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ABSTRACT 

This paper studies allocations that can be implemented by an 
arbitrator subject to the constraint that the agents' outside option is 
to start bargaining by themselves. As the population becomes 
large, the set of implementable allocations shrinks to a singleton 
point - the conflict-free allocation. Finally, the conflict-free 
allocation can be implemented via a simple "lobbying" game 
where parties composed of agents with similar preferences bid for 
the right to be the first proposer in a bargaining game among the 
parties, i.e. in the "political game". 
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1 Introduction

An arbitrator’s problem is how to divide a pie fairly among a society of agents.
In the standard bargaining scenario, which is often motivated via the arbitration
metaphor, fairness of the outcome is defined with respect to a prespecified dis-
agreement outcome.1 But it is not clear why the agents should implement the
disagreement point in the case they cannot agree on the division. Namely the
agents can always - since they form the society - take the decision into their own
hands. Disagreement should therefore reflect the potentially arduous process of
bargaining among the individuals.
This paper studies allocations that can be implemented by the arbitrator sub-

ject to the constraint that the agents’ outside option is to start bargaining by
themselves. More precisely, the arbitrator serves as the first proposer in the game
where the agent who rejects the arbitrator’s proposal becomes the first proposer
in the unanimity bargaining game (a multiplayer extension of Rubinstein, 1982).
The arbitrator’s objective is to implement a Pareto optimal outcome.
Our main focus is in large societies. Assuming stationary equilibrium in the

bargaining game, we show that the set of feasible allocations shrinks to a singleton
set as the number of agents becomes large. This is due to the fact that as the
number of agents’ grows, the bargaining power of a single agent (measured in as
the first mover advantage) becomes small. The limit allocation can be interpreted
as the conflict-free outcome: no individual wants to challenge it by starting to
bargain. We give a simple finite characterization of the conflict-free allocation
(under the hypothesis that the agents’ time-preferences are drawn from a finite set
of preferences).
Admittedly, implementing a rule in a large society that is contingent on the

individuals’ time-preferences is too unrealistic. The second task of the paper is
to offer a practical solution the implementation problem. We identify a simple
mechanism that induces the conflict-free solution in a unique equilibrium. The
content of the mechanism is the following. First all agents with similar preferences
are grouped together to form a "party". The party, or its representative, acts
on behalf of all its members - gains and losses of the party are divided evenly
among the members of the group. The task of parties is to engage into bargaining
over common resources - they do "politics". However, before doing that they
compete over the right to make the first proposal in the bargaining game - they
give promises of how much of their own good they will give up for the common
good. The winning bid is added to the pool of common resources that is later
shared via bargaining.
It is shown that the unique equilibrium outcome (under the stationarity as-

1For the arbitration interpretation of bargaining solutions, see e.g. Luce and Raiffa (1957).
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sumption) coincides with the conflict-free allocation. Hence we obtain a version
of the Core convergence result: the outcome that is obtained in large bargaining
markets with negligent bargaining power can be simulated in a small market with
a "Walrasian" auctioneer.
This paper is related to Kultti and Vartiainen (2007a) who study convergence

of bargaining outcomes in a related model of large population. The driving force
behind the convergence in there as well as in here is that as the number of players
increases the bargaining power of individual players vanishes. An important ob-
servation is that convergence has different characteristic than when the bargaining
power vanishes due to speeding up the bargaining process (Binmore et al., 1986).
In particular, the convergence point under large population is not related to the
Nash bargaining solution.2

First we define the set up and specify the bargaining game. Then we establish
the feasible arbitrations schemes. Finally, the implementation result is proven. All
omitted proofs are in the appendix.

