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Decision makers in renewable resource planning are often unable to specify their objective
function a priori, and are presented with a discrete set of alternatives reflecting a range of
options that are actually much more continuous. It is common for the decision maker to be
interested in some other alternative than those originally developed. An iterative process thus
often takes place between decision maker and analyst as they search for a satisfactory alter-
native. This paper analyzes the economic tenability of simply interpolating (taking convex
combinations of) initial alternatives to generate new alternatives in this process. It is shown that
convex combinations of outputs will be producible (feasible) with the interpolated input levels,
under very common conditions. In fact, the cost estimate resulting from interpolating the cost
of two (or more) alternatives will generally be an overestimate. The magnitude of this overes-
timate is investigated in a test case. It is concluded that this cost overestimate can be rather
large, and is not systematically predictable. Only when the output sets in the original alterna-
tives are very similar are the interpolated cost estimates fairly accurate.

Renewable resource management and
planning problems often involve an ex-
tremely large spectrum of possible choices.
The objective function in such problems
is generally multidimensional and often
includes market and nonmarket goods.
When a decision maker cannot specify, a
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priori the objective function to be opti-
mized, analysts commonly present him/
her with a relatively small number of dis-
crete alternatives reflecting the range of
choices available. These alternatives are
then subjectively evaluated, and further
iterations between analysts and decision
makers may be required [Candler and
Boehlje, 1971, provide a more compre-
hensive discussion of this sort of process].
For the purposes of this paper, it will suf-
fice to characterize "alternatives" as being
a set of outputs that the decision maker
is interested in producing, with an at-
tached cost of producing the given output
set. One common way to estimate this cost
is through mathematical programming
models (such as linear programming) de-
signed to determine a minimum cost
means of producing the output set.

If, out of a discrete set of alternatives,
the decision maker cannot select one that
is clearly satisfactory, more alternatives
might have to be generated. This could be

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/7044032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Western Journal of Agricultural Economics

a very difficult and costly task. For ex-
ample, suppose that a national director of
a renewable resource management agen-
cy is considering ten alternatives from each
of 100 lower level planning units. Re-
questing all or a large portion of the lower
level units to generate new alternatives
could be quite costly. And, of course, any
new alternatives cannot be guaranteed to
be thoroughly satisfactory either. Many it-
erations might be required before the de-
cision maker is sufficiently satisfied.

If the decision maker is not completely
satisfied with any one alternative from an
initial set, it is certainly not uncommon
for the decision maker to be interested in
some "interpolation" (weighted average)
between two or more of the discrete al-
ternatives. If these interpolations are us-
able, considerable effort and expense could
be saved, because fewer alternatives might
be required initially, and developing new
alternatives would be quite simple. If one
alternative output/cost vector is Al and
another is A2, and if a parameter s is de-
fined such that 0 < s < 1, then an inter-
polation of A, and A2 is:

s A, + (1 - s)A (1)

This will be referred to as a convex
combination of the two alternatives. Con-
vex combinations of activity variables
within a given linear program have been
discussed in general linear programming
presentations [e.g., Chiang, 1974; Silber-
berg, 1978] and in specific situations [e.g.,
Paris, 1981, who analyzed linear pro-
grams with multiple optima; and Dantzig
and Wolfe, 1961, who analyzed a decom-
position approach to solving large linear
programs]. This is contrasted with the con-
vex combinations of outputs and costs in
different alternatives, discussed here. Each
alternative would generally be deter-
mined with a different linear program-
ming or other model solution. The differ-
ent alternatives might be generated with
different output prices in budget-con-
strained profit maximization or with dif-
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Figure 1. Region of Possible Output Com-
binations for Convex Combinations of Three
Optimal Alternatives.

ferent output constraints in cost minimi-
zation. In either case, it is assumed that
the purpose of the analysis is to provide
the decision maker with a variety of cost-
effective alternatives. This should be
contrasted with the case discussed by Can-
dler et al. [1981], where the decision mak-
er controls only certain variables and the
"analyst" is actually a lower level decision
maker with an objective function of his/
her own.

