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Choice of Flexible Functional Forms:
Review and Appraisal

Gary D. Thompson

Choice between alternative flexible functional forms has received little explicit
treatment in many empirical agricultural studies. Theoretical criteria and empirical
techniques for choosing between flexible functional forms are reviewed. Theoretical
topics include definitions of flexibility, mathematical expansions, separability, and
regular regions. Empirical techniques examined are Monte Carlo analysis, parametric
modeling, bayesian inference, and nonnested hypothesis testing. Comparison of the
full range of theoretical and empirical aspects may provide more credible and reliable
empirical estimates when consumer or producer duality assumptions are appropriate

in agricultural applications.

Key words: duality, flexible functional forms, mathematical expansions,

nonparametric tests.

Choice of functional form has been a pressing
issue for empirical production and consumer
studies since the pioneering work of Douglas
(Cobb and Douglas, Douglas) and Stone. Tests
of the classical theory of the firm based on the
restrictive Cobb-Douglas production function
have been thoroughly criticized (Samuelson,
Simon). The development of flexible function-
al forms was driven by the search for func-
tional forms which imposed fewer maintained
hypotheses. The econometric limitations of the
Cobb-Douglas functions (Hoch), for example,
provided impetus for derivation of the CES
and other functional forms (Zellner and Re-
vankar). With the subsequent formalization of
the notion of flexibility (Diewert 1971), a large
set of flexible functional forms (FFF) has be-
come available to the empirical researcher (see
appendix).

In some empirical studies, the reasons for
choosing a particular flexible functional form
are not explicitly stated. Recent agricultural
production duality applications of FFF, for ex-
ample, have not addressed in detail the issue
of choice among alternative FFF (Antle; Lopez
1980; Shumway; Sidhu and Baanante; Weaver
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1983). Advocating that the choice of function-
al form should be treated explicitly in empir-
ical research, Griffin, Montgomery, and Rister
have identified and evaluated criteria for
choosing between competing functional forms
in production function analysis.

Following the Griffin, Montgomery, and
Rister prescription for treating the choice of
functional form explicitly, the focus of this pa-
per is on choice of FFF in producer and con-
sumer duality settings where cost, profit, or
indirect utility functions or systems of equa-
tions derived from these functions are to be
estimated. The scope of the paper is limited
to FFF because of their recent popularity in
applied studies which use duality theory. The-
oretical characteristics of FFF are first dis-
cussed, compared, and assessed. Empirical
techniques for choosing among FFF are then
reviewed and appraised. Conclusions regard-
ing the application of an empirical procedure
for choosing among FFF follow.

Pros and Cons of FFF

Duality theory advances have ushered in the
widespread use of FFF for a number of rea-
sons. First, with the satisfaction of regularity
conditions such as convexity (concavity),
monotonicity, and homogeneity, duality re-
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sults preclude the need for self-dual functions.
Further, the use of derivative properties— Ho-
telling’s and Shephard’s lemmas and Roy’s
Identity —allows for derivation of demand and
supply (or share) functions without solving an-
alytically for those functions. Comparative
statics are easily derived from the properties
of the parent indirect functions. Finally, FFF
have gained popularity because of the en-
hanced capacity of nonlinear estimation pro-
cedures for nonlinear-in-parameters equation
systems.!

Empirical use of FFF has certain drawbacks:
collinearity due to numerous terms involving
transformations of the same variables and in-
teraction among variables; failure to satisfy the
regularity conditions over the entire range of
sample observations; and, less important, dif-
ficulty in interpreting initial parameter esti-
mates. Estimation of nonlinear-in-parameters
systems may involve problems with conver-
gence and statistical theory (Lau 1986), while
interpretation of FFF as approximations to ar-
bitrary functions also may cause bias from an
estimation standpoint (White, Byron and Bera).

