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ABSTRACT 

In this paper, we study the optimal stopping problem of Dupuis 
and Wang analyzed in [7]. In this problem, the underlying follows 
a linear diffusion but the decision maker is not allowed to stop at 
any time she desires but rather on the jump times of an 
independent Poisson process. In [7], the authors solve this problem 
in the case where the underlying is a geometric Brownian motion 
and the payoff function is of American call option type. In the 
current study, we will this problem under weak assumptions on 
both the underlying and the payoff. We also demonstrate that the 
results of [7] are recovered from ours. 
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1. Introduction and the main result

Let (Ω,F ,Ft,P) be a complete filtered probability space satisfying the usual

conditions (see [2], p. 2). We assume that the state process X is a regular linear

diffusion evolving on R+. Moreover, we assume that X does not die inside the state

space and that the basic characteristics of X, namely the scale function S, the speed

measure m and the killing measure k (see [2], pp. 13–14), are absolutely continuous

with respect to the Lebesgue measure, have smooth derivatives and that the scale

function S is twice continuously differentiable. Under these assumptions, we know

that the infinitesimal generator A : D(A) → Cb(R+) of X can be expressed as

A =
1
2
σ2(x)

d2

dx2
+ µ(x)

d

dx
− c(x),

where the functions σ, µ and c (the infinitesimal parameters of X) are related

to m, k and S via the formulæ m(x) = 2
σ2(x)e

B(x), S′(x) = e−B(x), and k(x) =
2c(x)
σ2(x)e

B(x) for all x ∈ R+, where B(x) :=
∫ x 2µ(y)

σ2(y)dy (see [2], pp. 17). The

assumption that the state space is R+ is done for reasons of notational convenience.

In fact, we could assume that the state space is any interval I in R and all our

subsequent analysis would hold true. Furthermore, we denote, respectively, as ψ

and ϕ the increasing and the fundamental solution of the ordinary second-order

linear differential equation Au = ru, where r > 0, defined on the domain of the

characteristic operator of X (for the characterization and fundamental properties of

the minimal r-excessive functions, ψ and ϕ, see [2], pp. 18–20). We assume that the

filtration F is rich enough to carry a Poisson process N = (Nt,Ft) with intensity

λ – we call the process N the signal process, the intensity λ the information rate,

and assume that X and N are independent. Later we will also need the increasing

and decreasing solutions of the differential equation Au = (r + λ)u, these solutions

will be denoted as ψλ and ϕλ.

For r > 0, we denote as Lr
1 the class of real valued measurable functions f on

R+ satisfying the condition

(1.1) Ex

[∫ ζ

0

e−rt |f(Xt)|
]

< ∞,

where ζ denotes the lifetime of the state process X. For a function f ∈ Lr
1, the

resolvent Rrf : R+ → R is defined as

(1.2) (Rrf)(x) = Ex

[∫ ζ

0

e−rsf(Xs)ds

]

for all x ∈ R+. The resolvent Rr and the increasing and decreasing solutions ψ

and ϕ are closely connected in a computationally very useful way. Indeed, we from

the literature that for any f ∈ Lr
1 the resolvent Rrf can be expressed as

(1.3) (Rrf)(x) = B−1ϕ(x)
∫ x

0

ψ(y)f(y)m′(y)dy +B−1ψ(x)
∫ ∞

x

ϕ(y)f(y)m′(y)dy

1
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for all x ∈ R+, where B = ψ′(x)
S′(x)ϕ(x)− ϕ′(x)

S′(x)ψ(x) denotes the constant Wronskian

determinant (see [2], pp. 19).

Having the underlying dynamic structure set up, we will now formulate, following

[7], the optimal stopping problems. In comparison to the ordinary continuous

time case (see, e.g., [1], [5], [8] and [13]), the key difference is that the decision is

not allowed to stop at any time she chooses but rather on the jump times of the

independent signal process N . The process N jumps at times T1 < T2 < · · · <

Tn < . . . , where the intervals {T1, T2 − T1, T3 − T2, . . . } are exponentially IID. We

remark that by convention T0 = 0 and T∞ = ∞.

In the first optimal stopping problem, the decision maker cannot stop at the

initial time t = 0. This means that the time of the first jump T is the first

potentially reasonable moment for her to exercise. In this setting, the class of

admissible stopping times reads as

(1.4) T = {τ : for all ω ∈ Ω, τ(ω) = Tn(ω) for some n ∈ 1, 2, . . . ,∞}.

Let r > 0 be the discount rate and g : R+ → R the exercise payoff function. At

this stage, we assume that g ∈ Lr
1. The first optimal stopping problem is now to

maximize the expected present value of the exercise payoff under {Fτ}τ∈T , i.e. to

determine the optimal value function

(1.5) V (x) = sup
τ∈T

Ex

[
e−rτg(Xτ )

]

and to characterize the optimal stopping time τ∗ constituting this value.

