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I. Introduction 
 

Weather derivatives represent a relatively new form of financial security with payoffs 
contingent on weather indices based on climatic factors. These contracts provide firms with 
the ability to manage unforeseen climatic changes that create risk in terms of the variability 
of earnings and costs. The potential for their use in a wide variety of industries is great as it 
has been estimated that approximately one-seventh of the industrialized economy is weather 
sensitive (Hanley, 1999). A recent survey for example, conducted by the U.S. Department of 
Commerce in 2004 estimates that approximately 30% of the total GDP of the United States is 
exposed to some type and degree of weather risk (Finnegan, 2005). A brief listing of affected 
industries includes not only agriculture and utilities but also the entertainment industry, 
beverage, construction and apparel industries.  

 
Weather derivatives include various instruments such as swaps, options and option 

collars with payoffs dependent upon a wide variety of underlying weather –related variables 
such as average temperature, heating and cooling degree days, maximum or minimum 
temperatures, precipitation, humidity, sunshine and even temperature forecasts. Temperature 
related contracts are however the most prevalent, accounting for 80% of all transactions (Cao 
and Wei, 2004) with standardized contracts trading on the Chicago Mercantile Exchange for 
major U.S. cities. 

 
As a result the interest in and use of weather derivatives is growing at a phenomenal 

rate from an estimated $500 million in notional value in 1998 (Finnegan 2005) to $45.2 
billion in March 2006 based upon a recent survey of the Weather Risk Management 
Association. Much of this growth has occurred in the last few years and recent statistics 
indicate that the notional value of trading in standardized contracts on the Chicago Mercantile 
Exchange rose from 2.2 billion in 2004 to 22 billion in 2005. The recent growth in weather 
derivative arrangements is also being fueled by hedge funds which are beginning to add 
weather contracts in order to further diversify their investments. (Ceniceros, 2006) 
 

Although the use of weather derivatives is potentially widespread it would appear that 
firms in many sectors of the economy have not yet established a hedging policy or even 
ascertained their full exposure to weather risk. Their potential use in the viticulture industry 
for example has seen limited applications, mainly involving the mitigation of risk in retail 
sales, due to climate conditions. The use of these instruments in hedging quality and quantity 
in grape growing has yet to be seen on a widespread basis. Although the lack of liquidity for 
specialized weather derivative contracts appears to be the main reason for their lack of use, 
other issues include uncertainties as to the pricing of these securities. In addition, the 
availability of useful historical weather data and the definition of an appropriate underlying 
variable that is the source of uncertainty, also adds to their complexity. 

 
The Niagara region of Ontario, Canada represents the largest producer of icewine in 

the world with icewine significantly contributing to the revenues of many of the over 85 
wineries in the region. Its production however is quite sensitive to the occurrence of 
relatively low temperatures during the winter months, when the grapes employed for icewine 
are harvested in a frozen state. Cyr and Kusy (2005) explored the potential use of weather 
derivatives for hedging the risks inherent in icewine production in the Niagara region of 
Ontario, Canada due to temperature fluctuations. In particular their study attempted to model 
a temperature variable based on daily observations and subsequent prices of options that 
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could be employed for hedging icewine production. Data limitations and the development of 
an optimal forecasting model however, mitigated these efforts. Their findings are not unlike 
previous studies in the application of weather derivatives where the lack of appropriate 
weather data specific to a region often limits their use. 

 
Cyr and Kusy (2006) later identified a model for estimating optimal icewine hours 

based upon daily observed temperature variables with fairly high explanatory power. The use 
of daily temperature variables that are easily measured and observed by both parties to a 
weather derivatives contract is a critical element to their successful use and aid in the 
contract’s liquidity. Their model was based upon a three year period for which hourly 
temperature data was available at a critical weather station. 
 

In the current study we employ the model identified in Cyr and Kusy (2006) in order 
to estimate optimal icewine production hours for the period of 1966 through 2006. Given the 
time series of estimated icewine hours we then explore its behavior in order to identify a 
stochastic process. Using Monte Carlo simulation we then estimate the price of put options 
based on cumulative optimal icewine hours under varying assumptions with regards to the 
stochastic process. 
 

Section II provides a brief overview of the history and use of weather derivatives and 
their basic structure. Section III describes the process of icewine production in Canada, the 
risks inherent in the endeavor and the potential use of weather derivatives to mitigate those 
risks. In section IV we attempt to define and identify a stochastic process for  estimated 
icewine production hours based upon daily observed temperature variables and in section V 
we estimate put option values based upon varying assumptions for the stochastic process. 
Finally section VI summarizes the paper. 
 
II. History and Complexity in the Use of Weather Derivatives 
 

The history of weather derivatives dates back to 1996 and the deregulation of the 
energy industry in the US with the first weather derivative security issue taking place in 
August 1996 between Enron and Florida Power and Light for a value of 40 billion US dollars 
(Geman and Leonardi, 2005). The impetus for growth in these contracts was largely the 
phenomenon of the El Niño winter of 1997-98.  The warm weather conditions during the 
winter season resulted in significant earnings decline and many energy companies then 
decided to attempt to hedge their seasonal weather risk. The over-the-counter (OTC) market 
expanded rapidly driven largely by the energy sector and in September 1999 the Chicago 
Mercantile Exchange started an electronic market on which standardized weather derivatives 
could be traded (Alaton et al, 2002). 

 
There are five essential elements to every weather derivative contract, a) the 

underlying weather index or variable, b) the period over which the index accumulates, 
typically a season or month, c) the weather station reporting the daily temperatures, d) the 
dollar value attached to each move of the index value and e) the reference or strike price of 
the underlying index (Cao and Wei, 2004). In the case of the energy sector these standardized 
contracts are written on the accumulation of heating degree days (HDD) or cooling degree 
days (CDD) over a calendar month or season where daily HDD and CDD is calculated as 
max [18°C – Ti, 0] and max [Ti – 18°C, 0] respectively and where Ti is the daily average 
temperature defined as the arithmetic average of the daily maximum and minimum 
temperatures. In Canada and the northern and Midwest city in the United States, an HDD 
season is typically defined as the winter months from November to March. The basic 
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elements of the contract are the underlying variable HDD, the accumulation period, a specific 
weather station reporting daily temperatures and the tick size; the dollar amount attached to 
each HDD. In some cases these contracts specify a cap or maximum payoff. In terms of 
CDDs the contracts are analogous however the CDD season is defined as the summer months 
from May through September when temperatures typically rise above 18°C. 

