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Price Forecasting with Time-Series
Methods and Nonstationary Data:
An Application to Monthly

U.S. Cattle Prices

Hector O. Zapata and Philip Garcia

The forecasting performance of various multivariate as well as univariate ARIMA
models is evaluated in the presence of nonstationarity. The results indicate the
importance of identifying the characteristics of the time series by testing for types of
nonstationarity. Procedures that permit model specifications consistent with the

system’s dynamics provide the most accurate forecasts.
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The presence of nonstationarity and its treat-
ment complicate the measurement and use of
vector autoregressive (VAR) models. Near the
unit circle, conventional estimation proce-
dures can underestimate the parameter space.
Differencing, a standard approach for reducing
nonstationarity, can distort multivariate in-
teractions and cause forecasts to diverge ap-
preciably from actual values (Liitkepohl;
Granger; Engle and Granger).

Methods for forecasting with multivariate
autoregressive models in the presence of non-
stationarity are in their infancy (Stock and
Watson). Several approaches have appeared
that are applicable to the nonstationarity prob-
lem, including estimation in differences, use of
Bayesian VARSs that shrink the parameter space
to the first-differenced framework, and use of
error correction models. No single empirical
approach for treating the nonstationarity prob-
lem has been clearly articulated. However, the
literature comparing the forecasting effective-
ness of these approaches in the presence of
nonstationarity is limited.

The objective of this paper is to evaluate the
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forecasting performance of various multivari-
ate (VAR with and without differenced data,
Bayesian VARs (BVARs), and an error cor-
rection model) as well as univariate time-series
models in the presence of nonstationarity. Spe-
cifically, the accuracy of these approaches for
forecasting monthly U.S. prices of slaughter
steers (hereafter, cattle price) is examined.
Forecast performance is assessed using the root
mean-squared error (RMSE), a MSE decom-
position, and turning point analysis. Charac-
teristic roots of selected models are calculated
to examine the stationarity question in more
depth.

Vector Autoregressive and Error
Correction Models

Among the class of stationary vector stochastic
processes, VAR models are of considerable in-
terest for economic forecasting. The estimable
form of a k-dimensional VAR(p) process is

(1) Y) = C + ZA4Y( — j) + e),
t=12,...,T,

where Y(¢f)is a vector of stationary time series
such that Y(¢) = [1 — B]“X(¢); Bis the backshift
operator; d is the order of integration; X(¢) is
a vector time series in levels; Cis a determin-
istic component; 4,, ..., 4, are (k x k) ma-
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trices of the unknown parameters, j = 1, 2,

., p;and e(®) = (e\(t), . . ., et)) are vectors
of stationary disturbances.

The stationarity properties of process (1) re-
quire that the roots (u) of the characteristic
equation [det(Iy» — Aw~! — ... 4,) =0] be
equal to one, with roots less than one in ab-
solute value being assumed otherwise (Paul-
sen). When all the roots in the characteristic
equation are less than one, the vector X(¢) is
integrated of order zero, i.e., X(t) = Y(t) ~
I(0). When X(2) is I(0), the process has a zero
mean and finite variance, the effect of an in-
novation on the value of the process is tem-
porary, the spectrum of X(¢) is finite and pos-
itive, the expected length of time between
crossing of X(¢) at the mean is finite, and the
autocorrelations decrease steadily in magni-
tude for large enough lags so that their sum is
finite (e.g., Engle and Granger). In the presence
of unit roots, however, the order of integration
is greater than or equal to one and the vector
X() is integrated of order d, i.e., X(t) ~ I(d),
and the above properties do not hold.

The practical consequences of nonstation-
arity can be severe. The estimation of VARs
generally is performed by applying linear least
squares (LS) separately to each equation of (1).
The estimated coefficients may be imprecise
because conventional procedures appear to
underestimate the parameters near the unit cir-
cle. Since predictions are conditional on the
estimated parameters, the forecasts from a
VAR are likely to be suboptimal especially for
multistep horizons (Engle and Yoo0).