The second optimal stopping problem is otherwise the same as the first but now

the decision maker can stop t = 0. Since it can very well be reasonable for her to

stop immediately, the class of admissible stopping times in this alternate setting

reads as

(1.6) T0 = {τ : for all ω ∈ Ω, τ(ω) = Tn(ω) for some n ∈ 0, 1, 2, . . . ,∞}.

The corresponding optimal stopping problem reads as

(1.7) V0(x) = sup
τ∈T0

Ex

[
e−rτg(Xτ )

]

and the optimal stopping time is denoted as τ∗0 .

These optimal stopping problems were first proposed by Dupuis and Wang in [7].

In this paper they solve the special case where the underlying follows a geometric

Brownian motion and the payoff function is of American call option type x 7→
(x − K)+, with K > 0. In this paper we prove a generalization of their result

formulated in the next theorem, which is, at least to the authors best knowledge,

a new result.

Theorem 1.1. Assume, that there is a unique state x̂ which maximizes the func-

tion x 7→ g(x)
ψ(x) and that the function x 7→ g(x)

ψ(x) is nondecreasing on (0, x̂) and
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nonincreasing on (x̂,∞). Then the threshold x∗ < x̂ characterized uniquely by the

condition

ψ(x∗)
∫ ∞

x∗
ϕλ(y)g(y)m′(y)dy = g(x∗)

∫ ∞

x∗
ϕλ(y)ψ(y)m′(y)dy

constitutes the optimal stopping rule for the optimal stopping problems (1.5) and

(1.7). Moreover, the optimal value functions V and V0 can be written as

(1.8) V (x) =





λ(Rr+λg)(x) + g(x∗)−λ(Rr+λg)(x∗)
ϕλ(x∗) ϕλ(x), x ≥ x∗

g(x∗)
ψ(x∗)ψ(x), x < x∗

and

(1.9) V0(x) =





g(x), x ≥ x∗

g(x∗)
ψ(x∗)ψ(x), x < x∗.

We remark that the assumptions of 1.1 are essentially the same as in [1], where

the problem is studied in the ordinary continuous time setting. In this sense, it is

interesting to note that the restriction of the admissible stopping times from contin-

uum to random times with exponential arrivals does not result into any additional

restrictions on the underlying and the payoff – the ”degree of solvability” remains

the same. We also remark that the class of problems considered in this study

is related to the job search problem, see, e.g., [15], [4] and [9]. In this problem,

the person is facing a sequence of job offers with random arrivals and the goal of

this person is to maximize the expected present value of the return obtained by

accepting the job offer.

The original interpretation of the optimal stopping problems in [7] is that the

underlying is observable at all times but the decision maker can act only at jump

times of the signal process. We remark that this interpretation can be turned the

other way around such that that decision maker can act at all times but the state

of the underlying is observed only at the jump times of N . In this setting, the

observed sample paths are actually pure jump paths with jumps at times Ti and

remaining constant in between – something reminiscent of a semi-Markov process.

Consequently, this alternate interpretation could have some implications to the

optimal stopping of semi-Markov processes, see, e.g., [3], [4] and [16]. But this

something that is left for future research.

2. The proof of the main result

2.1. Some preliminary analysis. The assumptions of Theorem 1.1 restraining

the choice of the payoff function g and the underlying X are relatively weak and

easy to verify, given that we know the increasing fundamental solution ψ. In the

ordinary case of continuous time stopping, we know that the ratio function x 7→ g(x)
ψ(x)

and its monotonicity properties play a key role (see, e.g., [1]). In the current setting,

it not the ratio x 7→ g(x)
ψ(x) but something at least formally quite reminiscent to it
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that characterizes the optimal stopping rules. To make a precise statement, define

the functions I : R+ → R and J : R+ → R as

I(x) =
∫ ∞

x

ϕλ(y)g(y)m′(y)dy,

J(x) =
∫ ∞

x

ϕλ(y)ψ(y)m′(y)dy

(2.1)

for all x ∈ R+. The ratio function x 7→ I(x)
J(x) will play the key role when analyz-

ing the problems (1.5) and (1.7). The next lemma provides us with the required

monotonicity properties of this function.

Lemma 2.1. Let the assumptions of Theorem 1.1 hold. Then there is a unique state

x∗ < x̂ that maximizes the function x 7→ I(x)
J(x) . Moreover, the function x 7→ I(x)

J(x) is

nondecreasing on (0, x∗) and nonincreasing on (0, x∗).

Proof. We will begin the proof by deriving limiting properties for the function

x 7→ I(x)
J(x) . Since limx→∞ I(x) = limx→∞ J(x) = 0, L’Hospitals rule implies that

limx→∞
I(x)
J(x) = limx→∞

g(x)
ψ(x) = 0. On the other hand, since limx→0+ J(x) = ∞,

we prove completely analogously that limx→∞
I(x)
J(x) = 0. Now, straightforward

differentiation yields the condition

d

dx

(
I(x)
J(x)

)
T 0 if and only if ψ(x)I(x) T g(x)J(x).

