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A methodological approach to obtain bounds on the value of information based on an
inexact representation of the decision maker's utility function is presented. Stochastic
dominance procedures are used to derive the bounds. These bounds provide more
information than the single point estimates associated with traditional decision
analysis approach to valuing information, in that classes of utility functions can be
considered instead of one specific utility function. Empirical results for valuing
seasonal climate forecasts illustrate that the type of management strategy given by the
decision maker's prior knowledge interacts with the decision maker's risk preferences
to determine the bounds.
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Interest in ascertaining decision makers' will-
ingness to pay for climate/weather forecasts
has increased in recent years. Empirical studies
such as Sonka et al.; Winkler, Murphy, and
Katz; Baquet, Halter, and Conklin; and Brown,
Katz, and Murphy have demonstrated that
current and improved climate forecasts have
potential economic value in decision making.
This value depends critically on the structure
of the decision set, the structure of the payoff
function, degree of uncertainty in the decision
maker's prior knowledge of climatic condi-
tions, and the nature of the information system
(Mjelde, Sonka, and Peel; Hilton). Embedded
in the structure of the payoff function is the
decision maker's relative preference for out-
comes or, equivalently, the decision maker's
risk preferences. Because risk preferences are
difficult to quantify, this characteristic has re-
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ceived little attention in previous empirical
studies valuing climate forecasts (for an ex-
ample of valuing information with different
utility functions see Baquet, Halter, and Conk-
lin).

Risk preferences can be analyzed using sto-
chastic dominance techniques to provide evi-
dence on a decision maker's willingness to pay
for information (Cochran and Mjelde; Rister,
Skees, and Black; Bosch and Eidman). Sto-
chastic dominance accounts for the difficulty
in quantifying the risk preference with an inex-
act representation of the decision maker's risk
attitude. The objective of this study is to build
on and extend previous studies by utilizing
stochastic dominance procedures to obtain a
lower and upper bound on the value of perfect
seasonal climate forecasts, given varying rep-
resentations of risk preferences and different
assumptions on the decision maker's prior
knowledge. The analysis is based upon data
presented in Mjelde et al. (1988) and involves
corn production in east-central Illinois.

Decision Analytic Approach to
Valuing Information

The value of climate information is normally
based on the well-developed analytic frame-
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work of decision theory (Winkler, Murphy, and
Katz; Mjelde, Sonka, and Peel 1988). In em-
pirical studies the common procedure is to as-
sume the decision maker is risk neutral be-
cause of problems with specifying utility
functions or quantifying risk preferences (Lin,
Dean, and Moore). With this assumption the
decision maker is concerned only with maxi-
mizing expected net returns. The value of in-
formation under risk neutrality is developed
in this section for comparison to the stochastic
dominance procedures. In this framework, 0
represents the stochastic climatic conditions
and Z represents the variable under the control
of the decision maker. An interaction between
0 and Z is a necessary condition for infor-
mation on 0 to possess economic value (Byer-
lee and Anderson). In the absence of any in-
formation other than the decision maker's prior
knowledge, p(O), the decision maker's problem
is to maximize

(1) max Y(O, Z)p(O) do,
z

where Y(O, Z) represents net returns.' Let the
value of Z which maximizes equation (1) be
represented by Z*. Now the decision maker is
given a particular climate forecast Pk which
modifies p(O) to p(0 IPk). The problem the de-
cision maker faces now is

(2) max f Y( Z)p( IPk) dO.
z

Let Z* maximize equation (2). In order to as-
certain the value of forecast, Pk, the expected
net returns from not using the information
when the climatic conditions that were fore-
casted occur must be obtained. These expected
net returns are obtained by simulating the de-
cision maker's decisions derived from not uti-
lizing the information (Z*) over the climatic
conditions forecasted p(O I P). This is given by

(3)
Y(O, Z*) p(OIPk) d.

The value of the climate forecast Pk is given
by the difference between equations (2) and
(3); that is,

The function Y(O, Z) could also be defined as a utility function
without altering the value of information given the decision-the-
oretic approach.

(4) Vk = max f Y(0, Z)p(0 I P) dO
Z -

- Y(O, Z*)p(OIP) do.