2 The set up

There is a society of agents, distributing common resources. The primitive of the
model is the set of agents, their time-preferences and resources. There are 1, ..., n
agents, each of them endowed with one unit of resources. As an agent enters the
society, his resources become part of the common pool of resources.
Time preferences of the agent i has the representation ui(xi)δt, where xi ∈ R+ is

the agent’s consumption.We assume that the publicly observable utility functions
u1, ..., un are drawn independently from a finite set U, whose cardinality is also
denoted by U. The probability of u ∈ U is λu, a rational number. We assume that
each u ∈ U is concave and continuously differentiable function and that δ ∈ (0, 1).3
Given ui, define a function vi that specifies the present consumption value of

xi in date 1 such that

ui(vi(xi)) = ui(xi)δ, for all xi ∈ [0, 1]. (1)

By the concavity of ui, u0i(xi)/ui(xi) is a monotonically decreasing, strictly positive

2However, see Thomson and Lensberg (1989).
3Weaker conditions would suffice (see Fishburn and Rubinstein, 1981, or Kultti and Vartiainen

2007a,b). The current choice is for simplicity.
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function under all xi > 0, and hence (since vi(xi) < xi), for all xi > 0,

v0i(xi) =
u0i(xi)δ
u0i(vi(xi))

(2)

=
u0i(xi)/ui(xi)

u0i(vi(xi))/ui(vi(xi))
∈ (0, 1).

That is,
dv−1i (xi)

dxi
=

1

v0i(xi)
> 1, for all xi ≥ 0. (3)

This property will be used when we prove the existence of a stationary equilibrium.

3 The unanimity bargaining game

For later purposes, we discuss of the bargaining game in a more general level than
the current set up requires. Let the size of shareable resources be X > 0, and the
group of agents finite set N (whose cardinality we also denote by N). The set of
allocations is

S =
©
x ∈ RN

+ :
P

i∈N xi ≤ X
ª
.

Given N and X, we define a unanimity bargaining game ΓN(X, i) as follows: At
any stage t = 0, 1, 2, ...,

• Player i(t) ∈ N makes an offer x ∈ S. Players j 6= i(t) accept or reject the
offer in the ascending order of their index.4

• If all j 6= i(t) accept, then x is implemented. If j is the first who rejects,
then j becomes i(t+ 1).

• i(0) = i.

We focus on the stationary subgame perfect equilibria, simply equilibria or
SPE in the sequel, of the game, where:

1. Each i ∈ N makes the same proposal x(i) whenever he proposes.

2. Each i’s acceptance decision in period t depends only on xi that is offered to
him in that period.

4The order in which players response to a proposal does not affect the results.
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We now characterize equilibria.5 We first state an important intermediate
result.

Lemma 1 For any Y > 0 and c ∈ RN
++, there is a unique x = (xi)i∈N and d > 0

such that

cixi = vi(ci(xi + d)), for all i ∈ N, (4)P
i∈N

xi = Y. (5)

Lemma 2 xi is a stationary equilibrium outcome of ΓN(X, i) if and only if xi =
(xi + d, x−i), for x and d > 0 such that

xi = vi(xi + d), for all i ∈ N, (6)P
i∈N

xi = X − d. (7)

Choosing Y = X − d and combining Lemmata 1 and 2 the following result is
obtained.

Proposition 1 A stationary equilibrium of ΓN(X, i) exists. Moreover, it is unique.

Thus in our n−player set, the pool of shareable resources is n and the game is
Γ{1,...,n}(n).

Corollary 1 A stationary equilibrium of Γ{1,...,n}(n, i) exists. Moreover, it is
unique.

4 Arbitrator’s problem

Given the set of agents 1, ..., n and the amount of shareable resources n, let there
be an arbitrator who suggests an allocation to the society subject to the constraint
that every agent must accept the proposal. A rejection triggers a bargaining game.
That is, an agent i who rejects the offer becomes the first proposer in the unanymity
game Γ{1,...,n}(n, i), starting.with one period delay. Given that the arbitrator wants
to induce a Pareto optimal outcome, the indeucable outcomes must be such that
all agents accept the proposal.

Proposition 2 Let x satisfy (6) and (7) for some d. Then allocation y is a feasible
arbitration scheme if and only if

P
i xi ≤ n and xi ≥ yi, for all i = 1, ..., n.