 
It is important at this point to recognize that weather derivatives differ substantially 

from insurance in that insurance contracts require the filing of a claim and the proof of 
damages with moral hazard playing a significant role. Insurance is also generally intended to 
cover damages dues to infrequent high-loss events rather than limited loss, high probability 
events such as adverse weather conditions. Weather derivatives are simply designed as a 
“bet” on weather conditions with the only requirement being an observable objective variable 
agreed upon by both parties. (Richards, Manfredo and Sanders, 2004). 

 
Although the use of weather derivatives has seen much success in applications to the 

power and energy sectors, their use in other industries where weather is a significant risk 
factor has not been widespread. In particular exposure in the power and energy markets are 
almost linear with temperature; power demand increases steadily with both high and low 
temperatures. Few exposures in other sectors of the economy experience such simple 
measurement. In addition, alternative uses may involve challenges in terms of non-
standardized situations and risks, contingent on illiquid, non-financial assets. This illiquidity 
issue is unlikely to change, as weather is by its nature a location-specific, non-standardized 
commodity. As a result the exchange traded instruments such as the degree-day futures and 
options trading on the CME for major US cities are of little use for many other sectors. The 
fact that weather is a local phenomenon and can differ dramatically within a small geographic 
area results in significant “basis” risk for those agricultural producers wishing to use them to 
hedge as the weather variable defined for a particular large city may differ significant from 
even a nearby rural area.  

 
A number of applications have however been developed in businesses such as the 

retail and tourist industries. In a now relatively famous application weather derivatives were 
used to hedge against low wine consumption in England. In May 2000, Corney & Barrow, a 
wine bar chain in London England entered into a temperature contract to hedge against low 
sales on cool summer days. The chain found that wine consumption in their wine bars 
declines when the temperature fell below 24°C. They purchased a derivative contract for the 
June-September season which entailed a payoff of 1000 pounds x (24°C – Ti) per day for the 
days when the average daily temperature was below 24°C (Wei, 2002). 

 
The viticulture industry in general is extremely sensitive to weather.  Lack of sunshine 

exposure and cool temperatures during the stages between pre-bloom and maturation can 
significantly affect the quality of grapes, and consequently the vintage of the resulting wine.  
In 1998 for example California’s production of wine grapes fell by almost 30% due to a cool 
and rainy spring, followed by a very hot July and August. Higher than average rainfall during 
the summer months can also be very expensive for winemakers as this leads to the grapes 
rotting on the vines and delays the harvest.  

 
In this paper we explore the determination of daily temperature variables that can be 

employed for the design of weather derivatives for a very specific sector of the viticulture 
industry - that of icewine production. The production of icewine presents a case in which the 
benefits from the use of weather derivatives are potentially significant however to date, their 
consideration has been limited, if at all.  This most certainly stems again from the specific 
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nature of production and the lack of non-standardized contracts. In the following section we 
detail the process of icewine production in the Niagara region of the Province of Ontario, 
Canada – the largest producing region of icewine in the world. 
 
III. Elements of Icewine Production 
 

Icewine is only produced in a few specific regions in the world where temperature and 
climate conditions are appropriate. Although Canada remains a relatively small producer of 
wine world-wide in terms of production and retail value, it is the largest producer of icewine, 
with the majority of production originating from the Niagara Peninsula region in southern 
portion of the province of Ontario. The growth of the icewine industry within the Niagara 
region has been a phenomenal one given that many wine makers in the area did not produce 
any substantive volume until 1990 (Schreiner, 2001). Although the total volume of icewine 
produced in the region is relatively small due to its nature, production value is increasing 
substantially as the market for icewine becomes a global phenomenon. Recently for example, 
a Saudi Arabian businessman paid $30,000 for a 750 ml bottle of award winning Niagara 
region icewine (Beech, 2007). As a result, adverse weather conditions can result in 
substantial production and more importantly value loss to a producer. Although government 
crop insurance is available to agricultural producers to cover destruction due to severe 
weather conditions such as hail, it does not offer protection against loss from temperature 
conditions not optimal for icewine production. Consequently there exists a potential benefit 
in the use of weather derivatives.  
 

The province of Ontario, through the Vitners Quality Alliance (VQA), regulates the 
nature of icewine production. The VQA is similar to other regulatory systems in countries 
such as France (AOC), Italy (DOC), and Germany (QmP), and ensures the consumer of high 
quality standards. The Alliance specifies several conditions for the production of icewine 
including that grapes must be harvested no earlier than November of each year, must be 
naturally frozen on the vine, picked while the air temperature is - 8°C or lower for an 
extended period of time (usually a few hours) and immediately pressed after picking in a 
continuous process. The finished wine shall be produced from a juice that achieves a 
computed average of not less than 35° brix – brix being a measure of sugar content. 
Production is monitored and the producer must report on production quantity and quality as 
required by regulation. 

 
Although harvesting and production details can differ substantially between wineries 

depending up the equipment available and quality of product sought, it is generally 
recognized in the industry that the optimal temperature for harvesting grapes destined for 
icewine is between -8 and -12°C. In general the juice yield from icewine grape pressing is 
only 15 to 20% by volume of what the same grapes would have produced if harvested under 
conditions for the production of table wine. At temperatures below -12°C, although resulting 
in a product of higher brix level and ultimately sweeter icewine, a greatly reduced quantity of 
juice derived during the pressing process occurs in most cases. The higher brix level is also 
not conducive to later fermentation (Schreiner, 2001). Consequently producers would suggest 
that the optimal weather conditions during the harvest season would result in a significant 
number of hours when the temperature is between -8 and -12°C occurring sometime during 
the months of November through January. Generally these conditions occur at night with the 
grapes usually picked in the early hours of the morning. 

