’t

like the area being too crowded. Or firms could be deciding in which tv

-channel or newspaper to advertize and customers could be people deciding

which channel to watch or which newspaper to buy.
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Technically our model is closest to Milchtaich’s (1996) and Quint and

Shubik’s (1994) model. In their model, there are only congestion effects, or

in our terminology, all players are men. It is shown in both of these papers

that there is a very simple algorithm converging to equilibrium. The players

are introduced in the game one by one. Each new player chooses an action

to maximize his utility given the actions chosen by the players already in the

game. When a new player has made his move, old players may revise their

actions. The revision phase continues as long as there are any players who

want to deviate. If all players are satisfied in their current actions, a new

player enters and chooses an action, and so on, until an equilibrium is found.

We use the following algorithm for games with pairwise congestion prop-

erty: First we form as many man - woman pairs as possible, and leave the re-

maining players (men) single. Single players choose first following the Milch-

taich or Quint-Shubik -algorithm. After that the couples enter the game

one by one. The woman makes the first choice for the couple. In the revi-

sion phase, men and women may change their actions individually (so the

originally ”married men” need no longer follow the orders of their ”wives”),

but in the opposite order they entered the game. This algorithm is modified

slightly for games with pairwise coordination property.

Rosenthal (1973) was the first to define the class of congestion games and

to prove the existence of Nash equilibrium (his definition is slightly different

than the one adopted by Milchtaich (1996) and Quint and Shubik (1994)).

Monderer and Shapley (1996) introduced the class of potential games, which

includes Rosenthal’s congestion games, and proved that these games admit

a pure strategy equilibrium. Konishi, Le Breton and Weber (1997a) proved

the existence of a strong pure strategy equilibrium in the class considered

by Milchtaich (1996) and Quint and Shubik (1994). Konishi et.al. (1997b)
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defined a class of games with positive externalities and proved the existence

of pure strategy equilibrium in this class by constructing a potential function.

In our model men get positive externalities from women and vice versa,

but there are negative externalities (congestion effects) within groups. We

are not aware of other papers where the existence pure strategy equilibria is

proved in models exhibiting both positive and negative externalities.

The paper is organized in the following way. In Section 2 notation is

introduced. The main results are presented in Section 3, and Section 4

contains examples.

2 Preliminaries

Let G = {N ; (Si)i∈N ; (ui)i∈N} be a finite normal form game. That is, the

set N is a finite set of players, Si is a finite set of strategies of player i, and

ui :
∏
i

Si −→ R is the utility function of player i. We assume that Si = A

for all i ∈ N and denote a strategy profile by s, s ∈ AN . The game has two

types of players, that is N = M ∪W , where M and W are nonempty disjoint

sets. We will call players in M and W as men and women, respectively.

Let ns(a) be the number of players who chose an action a in a strategy

profile s and let ms(a) and ws(a) be the number of players i ∈ M and j ∈ W ,

respectively, who chose an action a in a strategy profile s. We assume that

there are functions u : A×N×N −→ R and v : A×N×N −→ R such that

ui(s) = u(a | (ms(a), ws(a))), for all i ∈ Mand s such that si = a,

ui(s) = v(a | (ms(a), ws(a))), for all i ∈ Wand s such that si = a.

To get simpler notation, we will in the sequel denote the utility of a

man from the action a by u(a | (m, w)), where m is the number of men and

3



w is the number of women choosing a. Similarly, the utility of a woman

from the action a is denoted by v(a | (m,w)). A game G is now given by

G = {A; M, u; W, v}.

There are several assumptions made when utilities have this kind of neat

expression. First, player i′s utility from s does not depend on the identity

of his opponents j making choices sj = b, but it may depend on whether j

is a man or a woman (anonymity inside groups, see Konishi et.al. (1997a)).

Secondly, player’s utility from an action a depends only on the number of

players from each group choosing this same action (independence of irrelevant

choices, see Konishi et.al. (1997a)). Thirdly, all women have the same utility

function and all men have the same utility function (symmetry inside groups).

The next assumption is called population monotonicity (PM). We as-

sume that the payoff of any man i (any woman j) decreases when more men

(women) choose the same action as i (j) (negative population monotonicity

NPM ) and increases when more women (men) choose the same action as i

(j) (positive population monotonicity PPM ).