Assume first that x ≥ x̂. Since the function x 7→ g(x)
ψ(x) is nonincreasing on (x̂,∞),

we find that

ψ(x)I(x)− g(x)J(x) = ψ(x)
∫ ∞

x

ϕλ(y)
g(y)
ψ(y)

ψ(y)m′(y)dy − g(x)J(x)

<

(
ψ(x)

g(x)
ψ(x)

− g(x)
)

J(x) = 0.

We conclude that the function x 7→ I(x)
J(x) is nonincreasing on (x̂,∞). This obser-

vation coupled with the limiting properties of x 7→ I(x)
J(x) imply that the function

x 7→ I(x)
J(x) must have at least one interior maximum x̂. Finally, since g(x∗)

ψ(x∗) = I(x∗)
J(x∗)

and the function x 7→ g(x)
ψ(x) is nondecreasing on (0, x̂), we conclude that the maxi-

mum x∗ must be unique. ¤

In Lemma 2.1 we proved that the function x 7→ I(x)
J(x) has a unique global maxi-

mum x∗. We remark that x∗ is the unique state satisfying the condition

(2.2) ψ(x∗)I(x∗) = g(x∗)J(x∗);

this relation will be important.

We conclude the subsection by making a remark on the verification phase. In-

deed, the continuous time formulations (1.5) and (1.7) are not that handy from

the verification point of view. In order to remedy this, define the filtration G as

Gn := FTn for all n ≥ 0 where Ti is the ith jump time of the signal process N , and,
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the G-adapted process Z as Zn := (Tn, XTn
). Moreover, define the sets N and N0

as

N = {N ≥ 1 : N is a G-stopping time}
N0 = {N ≥ 0 : N is a G-stopping time} .

Then Lemma 1 of [7] implies that the optimal stopping problems (1.5) and (1.7)

can be formulated alternatively as

V (x) = sup
N∈N

E [g̃(ZN )|Z0 = (0, x)]

V0(x) = sup
N∈N0

E [g̃(ZN )|Z0 = (0, x)]
(2.3)

for all x ∈ R where g̃(ZN ) := e−rTng(XTn
). Formulations (2.3) allow a straight-

forward usage of martingale techniques in the verification phase, as we will see

later.

2.2. The free boundary problem. In this subsection we will start the analysis

of the problems (1.5) and (1.7) by first tackling (1.5). This is done by proposing

a suitable free boundary problem and solving it; for a recent exposition of free

boundary methods in optimal stopping, see [11]. Following the lines of [7], we will

proceed heuristically for the time being. The heuristics are the same as in [7], but

for the sake of completeness we will present them here.

Typically in problems of the type (1.5), the optimal stopping rule is a threshold

rule, be it one-sided or many-sided. We make an ansatz that the optimal stopping

rule is a one-sided threshold rule of the form

”Stop at the first jump time Ti when the state variable X exceeds some predeter-

mined threshold y∗”.

Formally speaking, the optimal stopping time is then

τy∗ = inf{Tn, n ≥ 1 : XTn ≥ y∗}.

We will denote as G the value function constituted by the stopping time τy∗ . On the

continuation region (0, y∗) we would expect that G, our candidate for the optimal

value, is r-harmonic. However, on the exercise region (y∗,∞) the decision maker

cannot stop until N jumps. In an infinitesimal time interval dt, the signal process

N has probability λdt of making a jump. This means that in an infinitesimal

time dt, the jump and, consequently, exercise with payoff g(x), has probability λdt.

On the other hand, the absence of jump forces the decsion maker to continue with

probability 1−λdt. Formally, this suggests with a heuristic use of Dynkin’s theorem

(see, e.g., [10]) that

G(x) = g(x)λdt + (1− λdt)Ex[e−rdtG(Xdt)]

= λg(x)dt + (1− λdt)[G(x) + ((A− r)G)(x)dt]

= G(x) + (A− r)G)(x)dt + λ(g(x)−G(x))
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for all x > y∗ under the intuition dt2 = 0. Finally, this yields the condition

(2.4) (AG)(x)− rG(x) + λ(g(x)−G(x)) = 0

for all x > y∗. Moreover, we can expect that g(x) < G(x) on (0, y∗) and due to

the possibility that N doesn’t jump when X ≥ y∗ that G(x) < g(x) on (y∗,∞).

Typically in problems of the form (1.5) the value function is continuously differen-

tiable over the optimal boundary. If we are willing except this, we readily verify

using the r-harmonicity of G on the continuation region and condition (2.4) that

G(y∗) = g(y∗). Using these heuristics, we pose the following free boundary prob-

lem: Find a non-negative continuously differentiable function G and a unique state

y∗ satisfying the conditions

(2.5)





G(0+) ≥ 0,

G(y∗) = g(y∗),

(AG)(x) = rG(x) and G(x) > g(x) x < y∗

(AG)(x) = rG(x) + λ(G(x)− g(x)) and G(x) < g(x), x > y∗.