 
The major risk to producers however is that a mild winter with relatively high 

temperatures could result in the grapes not being harvested at all or more likely, later in the 

 - 5 - 



winter months. Harvesting later in the season is usually associated with significant crop loss 
due to deterioration from wind, rot and other factors, and possibly lower brix levels in terms 
of the final product. In 1997-98 for example the impact of El Niño produced one of the 
warmest winters in southern Ontario in 66 years, with temperatures 6°C above normal. 
Balmy temperatures from December 1997 through February 1998 surpassed those reached 
during the last strong El Niño winter of 1982-83. Due to this mild weather, losses in the 
icewine industry were estimated to be in the $10 - $15 million range. Not only was the 
critical harvesting temperature of -8°C not reached for several consecutive days but in 
addition a significant proportion of the crop was consumed by starlings who, due to the warm 
weather, did not migrate south as they usually do.  
 

As noted above, the risks faced by icewine producers are somewhat analogous to 
those faced by the energy industry during the winter months. For example firms in the energy 
industry may employ options on cumulative heating degree days over the season to hedge 
against the possibility of mild winters resulting in reduced energy consumption. The payoff 
provided by a put option contract for example is then contingent on a specified number of 
cumulative HDD’s over the season. Similarly icewine producers face the risk that the 
cumulative number of hours when temperatures are between -8°C and –12°C, may not reach 
a critical level over the months of November through January. Consequently we will consider 
the modeling and valuation of a put option contingent on a temperature variable reflecting 
this risk. In this case the payoff of the put option would be contingent on a cumulative 
number of hours of optimal icewine production hours. 
 
IV. Choice and Estimation of a Temperature Variable for Icewine Production Hedging 

Optimally, option contracts designed to mitigate the risk of icewine production would 
involve an underlying variable, or its transformation, that would closely reflect the 
cumulative number of hours during the November through January season for which 
temperatures between -8 and -12 °C were prevalent. Identifying a daily temperature variable 
or combination of variables that can be measured with reasonable certainty by both parties to 
the contract is a critical element of a successful weather derivative contract. 

 
As in Cyr and Kusy (2005) we employed temperature data obtained from 

Environment Canada – a federal government agency which operates a multitude of weather 
stations nationally and is the primary supplier of weather and temperature data in Canada. 
Unfortunately analyzing temperature records involves several issues for weather derivative 
analysts including the movement of measurement sites and misleading trends (Dischel 2001). 
These issues were also present in terms of acquiring appropriate temperature data for the 
Niagara region. 

 
Although there are 130 weather stations in the Niagara and neighboring regions for 

which Environment Canada has recorded weather data, a surprisingly limited number are of 
value for the proposed application. Firstly the topography of the Niagara region exhibits a 
significant shift in elevation due to the presence of the Niagara escarpment – an ancient 
oceanic shoreline above which the elevation increases significantly. The majority of wineries 
in the Niagara region are located on a relatively narrow strip of land below this escarpment. 
This area is of relatively lower elevation, close to the Great Lake of Ontario and provides for 
more temperate conditions conducive to viticulture. As a result only three weather stations 
within close proximity to each other were appropriate for the study providing daily 
temperature observations dating back to 1965. Only one (the Vineland Weather station) 
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recorded temperature data on an hourly basis however this dated back only to the year of 
2002. 
 
Previous variables defined by Cyr and Kusy 
 
The existence of hourly temperature data dating back only to 2002 provides too short a time 
period to establish a reasonable stochastic process for the optimal icewine conditions based 
on actual observed hourly data. Therefore it is it is reasonable to assume that greater liquidity 
in the over-the-counter market for option contracts would be achieved if the underlying 
option variable was based upon daily observed data.  The length of daily temperature data 
available would provide for greater certainty for both producers and contract suppliers in 
determining a reasonable estimate of the stochastic process and ultimately the volatility.  
Presumably this would increase the probability that the bid and ask differential for such 
contracts would be minimized. 

 
 Cyr and Kusy (2005) focused on two variables based on daily observations of 
minimum temperature data, somewhat analogous to that of the CDD and HDD measures 
employed in existing CME traded contracts. The first variable was defined as the number of 
degrees for which the observed minimum daily temperature is below -8°C. Specifically they 
defined the number of minimum degree days (MDDij) as: 
 

MDDij = max(0, -8°C -Tmin) for each day i, where Tmin is the observed minimum daily 
temperature for day i in year j. 

 
They also considered the variable IWDDij defined as the number of degrees for which 

the observed minimum daily temperature is equal to or less than -8°C but greater than or 
equal to -12°C where 
 

⎩
⎨
⎧ ≤≤

=
   otherwise  if     0

4MDD0ifMDD
IWDD ij

ji  

 
In 2005 and in a subsequent study (Cyr and Kusy, 2006) they regressed the observed daily 
number of icewine production hours against both variables for the November through March 
seasons, for the periods of 2002-03 through 2004-05 and later 2002-03 through 2005-06. 
Again it is only over these periods that actual hourly data is available and they found similar 
although mixed results in terms of which daily observed variable provided the greater 
explanatory power with respect to actual icewine production hours  
 
Cyr and Kusy (2006) however employed regression analysis to identify a multiple regression 
model of daily observable temperature variables that would provide for the greatest 
explanatory power in terms of daily icewine production hours (IWH). Although they tested a 
multitude of daily observed temperature variables and their transformations, their results 
indicated that ultimately a multiple regression model employing IWDD and MDD along with 
the maximum daily observed temperature (maxT) had the greatest explanatory power over 
the four year period of study. In particular Table 1 provides the summary regression results 
for their model identified as:  
 

IWHi  =  a0 + a1 maxTi + a2MDDi + a3IWDDi 
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Table 1: Summary of Regression Results of Optimal Icewine Hours on Maximum 
Temperature (maxT), Minimum Degree Days (MDD) and Icewine Degree Days (IWDD) 
 

Regression Statistics 
Multiple R 0.755145 
R Square 0.570244 
Adjusted R Square 0.568036 
Standard Error 2.797273 
Observations 588 
  