The gain in expected net returns is the differ-
ence between the expected net returns of using
the information optimally and the expected
net returns derived from the decision maker's
prior knowledge (Z*) when the actual climatic
conditions occurring are those forecasted by
Pk.

Prediction Pk is only one possible prediction
that could be received by the decision maker.
The expected value of the forecasting system
which generates predictions Pk with probabil-
ity distribution p(Pk is

(5) V= f max f Y(0, Z)p( I Pk) dO p(P) dPk

- Y(O, Z*)p(O I Pk) dO p(Pk) dPk

The gain from the climate forecasts is the dif-
ference between the expected net returns when
the information is used optimally and the ex-
pected net returns when the action is selected
without utilizing the additional information.
If Z* = Z* for all k, the information system
has no value to the decision maker. Thus the
value of information is manifested in the al-
tering of management decisions in response to
the information.

Stochastic Dominance

Stochastic dominance is an approach that al-
lows for the ordering of risky prospects ac-
cording to set criteria. Two stochastic domi-
nance criteria are utilized in this study, but the
general procedure to obtain bounds on the val-
ue of information applies to the other sto-
chastic dominance criteria. The two criteria
considered here are second-degree stochastic
dominance (SSD) and generalized stochastic
dominance (GSD). More complete discussions
of the stochastic dominance techniques can be
found in Anderson, Kroll and Levy, Whitmore
and Findlay, or Bawa.

The stochastic dominance criteria reduce a
choice set of distributions to a smaller subset
in such a manner that ensures that some mem-
ber of the subset maximizes expected utility.
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This subset is referred to as the efficient set.
The efficient set is identified for an admissible
class of utility functions. Each of the different
stochastic dominance criteria is associated with
a different class of admissible utility functions.

The SSD criterion allows for the predicting
of a decision maker's choice between pairs of
distributions without having any knowledge of
a decision maker's utility function except that
it displays risk aversion. In order to display
risk aversion, two constraints are placed on
the admissible utility functions, U'(x) > 0 and
U"(x) < 0. Under SSD, choice distribution
function F will dominate distribution function
G if and only if

(6) f [F(x) - G(x)] dx < 0 for all x

< 0 for at least one x,

where F(x) and G(x) are the cumulative dis-
tributions functions associated with choice
distributions F and G, respectively.

GSD (Meyer) is a more flexible criterion in
that alternative constraints on the admissible
utility functions are defined with bounds on
the Pratt absolute risk aversion function (Pratt).
Let U(r (x), r2(x)) be the set of decision makers
with risk preferences represented by r(x) sat-
isfying

(7) r1(x) < r(x) < r2 x) for all x.

The function r(x) is defined as the absolute
risk aversion function and is given by

(8) r(x) = - U"(x)/U'(x).

Under GSD, F dominates G when

(9) [G(x) - F(x)] U' (r,(x), r2(x)) dx > 0,

for all U subject to equation (7).

This is calculated by identifying the utility
function from the admissible set which is least
likely to result in F dominating G. If the ex-
pected utility of F is greater than that of G for
this utility function, it is known that F is pre-
ferred to G by all admissible utility functions
and, hence, G is dominated.

Stochastic Dominance and the
Value of Information

A decision maker's willingness to pay for in-
formation can be thought of as a premium, ir.

This premium equals the amount the decision
maker can be charged in each state of nature
before the decision maker is indifferent to buy-
ing the information. This occurs when the ex-
pected utility of optimally using the informa-
tion (and paying 7r) equals the expected utility
of selecting the action without utilizing the in-
formation or paying ir. For a specific utility
function this premium could be calculated us-
ing the decision theoretic approach discussed
earlier. Utilizing stochastic dominance criteria
rather than specifying an exact utility function
requires slight modifications to the perspective
of the value of information.