Difficulties in Comparing FFF

Aside from the relative advantages and dis-
advantages of FFF, choices between alterna-
tive FFF are seldom based on a comparison
of a full range of theoretical and empirical cri-
teria. Systematic comparison of FFF is beset
by many offsetting and sometimes conflicting
theoretical and empirical criteria. Consider, for
example, the conflict between parameter par-
simony (Fuss, McFadden, and Mundlak) and
order of expansion. A third-order expansion
of the utility function permits empirical tests
of propositions relating to partial strong sep-
arability, whereas second-order expansions
yield ambiguous test results (Hayes). Yet the
number of estimated parameters for a third-
order, translog indirect utility function could
be intractably large for all but the case of a few
goods. Thus, the theoretically desirable ability
to test more generalized notions of separability
may result in empirically undesirable phenom-
ena such as collinearity, reduced degrees of

! Nonlinear-in-parameters equation systems are common in
consumer analysis. Nonlinear systems are less common in pro-
duction applications. (See Just, Zilberman, and Hochman for a
production example.)
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freedom, and difficulty in interpreting individ-
ual parameter estimates.

Evaluation and comparison of FFF are com-
plicated further by use of FFF in consumer
and producer applications. Most empirical cri-
teria, such as parameter parsimony and ease
of interpretation, may not differ across appli-
cations; however, theoretical criteria are not
always consistent across consumer and pro-
ducer applications. For example, in produc-
tion applications an FFF which implies that
variable inputs are used when no output is
produced may not be acceptable if no produc-
tion lags are posited. Yet the same FFF may
be employed in consumer theory to assure con-
sistent aggregation across households (Lopez
1985, p. 596). Hence, an FFF which may be
restrictive in the producer context can be use-
ful for consumer applications.

Although no single FFF is unequivocally su-
perior with respect to all theoretical and em-
pirical criteria, systematic consideration of the
relative advantages of each may provide more
compelling grounds for choosing functional
forms. The list of theoretical and empirical
criteria discussed in the following sections is
not exhaustive, but it is a collection of various
criteria which appear not to have been con-
sidered together. The criteria can serve as a
checklist for the applied researcher to consider
in light of the particular empirical problem to
be analyzed. Note that FFF have been utilized
almost exclusively in duality applications.
Hence, the theoretical criteria are discussed
without restricting the implications solely to
consumer or producer duality.

The fourteen FFF selected for comparison
appear in the appendix. The generalized
Leontief and translog have been the most often
used FFF in empirical studies. The quadratic
mean of order rho, the generalized Cobb-
Douglas, and the generalized square root qua-
dratic may be categorized as embellishments
in the spirit of second-order approximations.
The minflex Laurent forms and the Fourier
form were introduced more recently in the lit-
erature to deal with difficulties in approxi-
mation and estimation. The generalized
McFadden, generalized Barnett, and general-
ized Fuss functions are the most recent addi-
tions to the FFF menu which were proposed
for their ease in imposing global curvature con-
ditions. Although some of the more recent FFF
nest the old FFF as special cases, the newer
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forms have been proposed to deal with defi-
ciencies in the older FFF.

Theoretical Criteria

Theoretical criteria for choosing among FFF
are distinguished by their ex ante role in the
choice of functional form (Lau 1986). In
econometric parlance, theoretical criteria are
a source of a priori restrictions regarding choice
of functional or algebraic forms for estimation.
Although microeconomic theory is nearly al-
ways augmented by the researcher’s familiarity
with the empirical application in forming a
priori restrictions on functional form, theo-
retical criteria are discussed per se in the fol-
lowing sections for expository purposes.