ANOVA  

  df SS MS F Significance F 
Regression 3 6063.47 2021.157 258.3035 1.162E-106 
Residual 584 4569.646 7.824736   
Total 587 10633.12       
      

  Coefficients Standard Error t Stat P-value   
Intercept 0.753218 0.17374 4.335328 1.71E-05  
maxT -0.09895 0.022494 -4.39888 1.29E-05  
MDD 0.712034 0.059287 12.00987 7.52E-30  
IWDD 2.615868 0.164223 15.92875 1.05E-47   
 

Most other variables considered by Cyr and Kusy (2005) did not exhibit significant 
explanatory power. Although the daily temperature range was a significant variable in several 
models tested, the maximum temperature in conjunction with MDD and IWDD provided the 
greatest adjusted R-squared value of 56.8% representing a significant increase in explanatory 
value versus MDD and IWDD alone. These results were confirmed using TOBIT analysis 
given that the independent variable of icewine production hours observed in a day does not 
represent a continuous variable satisfying the characteristics of a normal distribution. In 
particular the dependent variable is truncated or censored in both the left and right tail. In the 
left tail the optimal number of icewine hours observed cannot take a value less than zero and 
in the right tail, the observed value cannot be greater than 24 hours. 

 
Estimation of Optimal Icewine Hours 
 

In the current study, we employ the regression model identified above to create a time 
series of estimated optimal icewine production hours, based on the daily observed 
temperature variables for each day of the winter months of November through March for the 
41 seasons of 1965-66 through 2005-2006. Figure 1 below shows the average of the number 
of estimated  icewine hours for each of the 151 days in the 41 seasons observed, with day 1 
assigned to the date of November 1st. 
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Figure 1: Average Number of Estimated Icewine Production Hours from November 
through March for the Years 1965-66 through 2005-06 
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Figure 2 shows the cumulative average estimated icewine hours over the winter season for 
the 41 year period. As indicated, on average, it is not until January 11th (72nd day of the 
season) when the cumulative number of estimated icewine hours exceeds 100. 
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Figure 2: Cumulative Average Estimated Icewine Production Hours for the 151 Days of 
November through March for the Winter Seasons of 1965-66 through 2005-06. 
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Given the discussion provided in Section III regarding the risks associated with 

icewine production we assume producers would be interested in derivative contracts that 
would allow them to hedge against the possibility of  a cumulative number of optimal 
icewine production hours not occurring during the November through January months of the 
winter season. This use is somewhat analogous to the uses of  HDD and CDD contracts in the 
energy industry, which trade on the CME. 
 
Identification of  a Stochastic Process for Cumulative Estimated Icewine Production 
Hours 
 

One of the issues in identifying a stochastic process for a weather variable that is the 
result of the accumulation of a daily observed variable is whether one should attempt to 
model the daily estimated variable itself. This issue was recently explored by Geman and 
Leonardi (2005) who explicitly examined alternative approaches to the specification of an 
underlying variable for weather derivatives. They noted for example that in the case of 
options written on cumulative degree days, the underlying variable can be specified as either 
the daily average temperature, the degree days, or thirdly the cumulative degree days 
themselves. These three approaches require different statistical estimation procedures and 
ultimately different approaches to option valuation.  
 

In an examination of options written on cumulative degree days for Paris-Le-Bourget 
they recognized a number of advantages in attempting to model the daily average temperature 
itself including the capturing of autocorrelation between consecutive day temperatures. 
However their results show, that of the three possible variables, cumulative degree days 
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exhibit behavior closest to normality. They conclude that if the ultimate goal is to explore the 
valuation of option contracts written on cumulative degree days, then the optimal underlying 
variable to model is the cumulative degree days attached to the period for which the weather 
contract is providing a hedge.  
 

Their results are consistent with those of Campbell and Dieboldt (2005) who found 
that the effects of small specification errors in modeling daily average temperature cumulate 
as the forecast horizon lengthens, and has a significant impact on the forecasting of 
transformed variables such as cumulative HDD. They also suggest that modeling these 
transformed variables directly may produce more satisfying results.  
 
 

As a result we examine the behavior of the time series of 41 observations of the 
November through January, 92 day cumulative estimated icewine production hours defined 
as CIWHj where  

  IWHCIWH
92

∑=
i

ij for j = 1 to 41 seasons 

Table 2 shows the basic summary statistics for the 41 observations of CIWHj and Figure 3 
shows a plot of the histogram of the data. 
 
Table 2: Summary Statistics of the 41 observations of Cumulative Estimated Icewine 
Production Hours (CIWHj) over the November through January months. 
 

Summary Statistics 
Mean 176.02 
Standard Error 10.47 
Median 181.57 
Standard Deviation 67.04 
Sample Variance 4493.85 
Kurtosis 0.23 
Skewness 0.35 
Range 308.01 
Minimum 38.75 
Maximum 346.76 
Count 41 

 
Figure 3: Histogram of 41 Observations of Cumulative Estimated Icewine Hours Over the 
November through January Months. 
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Our goal however is to identify a reasonable stochastic process for the time series of 
cumulative icewine hours. In order to do so we used standard time series analysis techniques 
to identify a model that might be applicable to the data. As well, given the possibility of 
heteroskedasticity in the data caused by the presence of extreme weather seasons such as 
those resulting from El Niño climate effects, we used intervention analysis to identify 
potential outliers that may be present given an identified time series model. To carry out the 
analysis we employed the statistical software Freefore by Automated Forecasting Systems. 
This software employs standard time series techniques to automatically identify and estimate 
a time series model for the data in question while simultaneously identifying any possible 
outliers  characterized as  either a pulse intervention (one observation) or level (mean) shift 
intervention. Any remaining serial correlation is recognized in terms of ARIMA modeling. 
The results of the final model estimated for the data is provided in Table 3 below along with  
summary statistics of the analysis. 
 