The free boundary problem (2.5) will now be used as the device to an produce

explicit candidate for the optimal stopping threshold x∗ and the optimal value

function V of the problem (1.5). This is done by deriving necessary conditions for

the existence of a unique solution (G, y∗) of (2.5). Assume now that the unique

solution (G, y∗) exists and that x < y∗. The condition AG = rG implies that

there exists unique constants c1 and c2 such that G(x) = c1ψ(x) + c2ϕ(x) for all

x < y∗. Since we are looking for a bounded solution, c2 must be equal to 0. Hence,

G(x) = c1ψ(x) whenever x < y∗. Now, let x ≥ y∗. The fourth condition in the free

boundary problem (2.5) can be written as

(2.6) (AG)(x)− (r + λ)G(x) = −λg(x).

for all x > y∗. A particular solution to the equation (2.6) is the resolvent λ(Rr+λg)(x)

and, consequently, the general solution can be written as

G(x) = λ(Rr+λg)(x) + d1ψλ(x) + d2ϕλ(x),

where ψλ and ϕλ the increasing and decreasing solutions of the homogenous equa-

tion (AG)(x)−(r+λ)G(x) = 0. Our standing assumption implies that the constant

d1 must be zero. Hence G(x) = λ(Rr+λg)(x) + d2ϕλ(x) for all x > y∗. Since G is

continuous, the equalities g(y∗) = c1ψ(y∗) = λ(Rr+λg)(y∗) + d2ϕλ(y∗) must hold.

This implies that

c1 =
g(y∗)
ψ(y∗)

, d2 =
g(y∗)− λ(Rr+λg)(y∗)

ϕλ(y∗)
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and, consequently, that the value G can be expressed as

G(x) =





λ(Rr+λg)(x) + g(y∗)−λ(Rr+λg)(y∗)
ϕλ(y∗) ϕλ(x), x ≥ y∗

g(y∗)
ψ(y∗)ψ(x), x < y∗

Since the function G is continuously differentiable over the boundary y∗, we observe

that

(2.7) g(y∗)
ψ′(y∗)
ψ(y∗)

− λ(Rr+λg)′(y∗)− g(y∗)− λ(Rr+λg)(y∗)
ϕλ(y∗)

ϕ′λ(y∗) = 0,

which can be rewritten as

g(y∗)
(

ψ′(y∗)
ψ(y∗)

− ϕ′λ(y∗)
ϕλ(y∗)

)
= λ(Rr+λg)′(y∗)− ϕ′λ(y∗)

ϕλ(y∗)
λ(Rr+λg)(y∗).

By invoking the representation (1.3) and straightforward differentiation, we find

that the righthand-side can be expressed as

λ(Rr+λg)′(y∗)− ϕ′λ(y∗)
ϕλ(y∗)

λ(Rr+λg)(y∗) = λ
S′(y∗)
ϕλ(y∗)

∫ ∞

y∗
ϕλ(y)g(y)m′(y)dy,

where S′ is the scale density of the state process X. Consequently, the optimality

condition (2.7) can be expressed as

λψ(y∗)
∫ ∞

y∗
ϕλ(y)g(y)m′(y)dy = g(y∗)

(
ψ′(y∗)
S′(y∗)

ϕλ(y∗)− ϕ′λ(y∗)
S′(y∗)

ψ(y∗)
)

.

Denote as w(x) = ψ′(x)
S′(x)ϕλ(x) − ϕ′λ(x)

S′(x) ψ(x). By applying the differential equations

Aψ = rψ and Aϕλ = (r + λ)ϕλ we find that w′(x) = −λϕλ(x)ψ(x)m′(x). Now,

Fundamental Theorem of Calculus implies that

w(y∗) = λ

∫ ∞

y∗
ϕλ(y)ψ(y)m′(y)dy.

and, consequently, that the optimality condition (2.7) can be expressed as

(2.8) ψ(y∗)
∫ ∞

y∗
ϕλ(y)g(y)m′(y)dy = g(y∗)

∫ ∞

y∗
ϕλ(y)ψ(y)m′(y)dy.

But now, we established in Lemma 2.1 that the state x∗ characterized as the unique

maximum of the function x 7→ I(x)
J(x) is the unique state satisfying the condition (2.8)

(see expression (2.2)). Having observed this, we have proved the following lemma.

Lemma 2.2. Let the assumptions of Theorem 1.1 hold. Then the threshold x∗

characterized uniquely by the condition (2.8), and the function G defined as

(2.9) G(x) =





λ(Rr+λg)(x) + g(x∗)−λ(Rr+λg)(x∗)
ϕλ(x∗) ϕλ(x), x ≥ x∗

g(x∗)
ψ(x∗)ψ(x), x < x∗

form the unique solution for the free boundary problem (2.5).