When the vector of time series in (1) is I{d),
the series may be cointegrated. Engle and
Granger develop the relationship between
cointegration and error correction models sug-
gesting that if each of the components of X(¢)
first achieves stationarity after differencing, but
a linear combination o' X(¢) is already station-
ary, the time series, X(¢), are cointegrated with
a cointegrating vector, «. Cointegration im-
plies that even when the individual series are
nonstationary with an infinite variance, there
exists a long-run equilibrium, o/ X(¢) = 0, such
that its deviations are stationary with finite
variances. When the system is cointegrated and
there is a need for an error correction mech-
anism, the long-run forecasts are tied together
regardless of the individual forecast behavior.

The error correction representation of the
VAR model in (1) is
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2) YO)=C+Z4* Y(t — ))
— gzt — 1) + e(),
t=12,...,7,

where g is a parameter, and z(¢) = o' X(¢). This
representation contains the differences as well
as the levels of the data [X(?)] as independent
variables. When the series are cointegrated, the
levels of the variables are significant and a VAR
in differences is misspecified; a VAR estimated
on levels of the data omits the cointegration
constraints.

Estimation of the error correction model uses
a two-step asymptotically efficient procedure
(Engle and Granger). First, « is estimated by
a cointegration regression which specifies the
dependent variables as a function of concur-
rent explanatory variables. The estimate of «,
&, then is used in estimating (2). The estima-
tion procedure again is LS.

Engle and Granger propose a set of statistics
for testing the null hypothesis of noncointe-
gration against the alternative of cointegration.
The procedures applied here test for unit roots
(Dickey and Fuller) and for the importance of
parameters unidentified under the null. Criti-
cal values are provided in Engle and Yoo.

The application of the Engle and Granger
test procedures is not foolproof for identifying
cointegrated models. For example, in small
sample sizes (less than 150 observations) they
may exhibit a fairly low ability to discriminate
between the various hypotheses, particularly
with multiple variables (Stock and Watson).
Hence, an evaluation of cointegration models
should include an assessment of their forecast
accuracy.

Bayesian VAR Analysis

The application of Bayesian methods to VARs
was introduced to mitigate the VAR overpa-
rameterization problem.! Through the use of
symmetric and/or asymmetric prior infor-
mation on the variables in (1), the procedure
attempts to enhance forecast accuracy. In prac-
tice, a search process, based on minimizing
out-of-sample prediction errors in a prefore-
cast period, is used to specify the particular
characteristics of the prior information. These

! Details can be found in Litterman and in Bessler and Kling.
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priors are employed to generate subsequent
forecasts. ‘

The method begins by specifying a nonin-
formative (flat) prior around a deterministic
(intercept) component, the value of which is
determined by the data. The estimator im-
poses the information that a random walk
around an unknown deterministic component
isareasonable approximation for the behavior
of an economic variable. For the ith equation
in a p-order autoregression on the current ob-
servation, X(¢), this prior is specified as

(3 X =c+ Xt - 1)+ e@).

Denoting the lagged values of X (X,;) as a ma-
trix (W), equation (1) for the ith equation in
levels can be written in vector form as,

@ X=Wa+e, i=12... 0k

where X;is (t x 1), W{ x (k + p + 1)), 4,
(k+p+ 1) x1)ande (t x 1).

The prior information is included using sto-
chastic linear restrictions

&) RA, =71+,

where the characteristics of R; describe the
tightness of the priors (\), the decay parameters
of the lagged variables (f), and the degree of
interaction (w) permitted among the variables
in the system. The mean of the A4;s is zero
except for the first lag on the dependent vari-
able in the ith equation, which is one; this is
specified in the column vector, r;

Equations (4) and (5) are estimated using the
Goldberger-Theil mixed estimator with the
prior centered on one. When estimating in
levels, the specification permits a restricted
nonstationary behavior. The limiting case is
where the unit root equals one and the data
behave as a pure random walk. As an alter-
native in the presence of nonstationarity, the
individual series can be differenced and the
prior centered on zero, the mean of the differ-
enced data. However, as suggested by Liitke-
pohl and by the cointegration model, differ-
encing of the data can distort the multivariate
interaction. The extent to which differencing
improves forecasting likely depends on the na-
ture of the underlying series and the ability of
the Bayesian priors to reflect the nonstation-
arity in the data. Tests for the presence of unit
roots and for the existence of the cointegration
model may provide insight into the effects of
differencing in the Bayesian framework.
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Projections are generated using the estimat-
ed coefficients according to the “Chain Rule
of Forecasting” (e.g., Wold). The forecasting
procedure used for BVARs is applicable to
VARs and the error correction model.