Table 3: Summary Statistics from Automated Time Series Identification and Estimation 
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The model identified above after correcting for presence of identified outliers is given 
by: 
 

CIWHj = μ + ej
 
where  μ= 168 hours and ej ~ N(0, 57.64 hours) 

 
The results of the analysis indicates that CIWH follows a gaussian process where each 
seasonal observation is independent of the previous one,  normally distributed with a mean 
value of 168  hours and a standard deviation of 57.64 hours. In particular there was no 
identifiable stochastic trend and the results are somewhat consistent with those of Geman and 
Leonardi (2005) who found that cumulative CDD and HDD measures were similarly derived 
from a normal distribution.   
 

There were however significant outliers in the form of pulse interventions that were 
identified in the analysis. In particular Figure 4 shows the graph of  CIWH  for the 41 seasons 
of 1965-66 through 2005-06 as well as the statistically significant outliers. Contrary to 
general beliefs the outliers identified are not periods of mild winters, but rather those of 
extreme cold winters. In particular the winters of 1976-77 and 1980-81 have estimated 
optimal icewine production hours of 323 and 346 respectively compared to an average of 176 
hours for the 41 seasons. 
 
 
Figure 4: Graph of Cumulative Icewine Hours (November through January) for the 
1965-66 through 2005-06 Period.  
 
 

 
Note: “P” indicates a statistically significant pulse intervention or outlier observation. 
 
  It is interesting to consider the historical weather conditions leading to these two 
winter seasons being statistically identified as outliers in the intervention analysis. An 
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exceptionally cold December of 1976 for example, resulted in neighboring Great Lake Erie 
achieving an early freezing record of December 14th. On January 28th 1977 what has been 
described as a winter hurricane (Rossi, 1978) occurred with winds reaching speeds of 60 to 
70 miles per hour and wind chill temperatures dropping to as low as –60°C. Indeed this 
record breaking storm which affected southern portions of the province of Ontario and parts 
of western and northern New York State, resulted in the declaration of a “state of emergency” 
by the then US president Jimmy Carter for several New York state counties. The first and 
only declaration made in the US for a snow emergency. In Ontario, the whole of the Regional 
Municipality of Niagara was also placed in a state of emergency on January 29th which 
remained in effect until February 2, 1977. It has been estimated that the blizzard of ’77 
resulted in a cost of 300 million dollars (Rossi, 1978).  Indeed the average daily minimum 
temperature throughout the months of December 1976 and January 1977 was –10.6°C; the 
lowest over the 41 year study period, in comparison to average daily minimum temperatures 
of –6.8°C for the December and January months.  
 

The winter of 1980-81 was not associated with a natural disaster such as the blizzard 
of 1977, however with a value of –9.8°C it exhibited the second lowest average daily 
minimum temperature for the months of December and January over the 41 year period. 
 

Figure 4 indicates that aside from the exceptionally cold winters  that there have been 
fairly warm winter seasons in terms of icewine production hours. In  particular the winters of 
1974-75, 1997-98 and 2001-02 were associated with fairly low CIWH values which in some 
cases (1997-98) are believed to be caused by the El Niño effect. The warmest season in terms 
of icewine hours over the 41 year period was that of 2001-02. During that winter season the 
mild temperatures resulted in the lack of an ice bridge in the neighboring Niagara river, 
which typically forms each year. None of these periods however were identified as 
statistically significant outliers. They fell within reasonable confidence intervals for the 
identified model.  
 
V. Valuation of a Put Option on Cumulative Estimated Icewine Production Hours 
 

Unfortunately the pricing of weather derivatives involves significant debate in the 
existing literature over and above the identification of a stochastic process for a fundamental 
underlying variable. The lack of an agreed approach to pricing is in fact believed to be one of 
the causes of the lack of liquidity in the weather derivatives market (Richards et al, (2004) 
and Cao and Wei (2004)). 
 

The major factor giving rise to the debate is that weather derivatives represent a 
classical case of incomplete markets as the underlying weather variables are not traded. In 
such cases prices for derivatives cannot be derived from the no-arbitrage condition commonly 
employed in option pricing, since it is not possible to replicate the payoff of a given 
contingent claim with a portfolio of the basic securities. Consequently the classic Black-
Scholes-Merton methodology cannot theoretically be directly applied.  
 

The literature has seen several approaches to dealing with incomplete markets with 
one of these being to introduce the “market price of risk” for the particular underlying 
weather variable The issue then becomes focused on the correlation between temperature for 
example, and the market index. If the correlation between temperature and the market 
portfolio is zero then it is theoretically justifiable to value option contracts using risk-neutral 
valuation approaches. Recent research (Cao and Wei (2004)) indicates however that there is 
significant correlation between temperature variables and overall consumption, creating 
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market risk. In addition, they indicate that the market price of risk can be a significant factor 
in the valuation of weather options, particularly when there is correlation between the 
underlying weather variable and aggregate output processes, coupled with a higher level of 
risk aversion. 
 

The difficulty exists however in determining this market price of risk, with authors 
taking various approaches. These have ranged from the search for a traded asset with a high 
correlation to the underlying weather variable (see Geman and Leonardi (2005) and Jewson 
and Brix (2005) for a succinct discussion), from which an estimate of market risk can be 
derived, to models (Davis (2001)) that employ expected utility and marginal values. Other 
approaches include equilibrium models incorporating weather as an additional fundamental 
source of uncertainty in the economy (Cao and Wei (2004) and  Richards et al (2004)). 
 

In this paper we will forgo the unresolved issue of market price of risk or the level of 
risk aversion of the producer and will instead simply calculate benchmark prices based upon 
two approaches. The first approach termed “burn rate” analysis is employed in the industry to 
provide a calculation of approximate option value. The second approach is to employ Monte 
Carlo simulation under the assumption of risk neutrality to derive an option price. We will 
however carry out the simulation approach under different assumptions regarding the 
stochastic process for the underlying variable given our results above. 
 