Definition 1 A game G has the PM-property if for all a ∈ A the conditions

NPM and PPM hold:

(NPM) if m′ > m then u(a | (m, w)) ≥ u(a | (m′, w)), if w′ > w then v(a | (m, w)) ≥

v(a | (m, w′));

(PPM) if w′ > w then u(a | (m, w′)) ≥ u(a | (m, w)), if m′ > m then v(a | (m′, w)) ≥

v(a | (m, w)).

The following condition is called pairwise congestion (PCG). If a player

prefers a to b, and one man and one woman join the group who chooses b,

then a is still preferred to b.

Definition 2 A game G has the PCG -property, if u(a | (m,w)) ≥ u(b | (m′, w′))
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implies u(a | (m, w)) ≥ u(b | (m′+1, w′+1)), and if v(a | (m,w)) ≥ v(b | (m′, w′))

implies v(a | (m, w)) ≥ v(b | (m′ + 1, w′ + 1)), for all a ∈ A.

The following condition is called pairwise coordination (PCD). If a player

prefers a to b, and one man and one woman join the group who chooses a,

then a is still preferred to b.

Definition 3 A game G has the PCD -property, if u(a | (m, w)) ≥ u(b | (m′, w′))

implies u(a | (m+1, w+1)) ≥ u(b | (m′, w′)), and if v(a | (m, w)) ≥ v(b | (m′, w′))

implies v(a | (m + 1, w + 1)) ≥ v(b | (m′, w′)), for all a ∈ A.

The condition PCG implies that a suboptimal action for a player cannot

become an optimal one if a new couple chooses this action. The condition

PCD implies that an optimal action stays optimal if a new couple chooses

this action. The condition PCG (or PCD) is therefore less demanding than

a monotonicity condition that requires that player’s utility decreases (in-

creases) if a new couple chooses his/her action.

3 Results

We consider first games with population monotonicity and pairwise conges-

tion properties. It turns out that in such games there are pure strategy Nash

equilibria. We assume w.l.o.g. that there are at least as many men as there

are women. Consider the following algorithm for games G = {A; M, u; W, v}:

THE ALGORITHM. Index the players by natural numbers so that the

first |W | odd natural numbers are indices for women and the first |M | positive

even natural numbers are indindices for men. So the highest index for a

woman is 2|W | − 1 if there are any women, and the highest index for a man
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is n = 2|M |. We describe the algorithm separately for the cases when there

are (A) no women, (B) both men and women and |M | ≥ |W |.

(A) Choose an action a for man i = 2|M | that maximizes his utility

u(a | (1, 0)). Suppose each i among the k ≥ 1 men with highest indices

have given some action a(i) that maximizes his utility u(a(i) | (m, 0)) when

in total m men choose this action. Then give the man j = 2|M | − 2k an

action b(j) that maximizes his utility u(b(j) | (m, 0)) when in total m men

choose this action. Next let the men revise their actions one at a time so

that at each stage the man with the lowest index is given the opportunity

to change his action first. Only those men for whom there are actions that

are strictly better than their current choice are allowed to revise. When

looking for better actions, all players think myopically that after his choice

there will be no more revisions. If at some point actions for all men i =

2|M | − 2k, . . . , 2|M | are such that none of them wants to revise any more,

then the next man j = 2|M | − 2k− 2 is given an action b(j) that maximizes

his utility u(b(j) | (m, 0)) given that in total m men choose this action. The

algorithm converges if and only if all men have assigned an action and none

of them wants to change his action any more.

(B) First all the ”single” men 2|W |+2, . . . , 2|M | (if |M | > |W |) are given

an action by using the algorithm (A) (if this algorithm stops), and after that

the ”couples” (2|W | − 1, 2|W |), . . . , (1, 2) are introduced in the game in that

order. New couples are brought in the game only if none of the old players

wants to change his or her action. When the couple (i, i + 1) enters, the

woman i chooses the action x that maximizes her utility v(x | (m+1, w+1)),

where m and w are number of men and women choosing x before the couple

(1, 2) entered the game. The revision stage is again such that the player with

lowest index may first revise his or her action if he or she strictly gains by
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doing so. In particular, the man i + 1 need no longer choose the same action

that was originally chosen by his ”wife” i. The algorithm converges if and

only if all players have assigned an action and none of them wants to change

his or her action any more.