By (7), the set of feasible allocations y is nonempty.
5Our treatment draws on Krishna and Serrano (1996).
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4.1 Large Population: Conflict-free allocation

We now establish that when the number of agents increases, the set of feasible
outcomes shrinks and reaches, in the limit, a singleton set. To characterize the
limit, let y∗ ∈ RU and d∗ > 0 satisfy

y∗u = v (y∗u + d∗) , for all u ∈ U, (8)P
u∈U

λuy
∗
u = 1. (9)

See Figure 1 where U = {u, û} and λu = λû. By construction, u(y∗u) = δu(y∗u+ d∗)
and û(y∗û) = δû(y∗û + d∗).
Then construct the conflict-free allocation x∗ = (x∗1, x

∗
2, ...) ∈ R∞ as follows:

x∗i = y∗u if u = ui, for all i = 1, 2, ..., for all u ∈ U. (10)

Since each λu is rational, it is not diffcult to see from Lemma 1 that the desired
y∗ and d∗ do exist.

Proposition 3 As n→∞, an allocation y is a feasible arbitration scheme if and
only if it coincides with the conflict-free allocation x∗.

4.2 Implementation procedure: Competitive lobbying

We now construct a simple mechanism that implements the conflict-free allocation
x∗ when n is large. Let the agents form homogenous groups - "parties" - based
on their preferences. That is for each u ∈ U all the agents of type u constitute
a group. By the law of large numbers, the share of the agents in the u−group is
λu of the set of all agents as n becomes large. Let each group select one agent
as the representative of the group who is entitled to bargain and trade on behalf
of the whole group. Gains and losses of the group are divided equally among its
members.
Consider then a market where the right to be the first proposer in a bar-

gaining game is sold after a bidding contest to one of the U groups (or their
representatives). The right is sold to the group that makes the highest bid (break
ties by using randomization). Once the price p is paid by the winner it is added
to the pool of resources over which bargaining then takes places.
The bidding contest can be interpreted as a "lobbying" game where all the

groups, "political parties", bid for the right to be the leader in the bargaining
game, "political process", that follows the bidding contest. Only one group can
serve as the initial proposer and hence enjoy from the bargaining power that comes
with it.
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More formally, since the agents’ utility functions are i.i.d, λu is the limit share
of type u agents in the population as the population becomes large. Since all
gains and losses of the group are divided equally among its members, if zu is
the u−group’s relative share of the total shareable resources, an u−type agent’s
consumption is approximated by λ−1u zu as n becomes large. It is convenient to
describe the u−group’s agents utilities directly in terms of zu. The utility function
ū of the representative of the u−group with respect to zu is:

ū(zu) = u
¡
λ−1u zu

¢
, for all zu ∈ [0, 1]. (11)

Function ū is convex and continuous since u is. Define the function v̄ such that

ū(v̄(zu)) = ū(zu)δ, for all zu ∈ [0, 1].
Note that (3) applies to v̄ as well.
Denote the set of normalized utility functions by Ū . The rules of the bidding

mechanism Γ∗ are formally as follows: Players in the set Ū first cast their bids.
Given the normalized resources 1, if i ∈ Ū wins the bidding contest with bid p,
then the bargaining game ΓŪ(1 + p : i), with i as the first proposer, is initiated.
Our claim is that this mechanism implements the conflict-free arbitration scheme.
First, let zj(X) be what a receiver j gets in the game ΓŪ(X : i). By (6) and (7)

and Proposition 1, there is z(X) = (z1(X), ..., zn(X)) that is the unique solution
to

zi(X) = v̄i
³
X −Pj 6=i zj(X)

´
for all i. (12)

By the Implicit Function Theorem, zi(·) is continuous.
Lemma 3 zi(X) is strictly increasing in X, for all i.

Proof. Rewrite condition (12) as

v−1i (zi(X))− zi(X) = X −P
i∈U

zj(X).

By (3), and since zi is a continuous function, zi is strictly increasing ifX−
P

zj(X)
is. Since this applies to all i,

P
zj(X) is strictly increasing if X−

P
zj(X) is. But

then, since
P

zj(X) being weakly decreasing means that X −
P

zj(X) is strictly
increasing, it cannot be the case that

P
zj(X) is not strictly increasing. ThusP

zj(X) is strictly increasing and hence zi is strictly increasing.