Given the discussion outlined above in sections III and IV above we consider the 
valuation of a put option contract based upon the cumulative estimated icewine production 
hours for the winter months of November through January. If the actual number of 
cumulative icewine hours is below a set value K (the strike level) at maturity, the option will 
pay out a specified value α (the tick size) per hour below the specified strike. Given that this 
is a put option the maximum payout is achieved if there are zero cumulative icewine hours 
over the three month winter season. The payout X of the put option at maturity is therefore 
given as: 
 

X = α max [0, K – CIWHj] 
 

In the OTC market for weather options, the choice of strike level and tick size would 
be determined by the icewine producer after consideration of their specific operations and 
needs. In order to simulate results we will base our assumptions upon estimates derived from 
the 1997-98 season when the El Niño effect is believed to have resulted in a lost of up to $15 
million dollars to the icewine industry. The estimated icewine hours for the 1997-98 period 
was only 72.87 hours. Given the expected value of 168 hours identified in the model, we will 
assume a linear relationship between the overall industry loss of $15 million and the 
difference of approximately 95 hours. This results in an assumed overall industry tick size of 
$157,895 per icewine production hour. Assuming 85 wineries in the region producing 
icewine, this results in the average producer tick size of almost $2000 per icewine production 
hour.  
 

Given that a producer may not always wish to hedge completely against the 
possibility of the icewine hours falling below the mean of 168 hours, we will assume varying 
strike level values of 170, 150`130, 110, 90 and 70 icewine hours. In actual application the 
strike and tick size would have to be arrived at by the producer through an analysis of his or 
her operations and the association between optimal icewine harvesting hours required in a 
season for their particular vineyard, and that of the weather station employed for the option 
contract. 

 - 15 - 



 
In addition we will further assume that the contract is a European option entered into 6 
months prior to maturity (the end of January) and that the continuously compounded constant 
risk free rate over the period is 4% per annum. A summary of the basic assumptions is 
provided in Table 4 below. 
 

Table 4: Summary of Option Parameters Employed in Analysis 
 

Underlying Variable: CIWH for Nov. through Jan. 
Maturity Date January 31st

Strike (K)Values : 170, 150, 130. 110, 90 hours 
Maturity (months): 6 
Riskless rate (r): 4% 
Tick Size (α): $2,000 

 
Burn Rate Analysis 
  

Burn rate analysis refers to a simplified approach to valuing contingent claims often 
employed in the insurance industry (Geman and Leondardi (2005) and Jewson and Brix 
(2005)). The method basically consists of pricing the option as the discounted average of the 
payoffs that would have been observed in past years, based on the historical values of the 
underlying variable. 
 

It is widely recognized that the burn rate approach is completed disconnected from 
traditional option pricing and will in general tend to undervalue options due to the fact that it 
will assign a value of zero for options that are out-of-the-money and more importantly will 
not necessarily incorporate the true volatility of the underlying asset in the pricing. 
Nonetheless it represents a simple calculation that if nothing else provides some sense of the 
order of magnitude of the option value in question. We consider this average value under risk 
neutrality and discount by the risk free rate for the six-month period to maturity. Table 5 
below provides the terminal value (payoff) of the put option for each of the 41 seasons of 
1965-66 through 2005-06 given the different strike values. In addition the value of the put 
option with six months to maturity based upon the burn rate analysis is shown. 
 
Table 5 is interesting from a producer’s perspective as it indicates the years in which the 
theoretical put options would have matured in-the-money, given varying strike values, and 
consequently the extent of coverage provided by such contracts. By purchasing a put option 
each year with a strike price of 70 hours, at the theoretical price of $1,570 per year, the 
producer would have been hedged against the 2001-02 mild season with a payout of $62,496. 
The number of years for which the option contract would mature in the money, increases as 
the strike value increases. At a strike value of 170 hours, the option contracts would have 
matured in-the-money 19 seasons out of the total of 41 with payouts varying from $1,495 to 
$262,496. Again these values are based upon a contract tick size of $2000 per icewine 
production hour. 
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Table 5: Burn Rate Analysis – Historical Terminal Value of Put Options Given Varying 
Strike Values Over the 1965-66 through 2005-06 seasons 
 

170 150 130 110 90 70
1965-66 182.1 $0 $0 $0 $0 $0 $0
1966-67 98.9 $142,167 $102,167 $62,167 $22,167 $0 $0
1967-68 181.6 $0 $0 $0 $0 $0 $0
1968-69 184.7 $0 $0 $0 $0 $0 $0
1969-70 256.0 $0 $0 $0 $0 $0 $0
1970-71 201.1 $0 $0 $0 $0 $0 $0
1971-72 143.2 $53,599 $13,599 $0 $0 $0 $0
1972-73 115.1 $109,827 $69,827 $29,827 $0 $0 $0
1973-74 166.1 $7,780 $0 $0 $0 $0 $0
1974-75 68.4 $203,190 $163,190 $123,190 $83,190 $43,190 $3,190
1975-76 204.8 $0 $0 $0 $0 $0 $0
1976-77 323.5 $0 $0 $0 $0 $0 $0
1977-78 275.9 $0 $0 $0 $0 $0 $0
1978-79 196.2 $0 $0 $0 $0 $0 $0
1979-80 153.1 $33,761 $0 $0 $0 $0 $0
1980-81 346.8 $0 $0 $0 $0 $0 $0
1981-82 192.0 $0 $0 $0 $0 $0 $0
1982-83 111.0 $117,925 $77,925 $37,925 $0 $0 $0
1983-84 241.0 $0 $0 $0 $0 $0 $0
1984-85 187.8 $0 $0 $0 $0 $0 $0
1985-86 223.9 $0 $0 $0 $0 $0 $0
1986-87 111.3 $117,411 $77,411 $37,411 $0 $0 $0
1987-88 147.0 $46,084 $6,084 $0 $0 $0 $0
1988-89 111.6 $116,892 $76,892 $36,892 $0 $0 $0
1989-90 211.9 $0 $0 $0 $0 $0 $0
1990-91 133.6 $72,828 $32,828 $0 $0 $0 $0
1991-92 145.9 $48,154 $8,154 $0 $0 $0 $0
1992-93 88.7 $162,598 $122,598 $82,598 $42,598 $2,598 $0
1993-94 278.8 $0 $0 $0 $0 $0 $0
1994-95 119.1 $101,762 $61,762 $21,762 $0 $0 $0
1995-96 228.6 $0 $0 $0 $0 $0 $0
1996-97 169.3 $1,495 $0 $0 $0 $0 $0
1997-98 72.9 $194,260 $154,260 $114,260 $74,260 $34,260 $0
1998-99 162.3 $15,393 $0 $0 $0 $0 $0
1999-00 172.5 $0 $0 $0 $0 $0 $0
2000-01 210.3 $0 $0 $0 $0 $0 $0
2001-02 38.8 $262,496 $222,496 $182,496 $142,496 $102,496 $62,496
2002-03 208.4 $0 $0 $0 $0 $0 $0
2003-04 215.0 $0 $0 $0 $0 $0 $0
2004-05 221.0 $0 $0 $0 $0 $0 $0
2005-06 116.7 $106,584 $66,584 $26,584 $0 $0 $0