Lower and upper bounds on this premium
can be obtained with stochastic dominance by
appropriate interpretations of the efficient set.
To obtain these bounds, two distributions on
net returns are necessary. The first choice dis-
tribution, F(x), is generated using decisions
obtained when the decision maker utilizes the
climate forecast. The second distribution G(x),
is generated using decisions based on the de-
cision maker's prior knowledge on climatic
conditions. Generation of these two distribu-
tions is dependent on how the decision maker
processes information. When F(x) dominates
G(x), it is known that for all admissible utility
functions the expected utility associated with
distribution F(x) is greater than the expected
utility associated with distribution G(x) The
lower bound on the value of information is the
minimum value of the premium, ir, such that
F(x - 7r) no longer dominates G(x). The pre-
mium is subtracted from each element in dis-
tribution F(x) This is equivalent to a parallel
shift in distribution F(x) At this point for at
least one utility function in the admissible class
of utility functions, the expected utility asso-
ciated with distribution G(x) is greater than or
equal to the expected utility associated with
distribution F(x). Mathematically the lower
bound is given by

(10) min r such that EU(F(x - r)) - EU(G(x))
- 0 for at least one U E A,

where E is the expectation operator and A is
the admissible class of utility functions.

The upper bound on the value of informa-
tion is the minimum premium such that G(x)
dominates F(x - r). At this point for all pref-
erences in the admissible class, no decision
maker is willing to pay the premium and still
prefer F(x - 7r) to G(x). This bound is given
by
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(11) min ir such that EU(F(x - -r)) - EU(G(x))
< 0 for all U E Ag.

Given the information on risk preferences, the
range on the value of information associated
with distribution F(x) is given by the upper
and lower bounds. 2 Between the two bounds,
stochastic dominance is unable to rank the two
distributions for the given class of admissible
utility functions. In order to rank the distri-
butions between the bounds, additional infor-
mation on the risk preferences is required, that
is, a narrowing of the admissible class of utility
functions for SSD and GSD. Note that the
definition of the two bounds holds for the dif-
ferent stochastic dominance criteria and not
just SSD and GSD.3

Corn Production and the Value of
Climate Forecasts

Using results presented in Mjelde et al. (1988),
bounds on the value of perfect seasonal climate
forecasts for corn production are obtained us-
ing both SSD and GSD. Mjelde et al. (1988)
utilize a dynamic corn production decision
model to obtain net returns from a single corn
acre for the years 1970-83. The generated net
returns for each year under different assump-
tions on the decision maker's prior knowledge
of climatic conditions are given in table 1.4

The model contains only decisions on inputs
that were deemed sensitive to climate forecast
and for which data were available. As such the
net returns presented in table 1 are higher than
accounting measures of net returns. That is,
costs relating to inputs such as land payments,
interest charges on land and machinery, and

2 In cases where it is unclear if F dominates G, the premium
may have a negative value for one or both bounds. A negative
lower bound but a positive upper bound indicates the decision
rule generated from using the new information is preferred by some
of the decision makers represented by the class of admissible utility
functions but not by all of the decision makers in that class. If
both bounds are negative, the information is unreliable or mis-
leading, implying an inferior decision rule. The stochastic domi-
nance procedure to value information is robust enough to handle
these cases.

3 The use of stochastic dominance to value information is fa-
cilitated by the availability of computer programs which calculate
these bounds. One such program by Cochran and Raskin is avail-
able from the Department of Agricultural Economics and Rural
Sociology, University of Arkansas, Fayetteville, Arkansas.

4 Note the values in table 1 are transformed into dollars per
hectare, although Mjelde et al. (1988) present the values in dollars
per acre.

pesticide usage are not included in the decision
model.

The decision model presented in Mjelde et
al. (1988) is an intrayear dynamic program-
ming (DP) model of corn production. Eight
stages are defined for the corn production pro-
cess. Decisions must be made in six of these
stages, and no decisions are made in the re-
maining two stages. The six decision stages are
fall preceding planting, early spring, late spring,
early summer, early harvest, and late harvest.
These correspond to the times when major de-
cisions are made by corn producers in this re-
gion. The two stages when no decisions occur
are midsummer and late summer. These stages
are included because of the substantial effect
of climatic conditions on corn yield during
these times.

Decisions within the model pertain to the
amount and timing of nitrogen application,
planting period, planting density, hybrid
planted, and harvest time. At each decision
stage the producer can also do nothing. The
producer is able to choose among six nitrogen
levels (0, 50, 150, 200, 225, and 267 pounds
per acre) at any stage where nitrogen can be
applied. At the planting stages, early spring,
and late spring, the producer can choose be-
tween three hybrids (short, medium, and full
season) and three planting densities (20,000,
24,000, and 32,000 plants per acre). Because
of agronomical and physical considerations,
sidedressing can only occur in the stage im-
mediately after planting.