By (6) and (7) there is a unique (z∗i )i∈Ū and p∗ > 0 such that

z∗i = v̄ (z∗i + p∗) , for all i ∈ Ū , (13)P
i∈Ū

z∗i = 1. (14)
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Lemma 4 In equilibrium of the bidding mechanism Γ∗, p∗ is the winning bid and
z∗ū is the u−group’s share of resources, for z∗ and p∗ as specified in (13) and (14).

Proof. Only if: First we argue that there are at least two highest bids. Suppose
that there is a single highest bid. Then buying the proposing right with price p
must be at least profitable as the opportunity cost of lowering the bid by a small
ε > 0 :"

1 + p−P
j 6=i

zj(1 + p)

#
− p ≥

"
1 + p− ε−P

j 6=i
zj(1 + p− ε)

#
− (p− ε).

That is
0 ≥P

j 6=i
[zj(1 + p)− zj(1 + p− ε)].

But by Lemma 3 this cannot hold.
Thus at least two bidders bid the winning bid p. Then buying the proposing

right under p must be at least profitable as the opportunity cost of letting the
other highest bidder win with price p :"

1 + p−P
j 6=i

zj(1 + p)

#
− p ≥ zi(1 + p). (15)

Since increasing ones bid is not profitable for the losing bargainer j that bids p,"
1 + p+ ε−P

k 6=j
zk(1 + p+ ε)

#
− (p+ ε) ≤ zj(1 + p), for all ε > 0. (16)

Since zk is continuous and (16) holds for all ε > 0, it follows that"
1 + p−P

k 6=j
zk(1 + p)

#
− p ≤ zk(1 + p). (17)

Combining (15) and (17) gives

1 =
P
i∈Ū

zi(1 + p).

Thus by (12),

zi(1 + p) = v̄i(zi(1 + p) + p), for all i = 1, ..., n.

By Lemma 5, this yields zi(1 + p) = z∗i for all i, and p = p∗.
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If: Let all U bargainers bid p = p∗. By construction, zi(1 + p∗) = z∗i for all
i ∈ Ū . We show this does constitute an equilibrium. Since n > 1 and

1 =
P
i∈Ū

zi(1 + p∗), (18)

it follows that "
1 + p∗ −P

j 6=i
zj(1 + p∗)

#
− p∗ = zi(1 + p∗).

Thus decreasing one’s bid does not have payoff consequences. Increasing one’s bid
by ε > 0 is strictly profitable if"

1 + p∗ + ε−P
j 6=i

zj(1 + p∗ + ε)

#
− (p∗ + ε) > zi(1 + p∗).

That is, by (18),

1−P
j 6=i

zj(1 + p∗ + ε) > 1−P
j 6=i

zj(1 + p∗),

which is in conflict with Lemma 3. Thus all players bidding p∗ does constitute an
equilibrium.

We now argue that from the viewpoint of a single agent, the outcome of the auc-
tion among the representatives is the same as the limit outcome of the arbitration
process - the conflict-free allocation. Hence the auction mechanism implements
the desired arbitration scheme.

Proposition 4 The conflict-free allocation x∗ is the unique equilibrium allocation
of the bidding mechanism Γ∗.

Proof. Since ū(v̄(zu)) = ū(zu)δ and (11) imply u(λ−1u v̄(zu)) = u(λ−1u zu)δ and
the definition of v implies u(λ−1u zu)δ = u(v(λ−1u zu)) we have v̄(zu) = λuv(λ

−1
u zu).

Thus (13) and (14) can be written

λ−1u z∗u = v
¡
λ−1u (z

∗
u + p∗)

¢
, for all u ∈ U,P

u∈U
z∗u = 1.

By Lemma 4, this characterizes the equilibrium. Letting y∗u = λ−1u z∗u for all u, and
d∗ = λ−1p∗, this transforms into

y∗u = v (y∗u + d∗) ,P
u∈U

y∗uλu = 1.

Constructing x∗ as in (10) now gives the result.