It is clear that if the algorithm converges, and the resulting strategy

profile is s, then s is a Nash equilibrium. Our main theorem gives suf-

ficient conditions for the convergence for generic games. We call a game

G = {A; M, u; W, v} generic, if u(a | (m, w)) 6= u(a′ | (m′, w′)) if (a, m, w) 6=

(a′, m′, w′) and similarly for the women’s utility function v.

Theorem 1 If a generic game G has the properties PM and PCG, then the

algorithm converges to a Nash equilibrium.

Proof. Convergence of the case (A) of the algorithm follows from Theorem

2 of Milchtaich (1996) and Theorem 3 of Quint and Shubik (1994). The

algorithm actually converges in our case always immediately without any

action revisions by any man. We give the proof for completeness.

(A) Let G be a game having properties PM and PCG in which there are

M men. If there is only one man, let a be a choice that maximizes the utility

u(x | (1, 0)). Because there are no other men, there will be no revisions.

Suppose then that the algorithm converges always when there are at most

k−1 ≥ 1 men, and that the convergence happens always immediately without

anybody wanting to revise his action.

If there are k men in the game G, then by the induction assumption

the man with index i = 2 is brought into the game at some stage. Let

a be the action that maximizes the utility u(x | (t, 0)) of the man 2, given

the choices of the old players. Then if a player i > 2 has chosen an action

7



b 6= a, this action is still utility maximizing by PCG. None of the men who

chose a would like to change her action, since a maximizes the utility of the

man 2 and all men have identical utility functions. Therefore the algorithm

converges immediately without any revisions.

(B) Let G be a game having properties PM and PCG such that |M | ≥

|W | > 0. We proceed by induction in the number of ”couples” (i, i + 1), i is

a woman and i + 1 is a man.

Suppose that there are k couples and any finite number of single men.

By the case (A) above, the algorithm applied to the single men converges.

Assume now that the algorithm converges when there are at most k− 1 ≥ 0

couples (i, i + 1).

Denote by (1, 2) the k ’th couple that is introduced in the game, when all

the other players are choosing equilibrium actions, k ≥ 1. (The proof is the

same whether or not (1, 2) is the only couple in the game.) So let a be the

action that maximizes v(x | (m + 1, w + 1)) where m and w are the number

of men and women choosing x before 1 and 2 enter the game.

In the revision phase, the player with the lowest index who finds a strictly

better action may change his or her action first. By PCG, none of the players

choosing b 6= a wants to change his or her action, and clearly no woman

choosing a wants to change her action either. So the only players who possibly

could gain by changing action are the men choosing a. The algorithm gives

the man 2 the first chance to revise his action, and suppose that he finds

action b strictly better than action a and deviates to b.

The man 2 thus has moved from a to b. No other man wants to deviate:

the only possibility would be some man wantig to choose a, but then this

same man should have chosen b before the couple (1, 2) entered the game.

So only some women might want to change action. The woman 1 is asked
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first if she can strictly increase her utility. Three cases arise: (i) woman 1

does not change her action, (ii) woman 1 moves to b also, and (iii) woman 1

moves from a to c 6= b.

(i) Woman 1 does not change her action:

If the woman 1 cannot increase her utility the algorithm has converged. To

see this, notice that no man with action a or b can increase his utility by

changing action. So if some man wants to revise, it must be some man i > 2

who, at the moment, chooses an action c 6= a, b. The only action that could

be strictly better than c for him is a. But the man 2 just moved from a to b,

so b was strictly better than c for man i prior to the introduction of the couple

(1, 2) to the game, a contradiction. For women i 6= 1, the only possible new

action is b. But if there are such women, then woman 1 wants to deviate to

b as well. Namely, if this were not true, then the woman i 6= 1 should have

chosen a just before the couple entered the game rather than her current

action. So if woman 1 doesn’t want to deviate to any action, the algorithm

converges and woman 1 chooses a and man 2 chooses b in equilibrium.

(ii) Woman 1 moves to b also:

Suppose then that the woman 1 can strictly increase her utility after man

2 has moved from a to b. If woman 1 wants to choose b rather than a then

she can make this move before any other women. By PCG and induction

assumption no man i > 2 choosing c 6= b wants to choose b. Similarly by

induction assumption, no man i > 2 who chose c 6= a wants to deviate to a.