$46,687.94 $30,628.72 $18,417.35 $8,895.40 $4,452.29 $1,602.10
$45,763.46 $30,022.23 $18,052.66 $8,719.26 $4,364.13 $1,570.37

Strike Value (CIWH)
Terminal Value (Payoff) of Put Option

Average Payout
Put Option Value

Season

Estimated 
CIWH   (Nov-

Jan)

 
 
 
Monte Carlo Simulation 
 

Generally the Monte Carlo simulation approach provides for an accurate 
approximation with a relatively low number of runs (in the order of 10,000, Yoo (2003)). The 
potential payoffs are simulated given the stochastic process assumed for the underlying 
variable. Given the analysis in section IV we provide the results of Monte Carlo simulation 
based upon three different assumptions or cases for the stochastic process of the underlying 
CIWH variable. In the first case we  assume that the CIWH variable is represented by the 
series adjusted for outliers as identified in  section IV, and therefore follows a basic Gaussian 
process whereby the seasonal observations are independent and normally distributed with a 
mean of 168 hours and a standard deviation of 58 hours. 
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However it can be argued that by adjusting the series for outliers we are ignoring 
some of the sources of risk as the outliers add to the volatility of CIWH, important to option 
values. We therefore carry out Monte Carlo simulation under a second and third set of 
assumptions. In the second case we simply assume that the CIWH values can be modeled as 
independent and normally distributed with the unadjusted mean of 176.02 hours and standard 
deviation of 67.04 hours as identified by the basic descriptive statistics. This assumption may 
be viewed as an approximation of the true stochastic process of the CIWH variable. In 
particular the presence of the pulse outliers may be indicative of a mixed jump diffusion 
process whereby the usual Brownian motion for the CIWH diffusion is combined with a 
space-time Poisson process for jumps simulating the presence of outliers. In other similar 
applications it is usually assumed that the jump amplitudes are independent and identically 
distributed. 
 

Theoretically parameters of the Brownian noise and jump process should be estimated 
simultaneously however an optimal methodology remains an area of current research (see for 
example Ait-Sahalia (2004) and He et al (2006)). In addition simultaneous estimation 
methods usually require the presence of a significant time series or frequency of data, not 
present in the current study. As a result, for the third case we will make the simplifying 
assumption that the jump diffusion parameter is equal to (2/41) = .049 given the identification 
of two outliers among the forty-one seasons specified in the time series modeling process. In 
addition, it is assumed that the jump amplitude is normally distributed with a mean of 167.5 
hours and standard deviation 11.5 hours derived from the two identified outlier observations. 
 

Table 6 below provides the results of the Monte Carlo simulations given the three 
cases outlined above, for the stochastic process governing the CIWH variable. Compared to 
Case 1 based upon the time series of CIWH values adjusted for outliers (μ = 168 hours and σ 
= 58 hours) the assumptions employed in Case 2 and based upon the unadjusted series (μ = 
176.02 hours and σ = 67 hours) result in higher put option values in general. This is 
consistent with the impact of the higher volatility of 67 hours versus 58, which increases 
option premiums. Only in the case of a strike value of 170 hours does the assumption of a 
lower expected outcome of 168 hours in Case 1 result in a higher option value than that of 
Case 2 with an expected outcome of 176.02 hours.  
 
Table 6: Monte Carlo Simulation of Put Option Prices for Different Strike Values 
 

Diffusion Assumptions 170 150 130 110 90 70

Normal ( μ = 168, σ = 58) $46,745.77 $29,323.03 $17,003.98 $9,021.80 $4,315.77 $1,814.47

Normal (μ = 176.02, σ = 67.04) $45,318.70 $29,505.06 $18,011.16 $10,205.04 $5,284.30 $2,430.57

Mixed Normal and Poission Jump 
(μ = 168, σ = 58, λ = .049, μ2 = 
167.5, σ2 = 11.5)

$44,473.78 $27,832.01 $16,272.41 $8,680.78 $4,116.81 $1,726.19

Strike Values

 
 

Finally Case 3 provides the results of the simulation under the assumption of a mixed 
diffusion process that includes the possibility of positive jumps. Case 3 indicates that 
modeling the jump process has value resulting in lower estimated option premiums in 
general. This is of course due to the fact that the jump process has been modeled upon the 
assumption of positive jumps in the CIWH value. In particular Case 3 results in option values 
significantly lower than Case 2 and shows that approximating the mixed diffusion process 
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with an assumed Gaussian process based on the unadjusted data can result in significant 
estimation error. This is true even with the relative infrequency of the jumps. 
 
VI Conclusion 
 

As the size and scope of the viticulture industry grows, there is an increased focus on 
the application of science and technology to the endeavor. In the case of business applications 
this entails the use of the latest technology and approaches to modeling of inherent problems 
and risk. 

 
The potential application of weather derivatives to hedging of temperature risk in 

icewine production in the Niagara region of Canada represent a significant potential benefit 
however, it is fraught with many technical issues similar to those found by other researchers 
in analogous applications. Firstly the lack of appropriate hourly temperature data of a 
sufficient historical time period requires the use of a estimated variables based upon daily 
temperature observations. Secondly, the choice of an underlying set of daily observable 
variables or their transformations is critical to the modeling of a time series process for 
forecasting of future values and a successful market for weather derivatives.  