Evaluation Procedures

The quantitative evaluation of the forecast
methods uses the RMSE criterion. A MSE de-
composition that separates the sources of fore-
cast error into its bias, regression, and distur-
bance components also is employed. The bias
and the regression components (the systematic
errors) measure deviations from the optimal
predictor, i.c., they are zero for the optimal
predictor. The disturbance component mea-
sures the unsystematic deviations in the pre-
diction errors (Granger and Newbold).

As a qualitative measure, a turning point
(T'P) criterion (Naik and Leuthold; Kaylen and
Brandt) is used. The measure relies on a (4 x
4) contingency table to distinguish “peak 7P
from “trough TP and “upward no TP from
“downward no 7TP.” The two measures of in-
terest are the accurate and worst forecast ra-
tios.

Finally, the characteristic roots for several
models are calculated. Stationarity requires that
the characteristic roots are less than one in
absolute value.

Model Specification

The VAR model specification for cattle prices
is based on the econometric model of Garcia
et al. The underlying principles used in con-
structing the VAR model rely on Zellner and
Palm who showed that it is possible to derive
multiple time-series processes from dynamic
econometric specifications by imposing appro-
priate restrictions. The monthly price of cattle
(slaughter steers, $/cwt., choice, 1,100-1,300
Ibs., Omaha) (PC); average price of feeder steers
($/cwt., eight-market average) (PFS); and per
capita income in dollars (PCI) comprise the
information set for the trivariate VAR models.
The multivariate interaction between these se-
ries can be visualized as follows. Feeder steers
are a main input in the production process for
feedlot operations; thus, their price directly af-
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fects production decisions.? The relation of PFS
and PCis recursive through an underlying sup-
ply equation. Demand forces affecting PC are
reflected through PCIL.

Prior to the empirical model specification,
the stationarity of the time series was analyzed.
Visual inspection and analysis of the autocor-
relation functions for the raw (levels) data on
PES and PCI suggested a nonstationary be-
havior similar to that of the PC series. The
Dickey and Fuller test for nonstationarity for
each series was applied by regressing the levels
of the dependent variable on a lagged level and
a lagged change of the dependent variable, i.e.,
the equation for PC(f) was PC(t) = APC(t —
1), APC(t — 1)) + e(t), where A = (1 —B). The
values of the ¢-statistics for PC(¢— 1), PFS(t—1),
and PCI (t — 1) from each equation were
—2.21, —1.93, and 1.15, respectively. When
compared with the critical value at the 5%
level of —3.17 (see Fuller, table 8.5.2), one fails
to reject unit roots, indicating that all series
are integrated of order one, I(1).

To test whether taking second differences to
induce stationarity is necessary, the second dif-
ferences of the dependent variables were re-
gressed on lagged first differences and two lags
of second differences, i.e., the equation for PC(?)
was A2PC(t) = IAPC(t — 1), A?PC(t — 1),
A2PC(t — 2)) + e(t). The t-statistics for the
lagged first differences from each equation were
—6.26, —9.10, and —8.43 for PC(t), PFS(?),
and PCI(¢), respectively, indicating that first
differences of each series are stationary.

The objective of the analysis is to assess the
forecast performance of various multivariate

models in the presence of nonstationarity.

Consequently, both the raw and first-differ-
enced data are used in most of the subsequent
analyses.

The specification process for the various
models differs in complexity. The multiple fi-
nal prediction error (FPE) permitting a max-
imum lag length of six was used to identify the
VAR (Akaike). This approach selected models
of order two for both the raw (VAR2R) and
differenced (VAR2D) data.