The choice b maximized the utility of man 2 before woman 1 moved there,

and therefore b by PM his utility only increases when woman 1 moves to

b. This holds true for all men choosing b since they have identical utility

functions, and therefore the algorithm converges.

(iii) Woman 1 moves from a to c 6= b:
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In this case, no other woman wants to change her action any more, the reason

being the same as in case (i). However, there could be some man wanting to

choose c as well. We will show that in this case man 2 also wants to move

from b to c. Namely, if this doesn’t hold, then by genericity of the game,

man 2 would strictly prefer b to c at this moment. Let k ≥ 0 be the number

of men choosing c, m ≥ 1 the number of men and choosing b, and h ≥ 1 the

number of men choosing x at the moment. Let w1, w2, w3 ≥ 0 be the number

of women choosing c, x, and b at the moment. If a man wants to change

from x to c, the following inequality must hold:

u(c | (k + 1, w1)) > u(x | (h,w2)) (1)

On the other hand, if the man 2 does not want to change from b to c,

u(b | (m, w3)) > u(c | (k + 1, w1)) (2)

But the two inequalities imply that the man who wanted to change from

x to c, had chosen b and not x before the couple (1, 2) entered the game, a

contradiction.

To sum up, if there is at least some man who wants to move from x to

c after the woman 1 moved from a to c, then also the man 2 wants to move

from b to c. Since man 2 is allowed to change his action first, he will in fact

move from b to c.

But now the algorithm converges, since all the single man who didn’t

choose c before the couple (1, 2) entered the game, now find c even worse

alternative by PCG. Since c is a best choice for 1 and 2, no player choosing

c wants to revise his or her action. But in such a case man 2 wants to

deviate to c as well, and if man 2 wants to deviate to c, then he makes this

move before any other men. The algorithm then converges to equilibrium

where the couple (1, 2) chooses c. If man 1 doesn’t want to choose c, then
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the algorithm converges to equilibrium where woman 1 chooses c and man 2

chooses b. This completes the proof.

The algorithm doesn’t seem to require excessive computational or predic-

tive powers from players: players (or couples) enter the game sequentially,

see what choices the other players have made so far, and based on that make

their utility maximizing choices. Players do not try to predict the future:

they do not try to guess what those players will do that enter the game later,

or how the old players will react when new players enter the game. The fol-

lowing result shows that convergence is quite fast despite of players behaving

in such a myopic manner.

Proposition 1 Given a generic game G satisfying properties PM and PCG

with |M | men and |W | women, |M | ≥ |W |, the algorithm converges in at

most 3|W |+ |M | steps.

Proof. As long as there are only single men in the game, no man ever wants

to revise his action he took when he entered the game. So it takes |M |− |W |

steps before the first couple is introduced in the game. When the first couple

arrives, the longest path before the next couple is brought to the game is

the following: the woman 1 chooses a for the couple (1, 2), then the man 2

deviates to b 6= a, then the woman 1 deviates to c 6= a, b, and finally the

man 2 deviates to c (see part (B) in the proof of Theorem 1). So it takes at

most |M | − |W |+ 4 steps before the second couple ienters the game. But it

takes at most four steps for every new couple (i, i + 1) before they both are

satisfied with their actions and before a new couple enters the game (see part

(B) in the proof of Theorem 1). Since there are |W | couples, the algorithm

converges in at most |M | − |W |+ 4|W | = 3|W |+ |M | steps.

We will next analyze games in which the pairwise congestion (PCG) is

replaced by pairwise coordination (PCD). We don’t know whether or not our
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original algorithm converges in these kind of games, but by modifying the

algorithm slightly, we can quarantee convergence.

THE MODIFIED ALGORITHM. Index players as in the original algo-

rithm, and assume w.l.o.g. that |M | ≥ |W |. Index also the actions by the

first k natural numbers. The stage (A) is exactly as it was before: the single

men choose in the reverse order of their indices, and the revision phase is as

before.

If there are some woman, then the stage (B) is divided into two substages

B1 and B2.

(B1) Given the choices of single men, check if there is any action a such that if

all couples choose this action, then no single woman or man wants to deviate

unilaterally. If there are several such actions, choose the one that is best for

women. If the set of these optima for women is not singleton, choose the one

from this set that is best for men. If this does not resolve ties, then choose

the optimum that has the lowest index. If there are no action a such that

if all couples choose this action, no single woman or man wants to deviate

unilaterally, then move to B2.