Consider the two-output product trans-
formation curves shown in Figure 1. Points
1, 2, and 3 represent output sets for three
initial alternatives. Associated with each
of the three output sets is a minimum cost
(B1, B2, and B3). Convex combinations of
any or all of the three alternatives could
be constructed so as to create any output
set in the shaded triangle. To make the
discussion more tractable, this paper deals
only with convex combinations of two al-
ternatives (e.g., point P).
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The principal question involving con-
vex combinations of alternatives as de-
fined here is the tenability of the inter-
polated cost prediction. In general, the
interpolated output set could be unattain-
able at the predicted cost, or it could be
attainable at a lower cost than the pre-
dicted cost. The next section will discuss
the general theoretical conditions under
which each of these outcomes can be ex-
pected. The following section will concen-
trate on production systems that can be
modeled with linear programming tech-
niques. A test case (utilizing linear pro-
gramming) will be presented that evalu-
ates the accuracy of interpolated cost
predictions in a particular managed for-
est.

Before proceeding, it is important to
note that convex combinations of discrete
alternatives may also be important in
"multilevel" optimization models such as
those discussed by Bartlett [1974], Wong
[1980], Hof [1983], and Hof et al. [1983]
which seek a global optimum in a multi-
level system (this is again contrasted with
Candler et al. 1981). In these multilevel
models, output/cost alternatives are gen-
erated by lower level models (linear pro-
grams) and, in turn, become zero-one
choice variables in the higher level models.
The higher level models select alternatives
so as to optimize some objective function.
Convex combinations of the alternatives
generally occur if the higher level model
is solved with a continuous variable ap-
proach such as linear programming. In-
teger programming can avoid the convex
combinations by treating the alternatives
discretely, but with increased solution cost
and difficulty. Thus, this paper is relevant
to certain multilevel optimization models
as well as the more general application
discussed heretofore.

Theory

Define a cost function, C*(W, Y) which
indicates the minimum cost of producing

any given output vector (Y) with a fixed
factor price vector (W). Now, in order to
analyze convex combinations of two alter-
natives, define the following:

Y° = output vector in one alternative
Y1 = output vector in the other alter-

native
Ye = convex combination of Y° and Y',

such that
Ye = sY° + (1 - s)Y 1, from equation (1)

The second order conditions for profit
maximization problems are typically sum-
marized as [Henderson and Quandt, 1971;
Silberberg, 1978]: "The production func-
tion must form a closed, strictly convex
point set." Utilizing C*, the profit func-
tion (with, for simplicity, only two out-
puts) is:

r = PlY + P2Y - C*(Y,, Y,)

The second order conditions for profit
maximization' can thus be interpreted as
"The cost function must form a closed,
strictly convex point set."

By definition of a "strictly convex point
set" [see, for example, Silberberg, 1978, p.
385], this directly implies that:

C*(W, Ye) < sC*(W, Y°) + (1 - s)C*(W, aY) (2)

Thus, the typical second order conditions
for profit maximization imply that the in-
terpolated cost estimates in convex com-
binations of alternatives should be greater
than or equal to the true cost of the inter-
polated output levels in that convex com-
bination. This holds even if:

C*(W, Y°) 4 C*(W, Y')

For the special case where:

C*(W, Y°) = C*(W, y1) = C

somewhat weaker conditions are sufficient

The second order conditions are:

O2C* O2C*
> 0, >0,

ayay, ay 2 ay,

d2 C* O2C* O2C* d2C*
_-Y Y >

oY,1dY dY2,Y2 , Y2,dY dY1Y2
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for (2) to hold. These conditions are that
the given isocost curve (associated with C)
is quasi-convex. This can be more pre-
cisely stated as:

If a straight line joins any two points (a
chord) on the given level curve of the cost
function (the isocost curve), then that chord
cuts through only points of lower cost than
the two end points.

This condition is the geometric interpre-
tation of the second order conditions of a
multiple-output, cost-constrained revenue
maximization problem. This condition
only restricts the shape of a given level
(isocost) curve, and does not restrict the
expansion path of (distance between) dif-
ferent level curves [Henderson and
Quandt, 1971; Silberberg, 1978].

The quasi-convexity condition on the
isocost curve would imply that:

C*(w, Yv) C

Thus:

C*(W, Ye) < sC + (1 - s)C
which is equivalent to (2), by the defini-
tion of C.

In sum, interpolated cost predictions in
convex combinations of discrete alterna-
tives should be larger than true minimum
costs if the typical second order conditions
for profit maximization hold. In the spe-
cial case of equal costs between the dis-
crete alterntives, somewhat weaker con-
ditions are sufficient. It is interesting
(though not surprising) that the two types
of convex combinations of alternatives are
distinguished by the different second or-
der conditions required for cost-con-
strained revenue maximization models as
opposed to profit maximization models.
Because of this important distinction, the
two types of convex combinations will be
distinguished in the remainder of this pa-
per.