Seven state variables are included in the
model. The model is formulated so that at any
one stage no more than four of the state vari-
ables can take on more than one value (Mjelde
et al. 1987). Six of the state variables are as-
sociated with determining final yield. These
are: (a) a plant state variable which incorpo-
rates the effect of planting density, hybrid
planted, and time of planting, (b) a nitrogen
state variable which is the amount of nitrogen
applied in pounds per acre, (c) a climate state
variable giving the cumulative effect of cli-
matic conditions on yield, (d) a combined ni-
trogen and climate state variable which incor-
porates the interaction between nitrogen and
climatic conditions, (e) a corn kernel percent
moisture state variable which affects both field
losses of corn and drying costs, and (f) an Oc-
tober climatic condition variable which affects
corn field losses at late harvest. The seventh
state variable limits the number of field op-
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Table 1. Distribution of Net Returns for Corn Production in East-Central Illinois in Dollars
per Hectare for Different Assumptions on the Decision Maker's Prior Knowledge of Climate
Conditions

Expected Net Returns Given Different Prior Knowledges

Preceding
Year Perfect P1983 P1979 Year PHist

1970 668.08 615.38 668.06 640.48
1971 736.31 701.84 667.86 667.86 726.94
1972 689.48 565.27 654.91 636.65 627.31
1973 744.61 682.44 688.40 688.40 744.61
1974 619.16 557.09 602.73 478.81 602.73
1975 622.69 509.25 588.10 550.79 559.01
1976 730.28 648.32 675.25 675.25 730.25
1977 668.08 615.38 668.06 641.64 640.48
1978 641.42 576.76 641.42 608.43 608.43
1979 755.04 675.69 755.04 748.47 726.94
1980 632.23 615.38 588.30 588.30 560.69
1981 687.58 632.77 628.47 619.06 675.25
1982 689.48 564.30 654.91 616.42 615.55
1983 342.95 342.95 124.81 124.81 124.81
Meana 659.10 593.06 614.74 588.07° 613.11
Standard deviation 101.63 90.09 147.54 154.14 153.61
Coefficient variation 15.42 15.19 24.00 26.21 25.05
E(value)b 66.04 44.36 70.34 45.99

Note: Net returns from corn production in dollars per hectare taken from Mjelde et al. (1988). Net returns changed from dollars per
acre to dollars per hectare by using a conversion factor of 2.471 acres per hectare.
a Arithmetic mean of the expected net returns from the fourteen years.
b Expected value of perfect information assuming a risk-neutral (profit-maximizing) utility function when using the corresponding prior
knowledge scenario in dollars per hectare per year.
cSummary statistics based on 13 years.

erations the producer can perform during early
spring, late spring, and early summer if cli-
matic conditions are unfavorable.

In table 1 net returns for four different as-
sumptions on prior knowledge of climate con-
ditions along with the net returns generated
with perfect seasonal climate forecasts are giv-
en. The four assumptions on prior knowledge
are denoted as P1983, P1979, PYear, and
PHist. As discussed in Mjelde et al. (1988),
these assumptions denote a range of attitudes
toward climatic conditions. Prior knowledge,
PHist, assumes that the decision maker knows
the historical probabilities associated with the
seasonal climatic conditions. The historical
probabilities are based on the fourteen years
within the data set with each year being equally
likely. Various studies have demonstrated that
individuals may not be accurate in their as-
sessment of the probabilities of historical events
(Bessler, Tversky and Kahneman). Because of
this, Mjelde et al. (1988) investigated other
assumptions on the decision maker's prior
knowledge.

Prior knowledge, P1983, represents a man-
agement strategy that protects against poor cli-
matic conditions. In Mjelde et al. (1988) 1983
was the year with the worst growing conditions
for corn. A management strategy which takes
advantage of good climatic conditions is rep-
resented by prior knowledge, P1979. The year
1979 had the best growing conditions in terms
of corn production for the years included in
the study. In each of these prior knowledge
scenarios, the decision maker selected a man-
agement strategy which performs well if con-
ditions like those in either 1983 or 1979 occur.
Preceding year prior knowledge (PYear) rep-
resents a myopic view of climatic conditions.
Under this prior knowledge the decision maker
is assumed to expect the present year's climatic
conditions to be identical to the preceding year.