Identification of nonstationarity in the series
suggests the possibility of a cointegrated sys-
tem (Engle and Granger). The procedure used
here to assess the appropriateness of the coin-
tegration framework consists of three tests

2The price of corn, the main feed ingredient, did not prove
significant in any of the estimations. This result is consistent with
Garcia et al.
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based on a series of regressions: the Durbin
Watson (DW), the augmented Dickey and
Fuller (ADF), and the Dickey and Fuller (DF)
(table 1).3 First, a cointegrating regression for
PC on concurrent values of PFS and PCI and
a constant was run (table 1, column 2). The
t-statistics for these coefficients were 15.97,
5.01, and 6.63, respectively, with an R? of .89.
However, with a DW statistic of .28, one fails
to reject noncointegration at the 5 % level (crit-
ical value: .386)

Next, the change in the residuals from the
cointegrating equation (AEPC) was regressed
on past levels of the residuals (EPC(t — 1))
and lags of their changes (AEPC(t — 1), AEPC{(¢
— 2)). For a cointegrated system the value of
past levels of the residuals is significantly dif-
ferent from zero; this is the ADF test. The
results from this equation (including addition-
al lagged changes does not alter the results)
were —4.20, 2.91, and 2.14, respectively (table
1, column 3), indicating the possibility of coin-
tegration (critical value at 5% level: 3.93). Fi-
nally, because the lagged changes were not sig-
nificant, the change in the residuals from the
cointegrating equation were regressed only on
their past levels. Finding a significant value of
the past levels indicates a cointegrated system;
this is the DF test. A t-statistic of —2.79 for
the cattle price equation (table 1, column 4)
indicates that at the 5% level one can reject
cointegration. When the regressions were run
with PFS and PCI as dependent variables, the
magnitudes of the statistics changed some-
what, but the conclusion was to reject coin-
tegration.

While the tests suggest that the error cor-
rection model is not appropriate, its estima-
tion and forecasting were carried out to assess
the robustness of the testing procedure and to
ascertain its forecasting accuracy. An unre-
stricted autoregression of changes in PC(?), i.e.,
APC = Y(t), on lagged levels of PC(t), PFS(¢),
and PCI(f), and two lags of changes of these
three variables was estimated (table 1, column
5). All the lagged levels and the first lag of the
changes of PC were significant. The signifi-
cance of the lagged levels indicates an error
correction term estimated from the cointegra-
tion regression along with the first lag of the
changes of PC needs to be included in devel-
oping the final model. Beginning with this error

3 Error correction specifications were estimated for the other two
variables. They are not presented for purposes of brevity. Details
of these and other specifications can be obtained from the authors.
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Table 1. Regressions of Cattle Prices (PC) in the Cointegration Analysis
Dependent Variables»c
Independent Variables® PC AEPC AEPC ARC APC
PFS 0.60
(15.97)
PCI 1.39
(5.01)
PCit - 1) -0.24
(3.54)
PFS(t — 1) 0.11
(2.36)
PCIt — 1) 0.48
(2.28)
EPCt— 1) -0.22 -0.14 -0.23
(—4.20) (-2.79) (—3.52)
APCE - 1) 0.36 0.44
2.77) (3.02)
APC(t — 2) 0.15
(1.14)
APFS(t — 1) 0.06
(0.51)
APFS(t — 2) ~0.01
(—0.10)
APCI(t — 1) -0.54
(—0.08)
APCI( - 2) —4.49
‘ (—0.65)
AEPC(t — 1) 0.27 -0.05
(2.91) (—0.26)
AEPC(t — 2) 0.21 0.13
(2.14) (1.03)
Constant 11.48 3.56 0.16
(6.63) (2.53) (0.66)
o 4.02 1.93 2.04 2.51 - 2.47
DW 0.28 1.89 1.48 1.93 1.95

2 The regressions are: the cointegration regression, the augmented Dickey-Fuller test, the Dickey-Fuller test, an unrestricted VAR, and
the final model, respectively. AEPC represents the changes (A) in the residuals (E) from the cointegration regression (PC), and APC

represents the changes in PC.

v PFS is the price of feeder steers, PCI is per capita income; { — 1 and ¢ — 2 are lags 1 and 2, o is the regression standard error, and

DW is the Durbin-Watson statistic.
< t-statistics are in parentheses.

correction formulation, a specification search
that examined the effects of adding lagged
changes of the residuals from the cointegration
on the residuals of the error correction model
was performed. Based on diagnostic checks of
the autocorrelations and partial autocorrela-
tions of the residuals in the error correction
model (Granger and Weiss), the final specifi-
cation for the cattle price equation was

APC=C + B+ EPC(t — 1)
+ B+ AEPC(t — 1)
+ B,+AEPC(t — 2)
+ B, = APC(t — 1) + e(p),

()

where APC represents the changes in PC, Cis
a constant, EPC represents the residuals from
the cointegrating regression, and AEPC de-
notes the changes in EPC.