Lemma 2.2 show that under our standing assumptions, the free boundary prob-

lem (2.5) has a unique solution. Following the heuristics of the beginning of this

section, the threshold x∗ constitutes a stopping rule, which should be optimal (in
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this heuristic sense) among all admissible stopping rules. Now the crucial ques-

tion is that does the function G defined in (2.9) correspond to the exercise rule

”stop at the first jump time Ti when X exceeds x∗” (i.e., to the stopping time τx∗)

and, furthermore, are these characteristics G and τx∗ optimal – i.e., is V ≡ G and

τ∗ = τx∗?

2.3. The verification phase. The previous subsection was concerned with the

optimal stopping problem (1.5). We justified heuristically the free boundary prob-

lem (2.5) which produced our candidates for the optimal stopping rule and the

optimal value function for (1.5) – see Lemma 2.2. Our next task is to apply verifi-

cation procedure to demonstrate that our candidates is not just any candidates but

actually the optimal characteristics. In the process of doing this, we will first turn

our attention to the other optimal stopping problem, namely the problem (1.7).

The distinguishing feature in these problems is the initial information on X. In

problem (1.7) the decision maker has this information and in problem (1.5) has

not. We make an ansatz this added information on the initial state is so little that

it does not change our candidate for the optimal exercise threshold x∗. However,

it naturally does change candidate for the optimal value function, say G0, so that

G0 must coincide with the exercise payoff g in the exercise region. Put formally,

define the function G0 : R+ → R+ as

G0(x) =





g(x), x ≥ x∗

g(x∗)
ψ(x∗)ψ(x), x ≤ x∗,

where x∗ is the threshold uniquely determined by the condition (2.8). Now, G0 is

our candidate for the optimal value V0 and τx∗ is for the optimal exercise time. We

will now proceed by proving this claim and then turn back to the first problem.

The next technical lemma provides us with a useful connection of the functions G

and G0.

Lemma 2.3. Let the assumptions of Theorem 1.1 hold. Then the function G can

be expressed as G(x) = λ(Rr+λG0)(x) for all x ∈ R+.

Proof. The free boundary problem (2.5) implies that the function G satisfies the

differential equation (AG)(x) − (r + λ)G(x) = λG0(x). Therefore we can express

the function G as

(2.10) G(x) = λ(Rr+λG0)(x) + c1ψλ(x) + c2ϕλ(x)

for all x ∈ R+. Assume that x < x∗. Then the expression (2.10) implies that

g(x∗)
ψ(x∗)

ψ(x)− c1ψλ(x)− λ(Rr+λG0)(x) = c2ϕλ(x).

The left hand side of this expression stays bounded as x → 0+. This implies that

c2 = 0. Assume now that x > x∗. Since G is a solution of the free boundary
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problem (2.5), we find that c1ψλ(x) + λ(Rr+λG0)(x) < g(x). Since this expression

holds for all x > x∗, we conclude that c1 = 0. ¤

In Lemma 2.3 we prove that under our standing assumptions the solution of

the free boundary (2.5) is a (r + λ)-potential. Using this lemma, we will turn to

the verification phase for the problem (1.7). The first step is to show that G0

constitutes a supermartingale.

Lemma 2.4. Let the assumptions of Theorem 1.1 hold. Then the process

S := (e−rTnG0(XTn);Gn)n≥0

is a non-negative uniformly integrable supermartingale.

Proof. Lemma 2.3 implies that G0(x) ≥ G(x) = λ(Rr+λG0)(x) = Ex

[
e−rUG0(XU )

]
,

where U is an independent exponential random time with rate λ. Thus the pro-

cess S is a non-negative supermartingale. In order to prove uniform integrabil-

ity, it is sufficient to show that S satisfies the conditions supn Ex[Sn] < ∞ and

supn Ex[Sn1A] → 0 as P(A) → 0 – if these conditions hold, the uniform integrabil-

ity follows form [14], p. 190, Lemma 2.

Assume that x ∈ R+ and n ≥ 0. Since the process L :=
(
e−rTn ψ(XTn )

ψ(x) ;Gn

)
n≥0

is a martingale with E[Ln] = 1 for all n ≥ 0, we define the measure P∗ via the

relation dP∗
dP = Ln. Denote as E∗ the expectation under the measure P∗ and let

A ∈ B. Since x̂ is the global maximum of the function x 7→ g(x)
ψ(x) , we find using the

Radon-Nikodym theorem that

Ex[Sn1A] = ψ(x)Ex

[
V0(XTn)
ψ(XTn)

1ALn

]

= ψ(x)
{
E∗x

[
V0(XTn)
ψ(XTn)

1A1{XTn<x∗}

]
+ E∗x

[
V0(XTn)
ψ(XTn)

1A1{XTn>x∗}

]}

= ψ(x)
{
E∗x

[
g(x∗)
ψ(x∗)

1A1{XTn<x∗}

]
+ E∗x

[
g(XTn)
ψ(XTn)

1A1{XTn>x∗}

]}

<
g(x̂)
ψ(x̂)

ψ(x)P∗(A).