The distributions presented in table 1 were
generated as follows. First a set of decisions
for each combination of state variables at every
stage must be determined given a particular
prior knowledge scenario. To facilitate this de-
termination of decisions, the DP model is used
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Table 2. Lower and Upper Bounds on the Val-
ue of Perfect Seasonal Forecasts Using SSD
in Dollars per Hectare per Year

Prior
Knowlege Lower Bound Upper Bound

P1983 0.00 68.48
P1979 44.15 218.14
PYeara 70.36 218.14
PHist 44.95 218.14

a Based on thirteen observations; the year 1970 was dropped from
the perfect information distribution.

to obtain the decisions. 5 Using the climate
probabilities associated with a given prior
knowledge, a set of production practices based
on the maximization of expected net returns
is determined. These practices for PHist,
P1983, and P1979 are fixed between years.
The practices associated with PYear vary de-
pendent on the previous year. Each prior
knowledge scenario allows for intrayear ad-
justment of input levels based on the current
state of the system. Past climatic conditions
and management decisions determine the cur-
rent state. These intrayear input adjustments
are based on the expectation that the climatic
conditions from the current stage to harvest
are given by the assumed prior knowledge. The
yearly net returns are then obtained by sim-
ulating the production practices associated with
a particular prior knowledge over the actual
climatic conditions that occurred during the
years 1970-83. These simulated net returns are
presented in table 1.6 The simulation proce-
dure utilizes the Markov structure of the DP
model, that is, the simulation is of the DP
model itself. The perfect information distri-
bution of net returns is generated using the DP
model and assuming perfect knowledge of each
year's climatic conditions.

Lower and upper bounds on the value of

5 As noted by a reviewer the derivation of decision rules with a
risk-neutral DP model may introduce some bias into the results.
But incorporating risk into the DP model would require that an
exact utility function be specified; thus, the use of stochastic dom-
inance would be unnecessary. The DP model was used to specify
the decision rule because of the large number of decisions necessary
with simulating a four-state variable DP model. Also using the DP
model allows for intrayear updating in the decision rules.

6 The mean net return value for P1979 is slightly higher than
PHist because, when climatic conditions are good, P1979 results
in a higher net return than PHist but, when climatic conditions
are poor, both prior knowledge scenarios result in approximately
the same net returns. This is reflected in that P1979 is slightly
more negatively skewed than PHist (-2.82 to -2.41).

Table 3. Lower and Upper Bounds on the Val-
ue of Perfect Seasonal Forecasts Using GSD
and Various Risk Aversion Levels in Dollars
per Hectare per Year

Bounds on r(x)
Prior

Knowl-
edge

.00 to .001 .00 to .005

Lower Upper Lower Upper

P1983 65.00 66.50 54.75 66.50
P1979 44.50 51.00 44.50 105.50
PYear 70.50 77.25 70.50 125.50
PHist 46.00 53.50 46.00 108.75

.00 to .01 .00 to .025

Lower Upper Lower Upper

P1983 31.50 67.00 1.50 67.25
P1979 44.50 186.25 44.50 218.00
PYear 70.50 191.50 70.50 218.00
PHist 46.00 187.00 46.00 218.00

.001 to .005 .005 to .01

Lower Upper Lower Upper

P1983 54.75 65.25 31.50 55.00
P1979 51.00 105.50 105.50 186.25
PYear 77.50 125.50 125.50 191.50
PHist 53.50 109.00 108.75 187.25

-. 001 to .001 -. 001 to .005

Lower Upper Lower Upper

P1983 64.75 67.25 54.75 67.75
P1979 40.00 51.00 40.00 105.50
PYear 65.50 77.25 65.50 125.50
PHist 40.75 53.25 40.75 108.75

a Based on thirteen observations; the year 1970 was dropped from
the perfect information distribution.

seasonal climate forecasts generated for SSD
and GSD are given in tables 2 and 3, respec-
tively. The bounds presented on these tables
illustrate that both assumptions on prior
knowledge and risk preferences affect the value
of seasonal climate forecasts. For comparison
purposes, the value of seasonal climate fore-
casts under the assumption of risk neutrality
is given in table 1 in the row denoted as
E(value).