Linear Programming Feasibility

Production capabilities of renewable
resources are often modeled with linear

programs. These models generally solve a
slightly different problem than the classic
cost minimization formulation-they treat
the land base as fixed (and costless) and
apply cost (budget) coefficients to alter-
native production activities that could be
applied to the land. Thus, a typical linear
program (LP) for renewable resource
planning could be described with the fol-
lowing set of constraints:

a,, Xi + a2 X2 + . + aln X r

aklX1 + ak X2 + . .. + akn Xn rk

aelXi + ae2X2 + ... + aenX, - r,

am1 X, + am2X2 ... + amnX, rm

where:

e=k+ 1
Xi; i = 1, n are production activities
r, . ., rk are limited inputs: land par-

cels (r2, . . ., rk) and budget (rJ)
r, ... , rm are levels of outputs such as

timber and forage
aj; i = 1,m j = 1,n is an "A matrix"-a

matrix of technical coefficients relat-
ing production activities to inputs and
outputs.

Any one of these constraints (or any linear
combination of them) could be maxi-
mized or minimized in the LP solution, as
an objective function. It will be useful for
the time being, however, to treat all of
them as constraints.

This LP can be written in matrix no-
tation as:2

aX _ r (3)

Now, define two sets of right-hand sides
as r° and ir. And, define (any) two X vec-

2 Note that X and r are defined as "column vectors"
to avoid the need for transposes. And, the (r, . .. ,
r,) and associated a's are now negative, so that the
less-than-or-equal-to sign applies throughout. Also,
in practice, the land accounting rows may be strict
equalities, but are treated as inequalities here for
notational simplicity.
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tors that are feasible, one for each set of
right-hand sides, as X° and X1. Then, de-
fine:

XR = [sX° + (1 - s)X]

and:

jv = [sr° + (1 - s)r] (4)

Textbook treatments of LP [Chiang,
1974; Silberberg, 1978] commonly prove
that a set of constraints such as (3) form a
convex set. It is a simple extension of this
proof to show that convex combinations
of two right-hand side vectors for which
there are feasible solutions (X° and X1),
taken with the original A matrix, always
yield a set of constraints with at least one
feasible activity vector (namely, Xl). Since
the outputs and inputs are represented as
right-hand sides in this model, this implies
that there will always be at least one way
to produce a convex combination of out-
puts with the associated convex combi-
nation of inputs-land and cost (budget).
More formally, given:

aX°0 _< r
aXl _ rl

then:

aX* = a[sX° + (1 - s)Xl]
= saX° + (1 - s)aX

so:

aXy _ sr° + (1

aXk , rF by (4), Q.E.D.

This activity vector (Xv) is feasible, but
would generally be suboptimal, given any
particular objective funtion-even if X°
and X1 are both optimal. XT would have
too many activity variables in the solution
basis unless the same variables happened
to be nonzero in X° and X1. Thus, if cost
was minimized subject to the other right-
hand sides in fr, a value less than or equal
to [sr? + (1 - s) rl] would be obtained
(where r? and rl are the right-hand sides
for the cost constraints in r° and ?r).

A Test Case

The upshot of the previous discussion is
that convex combinations of alternatives
generated with LP models will always be
feasible, 3 but the estimated cost will gen-
erally be suboptimal (larger than the min-
imum cost that could actually be obtained
if the LP was resolved). The possible mag-
nitude of error in the predicted cost of
convex combinations of alternatives is of
interest for two reasons. First, if cost pre-
dictions are inaccurate, the decision mak-
er may choose an output set other than
that which he/she would have chosen oth-
erwise. Second, resources (especially
agency budget) may be misallocated if cost
predictions are not close to the actual cost
of producing a selected output set. In or-
der to provide some evidence regarding
the potential magnitude of this cost over-
estimate, a test case was analyzed.