 
This paper has extended the work of Cyr and Kusy (2005 and 2006) by creating a 

time series of estimated optimal icewine production hours over a 41 year period, based upon 
temperature variables measured on a daily basis. The time series of cumulative icewine 
production hours for the months of November through January of each season was then 
analyzed in order to identify a potential stochastic process for an underlying variable that 
could be employed in option contracts. Although the time series of cumulative icewine 
production hours appears to follow a simple Gaussian process, statistically significant outliers 
were found in the data through the use of intervention analysis. Contrary to common beliefs 
these outliers were due to seasons of extreme cold as opposed to exceptionally warm winters. 
More importantly, preliminary analysis indicates that such outliers may be representative of a 
mixed diffusion process with infrequent jumps governing the behavior of cumulative icewine 
production hours. Although the jumps in seasonal values of such hours are relatively 
infrequent, their impact upon simulated option prices was significant.  

 
Further research would require extending the study to areas of icewine production 

which may have a longer history of recorded temperature data. Although contributing a 
smaller level of icewine production volume than the Niagara region, such areas exist in other 
parts of southern Ontario. The efficient and simultaneous estimation of the parameters of the 
mixed diffusion process would be facilitated with a greater number of observations 

 
In this paper we have also considered the risks solely due to temperature in icewine 

production however other climatic variables also introduce risk. Variables such as rainfall 
during the growing season summer months affects the overall grape production including 
those destined for icewine. In addition decay in the icewine grapes due to wind destruction 
over the winter months is also a potentially important factor.  To hedge against these 
additional variables adds complexity, as correlations between variables must be considered. 
Dishel (2001) provides an example of the issues that arise in formulating a weather hedge 
that includes more than one weather variable. 
 
 
 

 - 19 - 



 
References 
 
 
He, C., J. S. Kennedy, T. F. Coleman, and P. A. Forsyth, et al. “Calibration and Hedging 
Under Jump Diffusion” Review of Derivatives Research, Vol. 9, Iss. 1; p. 1-36 
 
Ait-Sahalia, Y. 2004, “Disentangling Diffusion from Jumps,” Journal of Financial 
Economics, vol 74, p.487-528 
 
Alaton, P., B. Djehiche and D. Stillberger, 2002, “On Modelling and Pricing Weather 

Derivatives,” Applied Mathematical Finance, Vol. 9, No. 1, pp. 1-20 
 
Beech, M., 2007, “Icewine Fetchs a Cool $30,000”, St. Catharines Standard, Friday January 
12th, 2007, Page A1. 
 
Cao, M. and J. Wei, 2004, “Weather Derivatives Valuation and Market Price of Risk”, The 

Journal of Futures Markets Vol. 24, No. 11, p. 1065-1089 
 
Campbell, S. and Diebold, F.X. 2005, “Weather Forecasting for Weather Derivatives”, 

Journal of the American Statistical Association, March 2005, vol. 100, no. 469 p.6 – 16. 
 
Ceniceros, R., 2006, “Weather Derivatives Running Hot,  Business Insurance. Chicago: Aug 

7, 2006.Vol.40, Iss. 32;  pg. 11 
 
Cyr, D. and M. Kusy, 2005, “Weather Derivatives and their Potential use for Hedging 

Canadian Ice Wine Production: A Case Study and Simulation”, Bacchus in Bourgogne 
2nd International Conference, Conference Proceedings, Dijon, France, November, 2005.  

 
Cyr, D. and M. Kusy, 2006, “Identification of Daily Temperature Variables for use in 

Hedging Ice Wine Production with Weather Derivatives”Wine in the World: Markets, 
Tourism and Globalisation, Second International Conference on Economics, 
Management Sciences, Florence, Italy, June, 2006.  

 
Davis, M. 2001, “Pricing Weather Derivatives by Marginal Value”, Quantitative Finance 

May 2001, v. 1, iss. 3, pp. 305-08 
 
Dischel, B., 2001,” Double Trouble: Hedging”, Risk, Weather Risk Special Report, s24-s26 
 
Finnegan, J., 2005, “Weather or Not to Hedge”, Financial Engineering News, Issue 44, p. 1-

3. 
 
Geman, H. and M. Leonardi, 2005, “Alternative Approaches to Weather Derivatives 

Pricing”, Managerial Finance, Vol. 31 No. 6, p. 46-72 
 
Hanley, M. 1999, “Hedging the Force of Nature”, Risk Professional, Issue 1, p. 21-25. 
 
He, C., J. S. Kennedy, T. F. Coleman, and P. A. Forsyth, et al. “Calibration and Hedging 

Under Jump Diffusion” Review of Derivatives Research, Vol. 9, Iss. 1; p. 1-36 
 

 - 20 - 



Jewson, S and A. Brix, 2005, Weather Derivative Valuation: The Meteorological, Statistical, 
Financial and Mathematical Foundations, Cambridge University Press. 

 
Maillet B. and T. Michel, 2005, “Extreme Distribution of Realized and Range-based Risk 

Measures”, working paper. 
 
 
Richards, T.J., M.R. Manfredo and D.R. Sanders, 2004, “Pricing Weather Derivatives”, 

American Journal of Agricultural Economics, Vol 86, no. 4. p. 1005-1017 
 
Rossi, E, 1978, White Death – The Blizzard of ’77, Seventy-seven Publishing, Ontario 

Canada  
 
Schreiner, J., 2001, Icewine, The Complete Story, Warwick Publishing, Toronto 
 
Wei, 2002, “Weather Derivatives; A Truly Alternative Asset Class for Investors”, Canadian 

Investment Review, Spring 2002. 
 
Yoo, S. 2003, “Weather Derivatives and Seasonal Forecast”, Working Paper, Cornell 

University 
 

 - 21 - 


	I. Introduction 
	II. History and Complexity in the Use of Weather Derivatives 
	III. Elements of Icewine Production 
	 
	Estimation of Optimal Icewine Hours 
	Identification of  a Stochastic Process for Cumulative Estimated Icewine Production Hours 

	V. Valuation of a Put Option on Cumulative Estimated Icewine Production Hours 
	VI Conclusion 
	References 