In making the pairwise comparisons, cau-
tion should be exercised when sample sizes
differ, particularly when one of the distribu-
tions is expected to dominate in a first-degree
sense like the perfect forecast. Inclusion of ad-
ditional observations may result in the esti-
mated cumulative distribution functions dis-
playing a relationship which is theoretically
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impossible. A common practice to avoid this
problem is to standardize sample sizes. Hence,
in the pairwise comparisons involving the per-
fect forecast and PYear, the cumulative dis-
tribution functions have been constructed with
only thirteen observations. The year 1970 was
dropped from the perfect forecast distribution.

SSD is considered a criterion with weak
powers of discrimination in that it is based on
a relatively few constraints. The only assump-
tion placed on the utility functions when using
SSD is that the function displays risk aversion.
Results in table 2 indicate that for decision
makers displaying risk aversion, the value of
perfect seasonal climate forecast ranges from
$0.00 to $218.14 per hectare per year, de-
pending on the prior knowledge scenario. For
risk neutrality the range on the value of perfect
forecasts is $44.36 to $70.34 per hectare per
year. The differences in the ranges indicate that
when risk preferences are taken into account,
the value of climate forecasts may differ dras-
tically from the risk-neutral case. A decision
maker may be willing to pay a high premium
for information that reduces the probability of
low net returns. The converse is also true, that
is, with certain utility functions a decision
maker may not be willing to pay for any ad-
ditional information.

The bounds in table 2 also illustrate one of
the problems associated with the ability of SSD
to discriminate and rank alternative distribu-
tions. The SSD admissible class of risk pref-
erences is large and quite heterogeneous. It in-
cludes all risk-averse preferences and hence
imposes a necessary condition that the lowest
net return of the dominant distribution not be
less than that of the unpreferred distribution
(Anderson). This is often referred to as the left-
hand tail problem because it places emphasis
on the lower tails of the cumulative distribu-
tion functions under consideration. In the case
of valuing information, this may lead to in-
accurate estimates of the value of information
if the most risk-averse preferences contained
in the admissible class are not representative
of decision makers' risk attitudes.

In all cases presented in table 1, the lowest
net return is associated with the year 1983.
The criterion of SSD gives as either the lower
or upper bound the difference between the net
returns associated with the year 1983 for per-
fect knowledge and for prior knowledge. This
is because of the inclusion of maxi-min pref-
erences in the class of admissible utility func-

tions. Using prior knowledge P1983, this dif-
ference is zero and represents the lower bound.
For the remaining prior knowledges the dif-
ference between the smallest net returns is
$218.14, and this represents the upper bound.
Because of the left-hand tail problem and the
low likelihood that the extreme risk-averse
preferences allowed in the SSD-admissible class
are truly relevant, GSD is often used in applied
work (King and Robison 1984).

Table 3 gives lower and upper bounds on
the value of perfect seasonal climate forecasts
using GSD and different bounds on the risk
preference function, r(x). The bounds on this
function r,(x) and r2(x) can be set by assump-
tion, using an interval elicitation procedure
(King and Robison 1981) or inferred from em-
pirical studies (Raskin and Cochran). Because
the exact values for r (x) and r2(x) are not usu-
ally known, sensitivity analysis on these values
is necessary. In addition to providing this sen-
sitivity analysis, changing the values for rl(x)
and r2(x) allows for the investigation of pos-
sible relationships between the risk preference
function and the value of climate forecast.

Recall that the interpretation of the risk pref-
erence function is as follows. An r(x) value of
zero implies risk-neutral preferences. Positive
values of r(x) imply risk-averse preferences,
with larger positive values relating to stronger
risk aversion. Negative values for r(x) corre-
spond to risk-preferring preferences. Stronger
risk-preferring behavior corresponds to larger
(in absolute value) negative risk preference
functions. The preference function can be in-
terpreted as the percent change in marginal
utility per unit of net return (Raskin and Coch-
ran).