(B2) This stage is the same as stage B in the original algorithm.

Again, if the modified algorithm converges, the resulting strategy profile

is a Nash equilibrium. The next result says that the modified algorithm

converges for generic games satisfying PM and PCD.

Theorem 2 If a generic game G has the properties PM and PCD, then the

modified algorithm converges to a Nash equilibrium. In this equilibrium either

all couples choose the same action, or there is no action chosen both by men

and women.
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Proof. The case (A) is the same as in Theorem 1 since there are no woman.

Let G be a generic game having properties PM and PCD such that

|M | ≥ |W | > 0.

(B1) Suppose there is an action such that when all couples choose this

action (plus the single men who chose this action in stage A), then no single

man or woman wants to deviate from a. By genericity of the game, there is

a unique best such action for women, a. Since no player choosing a wants

to change action, the only potential deviators are men choosing some b 6= a.

The first such deviator is a man with the lowest index i, and his new choice

must be a. After that, no player choosing a has any incentives to deviate, so

again the only potential deviators are men not choosing a. The next deviator

could choose either a or the action that the first deviator chose before the

couples entered the game.

Continuing the revision stage, we will show that there will never be such

an instance that some of the players choosing a would like to change action.

Suppose to the contrary. Then there is also the first instance when a player

choosing a wants to deviate.

Assume first that this player is a man. Then since the players choosing a

have the lowest indices, the man 2 may change his action from a to his new

optimum b. But this is possible only if some man has just changed his action

from b to some c 6= a. But then man 2 had changed his action alredy in the

previous stage, a contradiction.

Assume then that the first player wanting to deviate from a is a woman.

Again, woman 1 may change her action as soon as she finds a new optimum

b. The only reason why b is now better than a for her is that there are

now more men choosing b than there were immediately after stage A. Then

the men choosing b get a strictly lower utility than the men who chose b
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immediately after stage A. But this is a contradiction with PM : there are

now at most as many men choosing actions x 6= a as there were immediately

after stage A, so there is no reason why more men should be choosing b now

than immediately after stage A. But then the algorithm converges, since the

game is now essentially a game between single men only. Clearly all couples

choose the same action.

Suppose therefore that there is no action such that when all couples choose

this action (plus the single men who chose this action in stage A), then no

single man or woman wants to deviate from a, and move to the next stage.

(B2). The stage A has converged, the stage B1 has failed, and therefore

the couples enter the game one by one just like in stage B of the original

algorithm. When the first couple enter, it chooses the action a that maximizes

the utility of woman 1. Then man 2 must find a strictly better action b, since

otherwise a would by PCD be an action that guarantees the convergence

already in stage B1. After man 2 has chosen b, woman 1 may find another

best action c, but again c = b is not possible. For the same reason, the best

action b or c for woman 1 cannot be chosen by any other man i > 2 either.

Therefore, all players must be satisfied with their actions as soon as woman

1 and man 2 have found their best actions.

Excatly the same argument applies at each stage when a new couple

enters the game, so the algorithm converges, and there is no action chosen

both by men and women.

Theorems 1 and 2 establish the convergence of the algorithm and hence

the existence of a pure strategy Nash equilibrium in generic games. In non-

generic games where there may be multiple best replies to a given strategy

profile, the algorithm should be redefined so that the action taken at each step

is uniquely defined. But it is not clear how to redefine the algorithm in such a
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way that it converges. In fact it is not clear that any such redefined algorithm

converges. The following result establishes that in all games satisfying either

PM and PCG, or PM and PCD, the algorithm can be redefined in such a

way that it converges to an equilibrium.

Proposition 2 Given a non-generic game G satisfying either PM and PCG,

or PM and PCD, the algorithm can be redefined in such a way that at each

step of the algorithm, the action chosen is uniquely defined, and the algorithm

converges to a pure strategy Nash equilibrium.

Proof. Suppose that G satisfying PM and PCG is generic otherwise ex-

cept that are two profiles (a, m, w) and (a′, m′, w′) such that u(a | (m, w)) =

u(a′ | (m′, w′)). Construct a new game G1 by breaking this indifference by

adding (or subtracting) a sufficiently small amount ε of utility to u(a | (m,w))

(or from u(a | (m, w))) in such a way that G1 satisfies PM and PCG, and that

the other strict preferences in games G and G1 are the same. Clearly this

can be done and G1 is generic.