(2.11)

First, let A = R+ in the inequality (2.11). Since Ex[Sn] < g(x̂)
ψ(x̂)ψ(x) for all n ≥ 0,

we find that supn Ex[Sn] ≤ g(x̂)
ψ(x̂)ψ(x) < ∞ for all x ∈ R+. On the other hand,

since P and P∗ are equivalent, we remark that P∗(A) → 0 whenever P(A) → 0.

Thus, we conclude on the basis of (2.11) that Ex[Sn1A] → 0 for all n ≥ 0 and,

consequently, supn Ex[Sn1A] → 0 that as P(A) → 0. ¤

In Lemma 2.4 we show that under our standing assumptions, the process S is

not only a non-negative supermartingale but also uniformly integrable. Uniform

integrability will be needed in the proof of next lemma, where we use optional

stopping with a stopping time which is not almost surely bounded.
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Lemma 2.5. Let the assumptions of Theorem 1.1 hold. Let τ∗0 = TN∗
0

where

N∗
0 = inf{n ≥ 0 : XTn ≥ x∗}. Then

G0(x) = Ex

[
e−rτ∗0 g(Xτ∗0 )

]
= V0(x)

for all x ∈ R+.

Proof. Coupled with Lemma 2.4, optional sampling theorem now implies that

G0(x) ≥ Ex

[
e−rTN G0(TN )

] ≥ Ex

[
e−rTN g(TN )

]
for all G-stopping times N . Hence,

G0(x) ≥ V0(x) for all x ∈ R+. We will proceed by proving that that the function

G0 can actually be attained by the admissible stopping rule ”stop at time τ∗0 ”. To

this end, we will first prove that the stopped process

Q =
(
e
−rTN∗0∧nG0(XTN∗0∧n

);Gn

)
n≥0

is a martingale. The proof of the martingale property is completely analogous to

the corresponding proof in [7] (see pp. 150), but we will review it here for the sake

of complete presentation. For n ≥ 1, we have

E [Qn|Gn−1] = E
[
e−rTnV0(XTn)1{N∗

0≥n}|Gn−1

]
+

n−1∑

i=0

E
[
e−rTiV0(XTi)1{N∗

0 =i}|Gn−1

]

= E
[
e−rTnV0(XTn)1{N∗

0≥n}|Gn−1

]
+

n−1∑

i=0

e−rTiV0(XTi)1{N∗
0 =i}.

(2.12)

Denote as U an independent exponentially distributed random time with rate λ.

Using the strong Markov property and Lemma 2.3, we find that the first term on

the right hand side of (2.12) can be written as

E
[
e−rTnV0(XTn)1{N∗

0≥n}|Gn−1

]
= e−rTn−1EXTn−1

[
e−rUV0(XU )

]
1{N∗

0≥n}

= e−rTn−1V (XTn−1)1{N∗
0≥n}.

(2.13)

Finally, since V0(x) = V (x) when x ≤ x∗, we conclude on the basis of the expres-

sions (2.12) and (2.13) that

E [Qn|Gn−1] = e−rTn−1V0(XTn−1)1{N∗
0≥n} +

n−1∑

i=0

e−rTiV0(XTi)1{N∗
0 =i} = Qn−1.

Finally, since Q is also uniformly integrable, the result follows by optional sampling,

i.e.,

G0(x) = EQN∗
0

= Ex

[
e−rτ∗0 G0(Xτ∗0 )

]
= Ex

[
e−rτ∗0 g(Xτ∗0 )

]
= V0(x)

for all x ∈ R+. ¤

We proved in Lemma 2.5 that our candidates G0 and τx∗ for the optimal char-

acteristics actually are the optimal characteristics of the problem (1.7). We will

now turn back to the first optimal stopping problem and use the Lemmas 2.3-2.5 to

prove that the candidates G and τx∗ are the optimal characteristics of the problem

(1.5).
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Lemma 2.6. Let the assumptions of Theorem 1.1 hold. Let τ∗ = TN∗ where

N∗ = inf{n > 0 : XTn ≥ x∗}. Then

G(x) = Ex

[
e−rτ∗g(Xτ∗)

]
= V (x)

for all x ∈ R+.

Proof. The representation (1.9) and the fact that x∗ constitutes the optimal stop-

ping rule for the optimal stopping rule (1.7) was proved already in Lemma 2.5.