The results presented in table 3 suggest that
both the prior knowledge assumed and risk
aversion level affect the value of climate fore-
casts. For example assuming prior knowledge
(P1983) and the bounds on r(x) of 0.00 to .001,
the value of perfect climate forecast ranges be-
tween $65.00 to $66.50 per hectare per year,
whereas assuming prior knowledge (PHist) the
value ranges between $46.00 to $53.50 per
hectare per year. Changing the bounds on r(x)
to .005 and .01, the value of the forecasts ranges
between $31.50 to $55.00 per hectare per year
and $108.75 to $187.25 per hectare per year
for P1983 and PHist, respectively. These ex-
amples illustrate that the risk preference of the
decision maker affects the value of climate
forecasts.
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Information is often characterized as a risk
reducing input. But as a decision maker be-
comes more risk averse, he/she will not always
be willing to pay more for the information and
reduce his/her exposure to risk. Information
does not always behave in such a monotonic
fashion (Hilton). Results in table 3 indicate
that, at a minimum, the decision maker's prior
knowledge and risk preferences must be con-
sidered in determining the value of informa-
tion. As the decision maker's risk aversion in-
creases, the value of the perfect climate
forecasts does not always increase.

Using prior knowledge P1983, an increase
in the decision maker's risk aversion leads to
a decrease in the value of the climate forecasts.
For the remaining prior knowledges, an in-
crease in the decision maker's risk aversion
leads to an increase in the value of the climate
forecasts. This converse finding is explained
by examining the nature of the prior knowl-
edges. Recall that P1983 is a strategy that pro-
tects the decision maker from extremely low
net returns. Risk-averse decision makers can,
in general, be characterized as guarding against
low net returns. Therefore, a highly risk-averse
decision maker following a decision strategy
that mitigates the potential for low net returns
will value climate forecasts less than a less risk-
averse decision maker following the same
strategy. The remaining prior knowledges do
not guard against the low net returns (namely
the climatic conditions occurring during the
year 1983). As risk aversion increases, a de-
cision maker following the decision strategies
associated with the remaining prior knowl-
edges places a higher value on the climate fore-
casts. These empirical results are consistent
with Hilton's theorem that "there is no mono-
tonic relationship between the degree of ab-
solute or relative risk aversion and the value
of information" (p. 60).

Several other observations based on the
ranges presented in tables 2 and 3 can be made.
Most of the previous studies on valuing cli-
mate forecast have assumed risk neutrality.
These studies may have been over- or under-
estimating the value of information depending
on the interaction between the producer's risk
aversion level and prior knowledge decision
rule. If the decision maker is risk averse but
follows a decision rule similar to the two more
optimistic rules, PHist or P1979, assuming risk
neutrality may underestimate the value of the
forecasts. This is because the value of the fore-

casts under risk neutrality ($45.99/ha/yr for
PHist and $44.36/ha/yr for P1979) is either at
or below the respective lower bound on the
value of forecasts obtained from GSD. But if
the risk-averse decision maker follows a more
conservative decision strategy, for example
P1983, the value of the forecasts from assum-
ing risk neutrality ($66.04/ha/yr) is always
closer to the upper bound than the lower bound
obtained from GSD. In this case assuming risk
neutrality may lead to an overestimate of the
value of climate forecasts. Second, allowing for
risk-preferring behavior [a negative r(x)] in
general decreases the lower bound on the value
of the climate forecasts (table 3).

Conclusions

A procedure to obtain lower and upper bounds
on the value of information with an inexact
representation of risk preference is presented.
This procedure is contrasted with the more
traditional decision-analytic approach to valu-
ing information. With the problems associated
with eliciting risk preferences, the stochastic
dominance procedure gives reasonable bounds
for the different classes of risk preferences.
These bounds provide more information than
the single point estimate associated with tra-
ditional decision analysis approach, in that
classes of utility functions can be considered
instead of one specific utility function. Empir-
ical results illustrate that the type of manage-
ment strategy given by a decision maker's prior
knowledge interacts with his/her risk prefer-
ences in determining the bounds on the value
of climatic information.

The results indicate that previous studies
may have been either over- or underestimating
the potential value of climate forecasts to a
decision maker. This inconclusive result oc-
curs because of our lack of knowledge on the
producer's risk aversion level and prior knowl-
edge decision rules. The results here suggest
that more research is necessary to further our
knowledge in valuing information in general
and climate forecast in particular. Finally, the
value of the forecasts presented in this study
pertains only to an individual corn producer
and does not account for possible market ef-
fects (Mjelde et al. 1988).

[Received January 1988; final revision
received September 1988.]
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