8



5 Concluding remarks

An arbitration scheme should be such that the players cannot do better by rejecting
the scheme. We model the situation by assuming that the rejection triggers a
bargaining game in which the rejecting agent is the first proposal. When the
population becomes large, only one allocation scheme remains feasible. We call
such scheme conflict-free. This outcome reflects fairness in a sense that it is an
outcome of an imaginary bargaining game in which no player benefits unfairly
from the first mover advantage.
With large population arbitration is hard as the optimal outcome is respon-

sive to the agents’ preferences. We construct a natural and simple mechanism
that implements the conflict-free allocation. Such mechanism has the following
interpretation: All agents with similar preferences group to form a "party". The
party, or its representative, acts on behalf of its members - gains and losses of
the party are divided evenly. The parties engage into bargaining over common
resources. However, before doing that they compete over the right to make the
first proposal in the bargaining game. The winning bid is added to the pool of
common resources that is later shared via bargaining. The equilibrium outcome
of this process is precisely the conflict-free allocation. Thus the simple market
game (lobbying?) with small number of players can be used to induce a fair and
potentially complex allocation with many agents.
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A Appendix: Proofs

Proof of Lemma 1. Recall that ci > 0 for all i and Y ≥ 0. By (3), v−1i (xi)− xi
is a continuous and monotonically increasing function. Thus, the function ei(·)
defined by

ei(xi) :=
v−1i (cixi)

ci
− xi, for any xi ≥ 0, (19)

is continuous and monotonically increasing.
Define ēi ∈ (0,∞] by

sup
xi≥0

ei(xi) := ēi.

Since ei(·) is continuous and monotonically increasing, also its inverse

xi(e) := e−1i (e), for all e ∈ [0, ēi],

is continuous and monotonically increasing in its domain [0, ēi]. Condition (19)
can now be stated in the form

xi(e) =
vi(ci(xi(e) + e))

ci
, for all e ∈ [0, ēi]. (20)

Moreover, since 0 = xi(0) and ∞ = xi(ēi), there is, by the Intermediate Value
Theorem, a unique d > 0 such that

nP
i=1

xi(d) = Y.

Proof of Proposition 2:. Only if: In a stationary SPE the game ends
in finite time. Assume that it never ends. Then each player receives zero. This
means that in all subgames each player must get zero. Otherwise there would be a
subgame where some offer y = (y1, ..., yn) is accepted. Because of stationarity this
offer is accepted in every subgame. In particular, player 1 can deviate in the first
period and offer y = (y1, ..., yn). This is a profitable deviation and constitutes a
contradiction with the assumption that there is a stationary SPE where the game
never ends.
Assume next that there is a stationary SPE where an offer x(i) by some player

i ∈ {1, 2, ..., n}, is not accepted immediately. Denote by z(i) the equilibrium
outcome in a subgame that starts with an offer x(i) of player i. But now player
i could offer z(i) instead of x(i); everyone else would accept the offer as in the
stationary equilibrium acceptance depends only on the offer.

10



Thus, in any equilibrium, i(t)’s offer x(i(t)) = (xj(i(t)))j∈N is accepted at
stage t ∈ {0, 1, 2, ..}. In stationary equilibrium the time index t can be relaxed
from x(i(t)). An offer x by i is accepted by all j 6= i if

xj(i) ≥ vj(xj(j)), for all j 6= i. (21)

Player i’s equilibrium offer x(i) maximizes his payoff with respect to constraint
(21) and the resource constraint. By A3, all constraints in (21) and the resource
constraint must bind. That is,

xj(i) = vj(xj(j)), for all j 6= i, (22)

and
nP
i=1

xi(j) = X, for all j. (23)

Since player i’s acceptance decision is not dependent on the name of the proposer,
there is xi > 0 such that xi(j) = xi for all j 6= i. By (22), xj(i) < xj(j) for all j.
Hence there is d > 0 such that

nP
i=1

xi = X − d. (24)

By (22) and (24), x and d do meet (6) and (7). Since 1 is the first proposer, the
resulting outcome is x(1) = (x1 + d, x2, ..., xn).
If: Let x and d meet (6) and (7). Construct the following stationary strategy:

Player i always offers x−i and does not accept less than xi. Player i’s offer y is
accepted by all j 6= i only if

yj ≥ vj(X −
P

k 6=j xk) = vj(xj + e1(x1)), for all j 6= i. (25)

Since vj is increasing, and since

xj = vj(xj + d), for all j 6= i,

i’s payoff maximizing offer to each j is xj.