Implementation of the Bayesian procedures
also is rather complex. The specification of the
symmetric prior Bayesian model used the Jan-
uary 1983 to December 1983 (preforecast)
period to evaluate the out-of-sample forecast
ability of the VAR2R model for values of f; w,
and )\ over the unit cube. The search was con-
ducted using intervals of size .09 starting with
.01 under a geometric lag-decay specification.
The three-dimensional symmetric search re-
sulted in the minimum value for the log de-
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Table 2. Optimal Weights w(i, ) for the Asymmetric Prior, Bayesian VAR of Order 2 for Raw
(ABVAR2R) and First-Differenced (ABVAR2D) Data*

Variables
ABVAR2R ABVAR2D
Equation PC PFS PCI PC PFS PCI
PC 1.000 0.800 0.001 1.000 0.001 0.010
PFS 0.500 1.000 0.001 0.500 1.000 0.010
PCI 0.001 0.001 1.000 0.001 0.001 1.000

2 The symmetric weights for ABVAR2R and ABVAR2D models are (/' = .55, w = .28, 2 = .10) and (f = 1.0, w = 1.0, A = .01),
respectively, where fis the decay parameter of the lagged variables, w measures the degree of interaction among variables in the system,
and A is the tightness parameter. See table 1 for definitions of the variables.

terminant of the out-of-sample (twelve-steps-
ahead) forecast error covariance (LNDFE) at
(f= .55, w=.28,A=.10).4

Previous research has demonstrated that
identifying asymmetric multivariate interac-
tions can result in more accurate forecasts
(Bessler and Kling). Here, the asymmetric
behavior is formulated as a combination of
purely instrumental (data search) and subjec-
tive (expected economic relationships and cor-
relation between variables in the VAR model)
decisions. The optimal values (A = .10, f = .55)
of the overall tightness and decay parameters
previously identified were maintained. The
asymmetric tightness parameters for w(j, j) were
specified as follows. First, if / = j then w took
a value of 1.0; second, for PCI a search was
conducted for the asymmetric weights, w(i, j),
over the interval .001 < w(i, j) < 1.0 for the
other two variablesin an equation. This search
was based on the idea that it is reasonable to
expect income to affect the level of cattle prices
because income is an important determinant
of consumer demand, but it is questionable
that cattle prices affect the level of income to
the same degree. Similarly, the price of feeder
steers affects the price of cattle from the pro-
duction side, suggesting a high degree of in-
teraction between these two series (i.e., the two
variables are highly correlated). Again, it does
not seem reasonable that PFS would have
much impact in terms of determining income
levels.

The minimum RMSE was used as decision
rule to select the optimal weights, w(j, j). The
primary reason for using the RMSE is that

* *The use of harmonic lag specifications did not improve the
forecast accuracy of the Bayesian models. Also, in general, the
values for LNDFE revealed a very flat structure; hence, searching
about the neighborhood of the optimal weights was not considered
necessary.

forecasts for PC (rather than all the variables
in the system) were of interest.” The optimal
weights are presented in table 2 and labeled
ABVARZ2R, asymmetric Bayesian VAR of or-
der two using the raw data. The PC and PFS
equations carry half or more of the weight of
their own effect when they appear in the other
equation. PCI has almost no influence on these
variables.¢ For the PC equation, tight priors
around PC and PFS were identified.

The Bayesian specification of the first-dif-
ferenced model (VAR2D) followed the same
procedure except that the mean was centered
about zero. The three-dimensional symmetric
search resulted in the minimum value for
LNDFE at (f= 1.0, w= 1.0, A = .01) under a
geometric lag decay specification. The optimal
weights are presented in table 2 under
ABVAR2D, asymmetric Bayesian of order two
using first-differenced data.