Since the process (e−rTnG0(XTn);Gn)n≥0 is a non-negative supermartingale, we

find that

Ex

[
e−rTng(XTN

)
] ≤ Ex

[
e−rTnV0(XTN

)
] ≤ Ex

[
e−rT1V0(XT1)

]
= λ(Rr+λG0)(x)

= G(x)

for all G-stopping times N ≥ 1 and x ∈ R+. Taking supremum over all such N ,

we obtain the inequality V (x) ≤ G(x) for all x ∈ R+. It remains to show that the

value G is the admissible stopping rule ”stop at time τ∗”. By conditioning on the

first jump time T1 we find by using the strong Markov property and Lemma 2.5

that

Ex

[
e−rτ∗g(Xτ∗)

]
=

∫ ∞

0

Ex

[
e−rτ∗g(Xτ∗)|T1 = t

]
λe−λtdt

= Ex

∫ ∞

0

e−rtEXt

[
e−rτ∗0 g(Xτ∗0 )

]
λe−λtdt

= Ex

∫ ∞

0

e−rtV0(Xt)λe−λtdt

= V (x)

for all x ∈ R+. ¤

Lemma 2.6 ends the sequence of auxiliary results needed to prove the main theo-

rem 1.1. We close the section by studying the asymptotics of the optimal character-

istics x∗ and V as λ → 0 and λ →∞. To this end, denote as x̂ the stopping thresh-

old determined (uniquely) by the smooth-pasting condition g(x̂)ψ′(x̂) = ψ(x̂)g′(x̂)

and as V̂ the value function constituted by this threshold policy – i.e., let

(2.14) V̂ (x) =





g(x), x ≥ x̂,

g(x̂)
ψ(x̂)ψ(x), x ≤ x̂.

Using this notation, we have the following result.

Proposition 2.7. Let x∗, V and V0 be given by Theorem 1.1. Then

(1) x∗ is an increasing function of λ

(2) x∗ → x̂, V (x) → V̂ (x) and V0(x) → V̂ (x) as λ →∞
(3) V (x) = 0 and V0(x) = g(x) when λ = 0,

for all x ∈ R+.
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Proof. We start by noticing that on the limit λ = 0 the signal process jumps only at

T0 = 0 and T∞ = ∞ implying that V (x) = 0 and V0(x) = g(x) for all x ∈ R+. Now,

let x ≥ x̂. Since diffusions are Feller processes, we have that λ(Rr+λg)(x) → g(x)

as λ → ∞; in fact, we have convergence even in sup-norm, see [12]. By coupling

this with the representation

V (x) = λ(Rr+λg)(x) + (g(x∗)− λ(Rr+λg)(x∗))Ex

[
e−(r+λ)τx∗

]

(see (1.8)), we deduce that V (x) → g(x)− as λ → ∞. Monotonicity of this con-

vergence and continuity of V across the boundary x∗ imply that x∗ increases as

λ increases and, consequently, that x∗ → x̂ as λ → ∞. Finally we conclude that

V (x) → V̂ (x) and V0(x) → V̂ (x) for all x ∈ R+ as λ →∞. ¤

3. Illustrations

3.1. Geometric Brownian motion. In this subsection we will analyze the prob-

lem studied in [7], namely the perpetual American put option, where the underlying

dynamics follow a geometric Brownian motion. Let X be the regular linear diffusion

with infinitesimal generator

A =
1
2
σ2x2 d2

dx2
+ µx

d

dx
,

where µ ∈ R and σ > 0. The optimal stopping problem can now be formulated as

(3.1) V (x) = sup
τ

Ex

[
e−rτ (Xτ −K)+

]
,

where r > 0 satisfies the condition µ < r and K is an exogenously given constant.

The scale density S′ reads as S′(x) = x−
2µ

σ2 and the speed density m′ reads as

m′(x) = 2
(σx)2 x

2µ

σ2 . The functions ψ and ϕλ can now be written as ψ(x) = xb

and ϕλ(x) = xa, where b =
(

1
2 − µ

σ2

)
+

√(
1
2 − µ

σ2

)2 + 2r
σ2 > 1 and a =

(
1
2 − µ

σ2

)−√(
1
2 − µ

σ2

)2 + 2(r+λ)
σ2 < 0. A simple computation implies that the Wronskian Bλ =

2
√(

1
2 − µ

σ2

)2 + 2(r+λ)
σ2 and, consequently, that the resolvent λ(Rr+λg) of the payoff

function g : x 7→ (x−K)+ reads as

(3.2) λ(Rr+λg)(x) =
λ

r + λ− µ
x− λ

r + λ
K

for all x ∈ R+.

We will now turn to the determination of the optimal stopping threshold x∗ and

the optimal value function V . First, elementary integration implies that

J(x) =
2

σ2α
x−α,

where α =
√(

1
2 − µ

σ2

)2 + 2(r+λ)
σ2 −

√(
1
2 − µ

σ2

)2 + 2r
σ2 > 0 for all x ∈ R+. Similarly

we find that

I(x) =





2
σ2 x−β

(
x

β−1 − K
β

)
x > K

0 x < K,
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where β =
(

1
2 − µ

σ2

)
+

√(
1
2 − µ

σ2

)2 + 2(r+λ)
σ2 > 1. Let x > K. Then by elementary

computations we find that I(x)
J(x) = αxα−β

(
x

β−1 − K
β

)
and

d

dx

(
I(x)
J(x)

)
T 0, when x S x∗ :=

b(β − 1)
β(b− 1)

K.