Proof of Proposition 5:

Lemma 5 For any n, there are unique y(n) ∈ Rn and d(n) > 0 such that

yi(n) = vi(yi(n) + d(n)), for all i = 1, ..., n, (26)
nP

u=1

yi(n) = n− d(n). (27)

11



Proof. By Lemma 1.

By Lemma 2, the set of allocations the planner can implement under n agents
is ½

x :
1

n

nP
i=1

xi ≤ 1, and xi ≥ yi(n), for all i = 1, ..., n
¾
.

Lemma 6 Let y(n) and d(n)be defined as in Lemma 5. Then there is y∗ ∈ RU

and d∗ > 0 such that yi(n) →n y∗u, for all ui = u and u ∈ U, and d(n) →n d∗,
where

y∗u = v(y∗u + d∗), for all u ∈ U, (28)P
u∈U

λuy
∗
u = 1. (29)

Proof. By Lemma 5, for any n = 1, 2, ...,

yi(n) = vi(yi(n) + d(n)), for all i = 1, ..., n, (30)
nP
i=1

yi(n) = n− d(n). (31)

Dividing both sides of (31) by n,

1

n

nP
i=1

yi(n) = 1− d(n)

n
. (32)

Define a function i : U → {1, 2, ...} such that ui(u) = u, for all u ∈ U. By station-
arity, yi(u)(n) = yj(n) if u = uj. The left hand side of (32) can now be written

1

n

nP
i=1

yi(n) =
1

n

P
u∈U

yi(u)(n)
nP
i=1

1(ui=u).

By the law of large numbers,

lim
n

1

n

nP
i=1

1(ui=u) = λu. (33)

Take any subsequence {n0} under which limn0 yi(u)(n
0) for all u and limn0 d(n

0) exist
(the limit can be either finite or infinite). Then (30) can be written

lim
n0

P
u∈U

λuyi(u)(n
0) = 1− lim

n0→∞
d(n0)
n0

(34)

12



By (30) limn0 d(n
0) = ∞ if and only if limn0 yi(u)(n

0) = ∞ for all u. Thus,
by (34), it must be the case that limn0 yi(u)(n

0) = y∗u and d(n) = d∗, for some
(y∗, d∗) ∈ R|U |++ × R++. By (30), (34) becomes

lim
n0

P
u∈U

λuyi(u)(n
0) =

P
u∈U

λuy
∗
u = 1. (35)

By Lemma 1 and (30), y∗i(u) is the limit of any converging subsequence {yi(u)(n00)},
and d∗ is the limit of any converging subsequence {d(n00)}. Thus (y∗, d∗) is the
unique limit and by (35), continuity, and (30) it meets the conditions imposed by
the lemma.

Proposition 5 As n → ∞, allocation x is implementable by the planner if and
only if x = x∗.

Proof. Again, define a function i : U → {1, 2, ...} such that ui(u) = u, for all
u ∈ U. By stationarity, yi(u)(n) = yj(n) if u = uj, for all j = 1, ..., n. The set of
implementable allocations can be written½

x ∈ Rn
+ :

1

n

nP
i=1

xi ≤ 1, and xi ≥ yi(n), for all i = 1, ..., n
¾

=

½
x ∈ Rn

+ :
1

n

P
u∈U

xi(u)
nP
i=1

1(ui=u) ≤ 1, and xj = xi(u) ≥ yi(u)(n) if u = uj, for all u ∈ U

¾
Taking the limit,

lim
n

½
x ∈ Rn

+ :
1

n

P
u∈U

xi(u)
nP
i=1

1(ui=u) ≤ 1, and xj = xi(u) ≥ yi(u)(n) if u = uj, for all u ∈ U

¾
=

½
x ∈ R∞+ :

P
u∈U

xi(u)λu ≤ 1, and xj = xi(u) ≥ y∗i(u) if u = uj, for all u ∈ U

¾
.

By (29), this reduces to©
x ∈ R∞+ : xj = y∗i(u) if u = uj, for all u ∈ U

ª
,

which is a singleton {x∗}, as required by the proposition.
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