The univariate time-series model used to
forecast monthly prices of cattle (PC) followed
Box and Jenkins; the model provides a basis
to evaluate whether more complex vector au-
toregressions increase the signal that can be
extracted about prices of cattle. Because of the
nonstationarity, first differences of monthly PC,
January 1975 to December 1983, were used
to identify and estimate alternative structures.
Based on analysis of the autocorrelations and
partial autocorrelations, an ARIMA(2,1,2) was
selected. The estimated equation is

5 At this point in the BVAR procedure, where the search com-
bines both instrumental (data search) and subjective decisions,
concentrating on the ability of the models to predict cattle prices
is a logical criterion, consistent with the objective of the analysis
and in keeping with the “spirit” of the search procedure. Hence,
the presentation concentrates on the forecast statistics for the cattle
price variable. However, see footnote 7.

¢ The optimal weights for the asymmetric models are consistent
with the variance decomposition of forecast errors during 1983.
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Table 3. Root Mean-Squared Errors (RMSE) and MSE Decomposition at One- to Six-Month
Forecast Horizons for Selected Models, U.S. Cattle Prices, 1984-85°

Forecast Horizon (months)

3 4 5 6

Model® 1 2
ARIMA(2,1,2) 2.44¢ 4.16 5.34 5.75 6.22 6.86
3.98 7.15 12.37 28.68 46.16 55.12
5.90 14.02 19.06 11.48 4.07 2.26
90.12 78.82 68.56 59.83 49.77 42.61
VAR2R 2.47 4.37 5.84 6.72 7.44 8.01
10.77 18.95 26.57 41.77 53.99 60.81
3.49 8.28 12.55 9.61 6.37 4.65
85.74 72.78 60.87 48.62 39.63 34.54
VAR2D 2.27 3.75 4.71 4.62 4.50 4.68
0.09 0.35 1.07 7.07 20.70 34.33
9.00 17.40 23.07 16.78 7.34 1.89
90.91 82.25 75.86 76.14 71.95 63.78
ERR CORR 2.48 4.36 591 6.49 6.51 7.35
8.38 6.82 9.82 21.49 31.26 36.58
3.51 20.03 30.84 - 28.29 25.49 25.03
88.10 73.15 59.34 50.23 43.25 38.39
ABVAR2R 2.46 3.95 4.83 4.88 4.95 5.22
0.03 0.08 0.79 4.97 12.29 17.78
2.54 10.14 16.39 12.69 7.91 6.15
) 97.43 89.78 82.83 82.34 79.81 76.07
ABVAR2D 2.42 4.06 5.24 5.58 5.96 6.60
1.01 2.64 5.58 16.65 32.54 44,51
10.05 21.47 29.58 25.44 17.29 11.89
88.94 75.88 64.84 57.90 50.17 43.60

= The mean and variance of cattle prices during the forecast period were $63.07/cwt. and $27.19/cwt., respectively.

* The models are, respectively, an autoregressive moving average; vector autoregressions of order two with raw and first-differenced
data; an error correction model; and asymmetric Bayesian vector autoregressions with raw and first-differenced data.

¢ The four numbers in each cell are the RMSE; and the bias, regression, and disturbance components of the MSE, respectively.

() (1 — 1.529B + .846B*(1 — B)PC,

[-14.88] [8.23]
= 241 + (1 — 1.276B + .549B%)z,
[1.15] [~8.20]  [3.53]

Q = (4.74, 12.44, 17.61, 19.40)

where B is the lag operator. The values in
brackets are z-ratios, and Q is the Q-statistic
(Ljung and Box) at lags 1, 7, 13, and 19, re-
spectively.

Evaluation

The out-of-sample RMSEs for selected models
at forecast horizons of one through six months
for the period January 1984 to December 1985
are provided in table 3. All forecasts were gen-
erated based on monthly updatings of the es-
timated models. The symmetric Bayesian
models’ results are not presented for purposes
of brevity but produced higher RMSEs and
larger biases than their asymmetric counter-

parts. This relative forecast improvement cor-
roborates previous research that suggests the
usefulness of the fine-tuned priors (Bessler and
Kling). The use of asymmetric priors appears
to be a rather comprehensive forecasting ap-
proach, permitting the researcher to identify
the specific set of weights that minimize the
forecast error. As suggested by Bessler and
Kling, their use is most likely to improve the
forecast performance in those cases where eco-
nomic logic and differences of the correlations
among the variables suggest the likelihood of
differential or asymmetric behavior.