Define Gn like the game G1 except that ε is replaced by ε/n, for n =

1, 2 . . .. Then each Gn is generic, and there is a Nash equilibrium s(n) selected

by the algorithm for each n. Since there are only finitely many actions, there

is naturall number K such that (i) s(n) = s(K) for all n ≥ K and (ii) the

algorithm produces an identical path to the equilibrium for all n ≥ K.

Then s∗ = s(K) is a pure strategy equilibrium of the game G. Consider

all the ways one can define different version of the algorithm by defining the

choice in a different manner when there are indifferencies. There are only

finitely many such versions since there are only finitely many actions and

players. At least one of them produces for game G the same path to the

equilibrium s∗ = s(K) as the original algorithm produces for the game GK .
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One can show by induction that if there are in G many instances where

profiles (a, m, w) and (a′, m′, w′) are indifferent, then again one can construct

in the similar manner a sequence of generic games converging to G. The claim

holds of course also if G and the generic games satisfy PM and PCD.

4 Examples

We assumed that inside groups all players are similar, that is, all women have

the same utility function and all men have the same utility function. Next

example shows that if we drop this assumption, the game may not have a

Nash equilibrium.

Example 1 Let G be a three-person game with action set A = {a, b, c},

and W = {1} and M = {2, 4}. Player 1 is a woman, and players 2 and 4

are men. Action c is strictly dominated for players 1 and 2, and action b is

strictly dominated for player 4. The utility function for player 1 , the woman,

satisfies:

v(b | (1, 1)) > v(a | (1, 1)) > v(b | (0, 1)).

The utility function for player 2, one of the two men, satisfies:

u2(a | (1, 1)) > u2(a | (1, 0)) > u2(b | (1, 1)) > u2(b | (1, 0)) > u2(a | (2, 1)).

The utility function for player 4, the other of the two men, satisfies:

u4(a | (1, 1)) > u4(a | (2, 1)) > u4(c | (1, 0)) > u4(a | (1, 0)).

These functions can easily be extended to all action-(m, w) -pairs in such

a way that the condition PM is satisfied. Note that player 1 must choose

either a or b in every Nash equilibrium. If she chooses a, then 2 must choose

b, since 4 will definitely choose a. But then 1 would like to deviate to b,
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so there is no Nash equilibrium where 1 chooses a. If 1 chooses b, then 4

will never choose a, and therefore 2 chooses a and 4 chooses c. But then 1

would like to deviate to a, so there is no Nash equilibrium where 1 chooses

b. Therefore there exists no Nash equilibria in the game G.

Next we study the efficiency of the equilibrium produced by the Algo-

rithm. The next example shows that this equilibrium need not be efficient,

in fact, there may be another equilibrium in the game that Pareto dominates

the one selected by the Algorithm.

Example 2 Let G be a two person game with A = {a, b, c, d}, W = {1}

and M = {2}. The functions are as follows:

v(a | (0, 1)) = 1 u(a | (1, 0)) = 0

v(a | (1, 1)) = 7 u(a | (1, 1)) = 1

v(b | (0, 1)) = 0 u(b | (1, 0)) = 3

v(b | (1, 1)) = 3 u(b | (1, 1)) = 4

v(c | (0, 1)) = 4
1

2
u(c | (1, 0)) = 2

v(c | (1, 1)) = 5 u(c | (1, 1)) = 2
1

2

v(d | (0, 1)) = 2 u(d | (1, 0)) = −1

v(d | (1, 1)) = 6 u(d | (1, 1)) = 5

These functions have the properties PM and PCG. Applying the Algorithm,

first player 1 chooses for the couple {1, 2} action a. Next player 2 gets chance

to revise.his action. He can increase his utility, so he deviates and chooses b.

Player 1 now gets 1 by choosing a so she also wants do revise her action. She

chooses c. Player 2 no longer can increase his utility and the Algorithm thus

stops. In this equilibrium, player 1 gets utility 41
2

and player 2 gets utility

3. However, if both players choose d, then this is also an equilibrium, and

17



player 1 gets utility 6 and player 2 gets utility 5.
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