We remark that it is a straightforward computation to verify that

b(β − 1)
β(b− 1)

=
b− r

r+λa

b− (r−µ)a−λ
r+λ−µ

;

see [7], p. 147, expression (15). Finally, using the expressions (3.2) and (1.8) we

obtain the representation

V (x) =





λ
r+λ−µx− λ

r+λK +
r−µ

r+λ−µ x∗− r
r+λ K

ϕλ(x∗) ϕλ(x) x > x∗

x∗−K
ψ(x∗) ψ(x) x < x∗

for the optimal value V ; see [7], pp. 146–147, expressions (13), (14) and (16). Thus

we have recovered the results on x∗ and V by Dupuis and Wang from our analysis.

A straightforward differentiation yields

dx∗

dλ
= x̂

1
β2

dβ

dλ
= x̂


β2σ2

√(
1
2
− µ

σ2

)2

+
2(r + λ)

σ2



−1

> 0,

this observation is in line with Part (1) of Proposition 2.7. Moreover, since β →∞
as λ → ∞, we see immediately from the representation of x∗ that x∗ → x̂ := bK

b−1

as λ → ∞. Finally, since ϕλ(x)
ϕλ(x∗) < 1 whenever x > x∗, we find after elementary

manipulations that

λ

r + λ− µ
x− λ

r + λ
K +

r−µ
r+λ−µx∗ − r

r+λK

ϕλ(x∗)
ϕλ(x) → x−K

for all x > x∗ and, consequently, that both V (x) and V0(x) tend to

V̂ (x) =





x−K x > x̂

x̂−K
ψ(x̂) ψ(x) x > x̂

as λ →∞.

To end the subsection, we illustrate graphically in Figure 1 the value functions

V , V0 and V̂ under the parameter configuration µ = 0.01, r = 0.05, σ2 = 0.1,

λ = 0.1 and K = 1.2.

3.2. Logistic diffusion. As a generalization of the geometric Brownian setting,

we consider the case of the optimal stopping problem (3.1) where the state process

X follows a regular linear diffusion with infinitesimal generator

A =
1
2
σ2x2 d2

dx2
+ µx(1− γx)

d

dx
,

where exogenous constants µ, γ, σ ∈ R+. This process is called the logistic diffusion

(or the geometric Ornstein-Uhlenbeck process [8] or the radial Ornstein-Uhlenbeck

process [2]) and was made famous in literature of real options at the latest by [6]. As
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Figure 1. The value functions V̂ under the complete information (upper dashed

curve) and V under the information rate λ = 0.1 (lower dashed curve). The solid

line is the payoff g : x 7→ (x−K)+ and the value function V0 can be recovered

from the figure by first following V and then after the intersection the payoff g.

above, a straightforward computation yields the scale density S′(x) = x−
2µ

σ2 e
2γµ

σ2 x

and, consequently, the speed density m′(x) = 2
(σx)2 x

2µ

σ2 e−
2γµ

σ2 x for all x ∈ R+.

We know from the literature (e.g., see [5], section 6.5) that the increasing solution

ψ and the decreasing solution ϕλ can be expressed as




ψ(x) = xbM(b, 2b + 2µ
σ2 , 2µγ

σ2 x)

ϕλ(x) = xαU(α, 2α + 2µ
σ2 , 2µγ

σ2 x),

where b =
(

1
2 − µ

σ2

)
+

√(
1
2 − µ

σ2

)2 + 2r
σ2 and α =

(
1
2 − µ

σ2

)−
√(

1
2 − µ

σ2

)2 + 2(r+λ)
σ2 .

Due to the difficult nature of the functions ψ and ϕλ, we will now fix a parameter

setting and illustrate the results numerically. In Table 1 we present the optimal

stopping thresholds for different information rates λ under the parameter configu-

ration µ = 0.01, r = 0.05, σ2 = 0.1, γ = 0.5, and K = 1.2.

λ 0.1 0.5 1 5 10 100 ∞
x∗ 1.77784 2.26496 2.47876 2.81011 2.8952 3.04044 3.10943

Table 1. The optimal stopping threshold x∗ for various information rates λ

and smooth pasting boundary x̂ under the parameter configuration µ = 0.01,

r = 0.05, σ2 = 0.1, γ = 0.5, and K = 1.2.

The numerical results reported in Table 1 are in line with our main results.

In particular, these numerics indicate that the optimal stopping threshold x∗ is a

increasing function of the information rate λ and the these thresholds tend to the

smooth-pasting threshold x̂ as λ increases.
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