Data assembled by the Coconino Na-
tional Forest (central Arizona) staff in the
current USDA Forest Service land man-
agement planning effort were used to
build an LP model for this analysis. The
data consisted of production coefficients
and costs by time period for a set of time-
scheduled alternative management pre-
scriptions (production activities) that could
potentially be applied to land units called

This feasibility is ensured, even if the alternatives
were generated with linear programs that have dif-
ferent numbers or types of activities (columns) in
their A-matrices. Nonbasic columns could hypo-
thetically be added to each linear program so as to
make the A-matrices identical. The proof in the
previous section would then apply. In analyzing a
given land area, the number and type of rows in
the linear programs should not, in principal, vary
from one alternative to the next. If, for example, a
given alternative was developed with no forage out-
put constraint, it effectively reflects a constraint that
forage output has a right-hand side greater than or
equal to zero. Assuming that the output rows in-
clude all constraints (other than cost) whose right-
hand sides vary across alternatives, convex combi-
nations of attainable output right-hand sides will be
attainable, given the associated convex combination
of cost right-hand sides.
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Figure 2. Graphical Depiction of Alterna-
tives and Convex Combinations: a = 90/10
Convex Combinations; b = 50/50 Convex
Combinations; c = 10/90 Convex Combina-
tions.

analysis areas, prices for valued outputs,
and coefficients for other constraints. The
model determines an optimal timber har-
vest schedule as well as scheduling other
management actions and output mixes.
The data base included 51 analysis areas.
The planning horizon was 200 years, rep-
resented by decades for the first 50 years
and by three 50-year periods for the re-
maining 150 years. The number of valued
outputs included in the model was limited
to only two products: sawtimber (board
feet) and forage grazing (AUMs). Every
attempt was made to build a realistic
model, however, it cannot be taken as an
exact representation of the Coconino Na-
tional Forest planning model.

A third output included in the model
was net timber yield, an aggregation of
the yields of sawtimber, pulpwood, and
fuelwood. This output was not priced and
was included in the model for the sole
purpose of imposing a nondeclining yield
constraint. It was considered to be more
in keeping with standard practice to ap-
ply this constraint to the total output of

all timber products rather than to sawtim-
ber only. Also in keeping with standard
practice, an "ending inventory con-
straint" was included that constrained the
total timber inventory at the end of the
planning period to be greater than or equal
to an inventory level associated with long-
run sustained yield capacity. The LP A-
matrix was generated with the Direct En-
try FORPLAN [Johnson, 1982] matrix
generator, and solved with the UNIVAC
FMPS linear programming OPTIMIZE
solution procedure. The model is struc-
tured similarly to what Johnson and
Scheurman [1977] referred to as Model I,
with the addition of the forage outputs.

Generation of a Set of
Alternatives

For test case purposes, a set of alterna-
tives was desired that spanned the pro-
duction possibilities with a given budget
and also included an alternative associ-
ated with a lower budget. This allowed
examination of both within- and between-
budget convex combinations. To this end,
the following steps were taken to generate
a set of alternatives with the test case lin-
ear program. These alternatives are shown
graphically in Figure 2.

Step 1

Maximize present net worth under no
budget restrictions (with the output prices
included by the Coconino National For-
est), and then extract the cost associated
with that unfettered maximization. This
discounted budget ($308,440,000 for 200
years) was used to construct alternatives
IIA, IIB, IIC, and IID in Figure 2.

Step 2

Maximize forage subject to the budget
constraint ($308,440,000), and then max-
imize timber subject to that forage level.
This generated point IIA in Figure 2.
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TABLE 1. Output Sets and Minimum Costs in
Alternatives.

Minimum
Alterna- Total Timber Total Forage Cost

tive (Bd. Ft.) (AUMs) ($1,000)

IIA 15,333,600 88,991,600 308,440
IIB 30,892,300 85,675,000 308,440
IIC 39,701,200 72,347,800 308,440
IID 41,467,500 52,347,800 308,440
I 16,387,800 19,871,500 205,627

Step 3

Sequentially lower forage output levels
and maximize timber subject to those for-
age levels and subject to the budget con-
straint ($308,440,000). This procedure
generated points, IIB, IIC, and IID in Fig-
ure 2. Point IID involves a level of timber
production very near the maximum pos-
sible level of timber production with a
budget of $308,440,000 (determined with
a separate run to be 41,472,140 board feet).
This approach was taken because it was
desired (for consistency) to generate all al-
ternatives at this budget level by maxi-
mizing timber subject to budget and for-
age constraints. Obviously, considerable
experimentation was necessary, and points
IIB and IIC were selected as intermediary
points between IIA and IID. 4

Step 4

Point I was determined by maximizing
present net worth (with output prices as
described above) with a budget two-thirds
of $308,440,000, or $205,627,000.