The results indicate that the ARIMA spec-
ification provides relatively accurate forecasts
in the short term that tend to deteriorate at
longer horizons. In general, and in particular
at longer horizons, the VAR2D and the
ABVAR2R are the most accurate forecasters,
with the VAR2D performing the best. The
VAR2D model reduces the RMSE relative to
the ARIMA model by 6.97%, 9.86%, 11.80%,
19.65%, 27.65%, and 31.78% for one to six



130 July 1990

Western Journal of Agricultural Economics

Table 4. Turning Point Evaluation of the One-Month-Ahead Forecasts for Selected Models,

U.S. Cattle Prices, 1984-85

Turning Point

Model®

. Element® ARIMA VAR2R

VAR2D

ERR CORR  ABVAR2R ABVAR2D

F11
F12
F13
Fl14
F21
F22
F23
24
F31
F32
F33
F34
Fa1
F42
F43
Fa4
RAF
RWF

VOO OUNMOO~,OWOOWO =
OO WUMOONONOOROO

58
.00

.50
.00

s

OCO—OOUVMOORLOOOOROO

PO NJOOUNOO~RONOOROO
NOPOOUVMOOWO—LOO—OW
WO OOUnWOONONNOOMAROO

62
00

48
.00

.67
.00

.70
.00

= See table 3 for a description of the models.

v F, for i, j=1, 2, 3, 4 represents the ith row and jth column on a 4 x 4 contingency table that distinguishes the “peak turning point
(TP)” from “trough TP and “upward no TP from “downward no TP.”” RAF is a ratio of the accurate forecasts to the total, and RWF

is a ratio of the worst forecasts to the total.

months ahead, respectively. The VAR2R, in
the raw data, demonstrated the worst fore-
casting ability but was closely followed by the
error correction model.”

An assessment of the MSE decomposition
provides somewhat of a similar pattern in the
forecast performance. The ARIMA model be-
comes increasingly biased as the forecast ho-
rizons lengthen. For the VAR2D and the
ABVAR2R models, the bias component is
close to zero at the one- to three-month ho-
rizons. At longer horizons, the ABVAR2R
model, which registers the smallest bias com-
ponent, manifests about one-third of the bias
associated with the ARIMA specification.
Again, the VAR2R and the error correction
models perform poorly relative to the other
forecasting procedures.

The turning point evaluation (the one-month
horizon results are shown in table 4), in general
terms, demonstrates a similar pattern. The
VAR2D and the two asymmetric Bayesian
models followed the actual movements in the

7 The forecast accuracy of the various VARs for PFS and PCI
produces a similar ranking of the models. At the one-month and
six-month horizons, average RMSEs for PFS and PCI were 2.07,

5.45, and .07, .23, respectively. Their mean and variances for the.

forecast period were: PFS—$61.65/cwi., $13.20/cwt.; PCI—
$13,250 per capita, $324,962.18 per capita.

data most closely. However, the accuracy of
all models deteriorated significantly as the
forecast horizon increased. For example, the
maximum ratio of the worst forecasts to the
total forecasts for the six-month horizon was
.33 for the models in table 4.

To further examine the nonstationarity of
these models, the characteristic roots (CR) of
the VAR2R, VAR2D, and the ABVAR2R were
calculated (table 5). The application of least
squares to nonstationary data (VAR2R), which
leads to the worst forecasting performance, is
associated with unstable parameter estimates
(several CR greater than one). The estimation
ofthe VAR2D that provides the best forecaster
in terms of RMSE and is consistent with the
stationarity test results is associated with sta-
ble parameter estimates. Interestingly, the
Bayesian procedures applied to the nonsta-
tionary data, which forecast well in terms of
RMSE and minimize the bias proportion of
the prediction error, almost eliminate the in-
stability in the estimated parameters (i.e., all
the CR are less than or equal one in modules)
in this application.?