The alternatives are summarized in Ta-
ble 1.

Determination of Convex
Combinations

As noted earlier, convex combinations
of the output sets in Figure 2 can produce

4 The original maximization of present net worth so-
lution was not used as an alternative because it was
not a good intermediary point between IIA and
IID.

any output set bounded linearly by I, IIA,
IIB, IIC, and IID. To test within-budget
convex combinations, interpolations were
calculated between IIA and IIB, between
IIA and IIC, and between IIA and IID.
To test between-budget convex combina-
tions, interpolations were calculated be-
tween I and IIA, between I and IIB, be-
tween I and IIC, and between I and IID.

In an attempt to generate convex com-
binations with the maximum error possi-
ble, 50/50 (s = 0.5) convex combinations
were tested. The maximum error will not
necessarily occur with equal proportions
of initial alternatives, but without prior
knowledge, this was expected to yield a
reasonable approximation. To determine
if error is relatively low near initial (op-
timal) alternatives, 10/90 (s = 0.1) and 90/
10 (s = 0.9) convex combinations were also
tested. The convex combinations are de-
scribed in Table 2 and they are also in-
dicated on Figure 2.

Cost Analysis

The results of the cost analysis for the
within-budget convex combinations are
presented in Table 3. The predicted cost
is the interpolation of the (minimum) costs
from the alternatives in each convex com-
bination. The actual cost of each convex
combination output set was determined by
constraining the timber and forage out-
puts to be greater than or equal to the
appropriate levels, and minimizing dis-
counted cost with the LP. It should be
noted that this analysis determined mini-
mum total time period (200 years) cost,
subject to constraints on total time period
output levels. In actual planning and
management situations, shorter time pe-
riods may be of interest, but the results
should be analogous. Another possibility
would be that the implied schedule in the
convex combination could be retained in
determining actual cost. If this analysis had
been constrained to meet the exact sched-
ule of the convex combination, then the
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TABLE 2. Output Sets in Convex Combinations of Alternatives.

Alterna- 50/50 90/10 10/90Alterna-
tives Timber Forage Timber Forage Timber Forage

IIA, IIB 23,112,970 87,333,315 16,889,474 88,659,967 29,336,446 86,006,663
IIA, IIC 27,517,405 80,669,735 17,770,361 87,327,251 37,264,449 74,012,219
IIA, IID 28,400,530 70,669,735 17,946,986 85,327,251 38,854,074 56,012,2.9
I, IIA 15,860,700 54,431,580 16,282,380 26,783,540 15,439,020 82,079,620
I, IIB 23,640,070 52,773,265 17,838,254 26,451,877 29,441,886 79,094,653
I, IIC 28,044,505 46,109,685 18,719,141 25,119,161 37,369,869 67,100,209
I, IID 28,927,630 36,109,685 18,895,766 23,119,161 38,959,494 49,100,209

resulting costs would necessarily be closer
to the predicted costs-the addition of
constraints always reduces (or does not
change) the level of objective function at-
tainment in solution. It was felt that con-
straining the actual cost analysis to the
rather arbitrary schedule of the convex
combination is inconsistent with the logic
of a minimum cost function; and the ap-
proach taken seems to be the most gen-
erally applicable.

In Table 3, the errors in the predicted
costs of the convex combinations are quite
variable. They are very small (less than
one percent) for all of the convex combi-
nations between points IIA and IIB. This
would suggest that convex combinations
of alternatives that have the same cost and
are not terribly "far" from each other (in
the sense of Euclidean distance) might ac-
tually cost only slightly less than the pre-
dicted cost. For a given type (50/50, 90/
10, or 10/90) of convex combination of

alternatives that are on the same product
transformation curve, it also appears that
the "farther apart" the alternatives are,
the larger the errors in the predicted cost.

The errors in the predicted costs of the
90/10 combinations are not similar to those
of the 10/90 combinations. For example,
compare the 90/10 and 10/90 convex
combinations of alternatives IIA and IID.
The cost error in the former is just under
four percent, while the cost error in the
latter is just over 19 percent. In general,
the closer the convex combination is to
alternative IIA, the lower the error in pre-
dicted cost. The production system used
in this test case is indicated to be highly
nonhomothetic (the product transforma-
tion curves are not close to being parallel).
In such a production system, it would be
very difficult for the decision maker to
predict the error in a given convex com-
bination's predicted cost without exten-
sive knowledge of the production system

TABLE 3. Convex Combination Cost Tests-Within Budget.