8 As pointed out by an anonymous reviewer, these results cannot
be generalized to all Bayesian estimations.
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Table 5. Characteristic Roots for Selected Models,* 1975-83
VAR2R ABVAR2R VAR2D
Root Real Imaginary Real Imaginary Real Imaginary

1 1.97 0.00 1.00 0.00 0.39 0.18

2 1.04 0.41 0.94 0.13 0.39 —-0.18

3 1.04 —-0.41 0.94 —0.13 0.32 0.00

4 —-0.07 0.11 0.10 0.00 -0.39 0.00

5 -0.07 —-0.11 0.03 0.00 -0.03 0.13

6 0.11 0.00 0.02 0.00 -0.13 —0.13

2 See table 3 for a description of the models.

Summary

Except in the very short run, VARs and BVARs
provide more accurate forecasts than the sim-
pler ARIMA specification—a finding consis-
tent with prior research (Bessler and Kling).
However, the accurate forecasting perfor-
mance of the VAR using differenced data
(VAR2D) is somewhat surprising. Tradition-
ally, VARs have not performed well relative
to other techniques. Proper identification of
the order of the model and the consistency of
the differencing procedure with the stationar-
ity and cointegration tests may, in part, explain
this result. Also, the limited model size (three
variables with an order of two) may have min-
imized the overparameterization problem often
associated with VAR estimation.

The poor performances of the VAR in the
raw data (VAR2R) and the error correction
models particularly at distant horizons verify
the importance of stability in the parameter
estimates and appropriate model specification.
Least squares estimation in the presence of
nonstationary behavior leads to unstable pa-
rameter estimates and inaccurate forecasts. The
forecast performance of the error correction
model corroborates the incompatibility of this
specification with the data, provides confi-
dence in the discriminating ability of the co-
integration procedures, and indicates here that
the differenced framework is not 1ncon31stent
with the dynamics of the system.

Finally, the results indicate the usefulness of
asymmetric priors in Bayesian analysis. For
the Bayesian models, the asymmetric specifi-
cations always resulted in lower forecast errors.
Interestingly, the relatively accurate perfor-
mance of the Bayesian VAR with asymmetric
priors in levels suggests its usefulness even in
the presence of the nonstationarity identified
in the testing procedures. In all likelihood, the

imposition of the asymmetric Bayesian priors
on the levels performed reasonably well by
permitting the estimated model to approxi-
mate the differenced specification.® This for-
mulation eliminates the need for filtering the
data and, therefore, transforming the forecasts.
It also avoids the possible distortion of the
multivariate interaction caused by differenc-
ing. Hence, the application of asymmetric
priors in a Bayesian framework appears useful
for improving forecast performance through
the search process that can identify multi-
variate interactions and permit parameter es-
timates that are fairly stable as prior infor-
mation is introduced.

Concluding Remarks

Several points emerge from the study. In the
presence of nonstationarity, appropriate iden-
tification of the characteristics of the data se-
ries is critical particularly when forecasting at
distant horizons. Testing for forms of nonsta-
tionarity and the existence of cointegration
models provides insight into the explicit na-
ture of the series. Straightforward model spec-
ifications consistent with the dynamic char-
acteristics of the systems can provide stable
parameter estimates and accurate forecasts.
Regarding the Bayesian models, the im-
proved performance of the asymmetric spec-
ifications indicates their usefulness even in the
presence of nonstationarity. Estimation of the
asymmetric Bayesian model in levels, which
also has been found to produce improved fore-
cast performance in other contexts, appears to
have avoided the possible distortions of the
multivariate interactions often induced by dif-

s We would like to thank an anonymous reviewer for suggesting
this explanation.
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ferencing. Here, the improved forecast perfor-
mance was related to the identification of the
multivariate interactions in a framework that
permitted the estimated model to approximate
the differenced specification.

Finally, further empirical research needs to
be performed addressing the issues related to
forecasting with multivariate models in the
presence of nonstationarity. These efforts will
permit a better understanding of the relation-
ship between the underlying characteristics of
the series and the relative forecasting effec-
tiveness of the techniques and procedures
identified here.

[Received February 1988; final revision
received December 1989.]
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