Alterna-
tives Proportions Predicted Cost Actual Cost Error % Error

IIA, IIB 50/50 $308,440,000 $306,324,300 $ 2,115,700 0.69
IIA, IIC 50/50 $308,440,000 $288,172,100 $20,267,900 7.03
IIA, lID 50/50 $308,440,000 $259,827,600 $48,612,400 18.71
IIA, IIB 90/10 $308,440,000 $307,402,400 $ 1,037,600 0.34
IIA, IIC 90/10 $308,440,000 $303,162,200 $ 5,277,800 1.74
IIA, lID 90/10 $308,440,000 $296,600,600 $11,839,400 3.99
IIA, IIB 10/90 $308,440,000 $306,203,300 $ 2,236,700 0.73
IIA, IIC 10/90 $308,440,000 $289,023,000 $19,417,000 6.72
IIA, IID 10/90 $308,440,000 $259,033,800 $49,406,200 19.07
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TABLE 4. Convex Combination Cost Tests-Between Budget.

Alter-
natives Proportions Predicted Cost Actual Cost Error % Error

I, IIA 50/50 $257,033,500 $219,862,100 $37,171,400 16.91
I, IIB 50/50 $257,033,500 $223,446,700 $33,586,800 15.03
I, IIC 50/50 $257,033,500 $221,203,500 $35,830,000 16.20
I, IID 50/50 $257,033,500 $213,869,100 $43,164,400 20.18
I, IIA 90/10 $215,908,300 $196,165,600 $19,742,700 10.06
I, IIB 90/10 $215,908,300 $196,939,300 $18,969,000 9.63
I, IIC 90/10 $215,908,300 $196,503,000 $19,405,300 9.87
I, IID 90/10 $215,908,300 $195,282,800 $20,625,500 10.56
I, IIA 10/90 $298,158,700 $285,082,800 $13,075,900 4.59
I, IIB 10/90 $298,158,700 $284,656,700 $13,502,000 4.74
I, IIC 10/90 $298,158,700 $271,923,700 $26,235,000 9.65
I, IID 10/90 $298,158,700 $250,987,300 $47,171,400 18.79

involved-which is precisely the situation
creating the potential use of convex com-
binations in the first place.

Table 4 presents a similar cost analysis
on convex combinations of alternatives
that have different costs (they are on dif-
ferent product transformation curves). The
percentage errors in predicted cost rela-
tive to actual cost are roughly between
five and 20 percent. The even 50/50 con-
vex combinations generally show the larg-
est errors. The largest error (over 20 per-
cent) reported in Table 4 is for the 50/50
convex combination of alternatives I and
IID. As in Table 3, the 90/10 and 10/90
convex combinations do not exhibit simi-
lar errors.

Conclusion

The overall magnitude of errors in pre-
dicted costs in the case study varied from
less than one percent to more than 20 per-
cent. Whether or not these magnitudes are
acceptable depends on the particular
planning or management situation. And,
of course, these magnitudes apply only to
this test case. These results suggest, how-
ever, that highly variable and unpredict-
able errors may be encountered in the
predicted cost of convex combinations of
alternatives, and that the farther apart the

alternatives are, the stronger the potential
for substantial error.

It has been shown that alternatives de-
veloped with linear programs can be tak-
en in convex combinations and the result-
ing output set will always be feasible in
terms of the linear program. Another im-
portant consideration is the decision-mak-
ing setting within which the analysis takes
place. If an analyst or a line officer pro-
vides a decision maker with a set of alter-
natives, this set may have passed feasibil-
ity tests that are outside the model
(political, biological, operational, etc.). In
that case, the convex combination may be
feasible only in the sense of the linear pro-
gram-not in the sense of pragmatic im-
plementability. For example, a timber-in-
tensive alternative may produce enough
timber to make a timber sale operational
and a forage-intensive alternative may
produce enough forage to make a grazing
contract operational, but a convex com-
bination of the two alternatives might not
produce enough of either output to sup-
port a timber sale or a grazing contract.
In such a situation, the cost analysis above
would only indicate part of the danger in
attempting to implement a convex com-
bination of alternatives. In general, this
study indicates that convex combinations
of discrete alternatives should be used
sparingly and with caution.
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