Definitions of Flexibility

The most fundamental comparison of FFF can
be made according to the two commonly used
definitions of flexibility. Griffin, Montgomery,
and Rister offer a comprehensive treatment of
flexibility criteria. The following brief discus-
sion of flexibility definitions is intended to
highlight the differences between notions of
local and global flexibility. Diewert (1971) for-
malized the notion of flexibility in functional
forms by defining a second-order approxi-
mation to an arbitrary function. In descriptive
terms, Diewert’s definition of a flexible func-
tional form requires that an FFF have param-
eter values such that the FFF and its first- and
second-order derivatives are equal to the ar-
bitrary function and its first- and second-order
derivatives, respectively, for any particular
point in the domain. Thus, Diewert’s flexibil-
ity definition refers to a local property. Any
FFF which satisfies this definition may be de-
noted Diewert-flexible. Of course, the deriv-
ative function of any indirect function (indirect
utility, cost, or profit function) will be approx-
imated only up to its first derivative evaluated
at any point (Chambers).

Gallant (1981) has proposed the Sobolev
norm as a more attractive measure of flexi-
bility than Diewert’s definition. The appeal of

the Sobolev norm is due to its measure of av- -

erage error of approximation over a chosen
order of derivatives. Sobolev-flexibility is a
global property, and any functional form dis-
playing this property will yield elasticities
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closely approximating the true ones (Elbadawi,
Gallant, and Souza).

Sobolev-flexibility is attractive because it
confers on the empirical model nonparametric
properties: (@) small average bias approxima-
tions (Gallant 1981); () consistent estimators
of substitution elasticities (Elbadawi, Gallant,
and Souza); and (c) asymptotically size « test-
ing procedures (Gallant 1982). Gallant main-
tains that Sobolev-flexibility asymptotically
removes the augmenting hypothesis that the
true model be a member of the family of models
used in the approximation analysis because the
Fourier form has desirable nonparametric
properties.

In mathematical and statistical terms, So-
bolev-flexibility appears to be a more attrac-
tive criterion than Diewert-flexibility. Yet the
relative complexity of specifying and estimat-
ing a Fourier form has probably contributed
to its use in relatively few applications.2 For
estimating the Fourier, theoretical issues re-
garding choice of sample size rules for speci-
fying the number of parameters to estimate as
well as order of expansion are not clearly set-
tled. Difficulties in the calculation of standard
errors for Fourier parameters also may cause
some reluctance to use the Fourier form. Thus
Diewert-flexibility is the more widely applied
definition primarily because of the ease in us-
ing FFF which satisfy Diewert’s definition
(column 1 of table 1).

Mathematical Expansions

Comparison of many FFF may be made on
the basis of the class of mathematical expan-
sions from which they are derived. None of
the definitions of flexibility limits FFF to func-
tional forms derived from an underlying math-
ematical expansion. However, many widely
used FFF may be treated as mathematical ex-
pansions about some arbitrary point.

The Taylor, Laurent, and Fourier expan-
sions each have been used to derive FFF. The
generalized Leontief, normalized quadratic,
and the transcendental logarithmic (translog)
functional forms may be interpreted as second-
order Taylor-series expansions about different

? Gallant, Chalfant and Gallant, Chalfant, Wohlgenant (1983,‘
1984) and Ewis and Fisher, appear to be the only readily accessible
studies during the period 1980 to 1985 which utilize the Fourier
form.
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points with different transformations of the
variables (Fuss, McFadden, and Mundlak;
Blackorby, Primont, and Russell).

Recognizing deficiencies in the Taylor-series
expansion as a generating function for FFF,
Barnett proposed the Laurent expansion for
which the remainder term varies less over the
interval of convergence (Barnett 1983). The
principal mathematical advantage of the Tay-
lor-series expansion is that its remainder term
converges to zero within the interval of con-
vergence as the number of expansion terms
increases. Although the Laurent remainder
term may not converge to zero at any point
within the interval of convergence, the Laurent
remainder term varies less within the same
interval than does the Taylor-series remainder
term (for Laurent and Taylor series of the same
fixed order of expansion).

The Fourier approximation, which provides
a global rather than a local approximation, is
the basis for a functional form proposed by
Gallant (1981). Although the logarithmic Fou-
rier form is composed of a second-order tran-
slog portion plus a trigonometric approxima-
tion, the Fourier offers fundamentally different
mathematical properties. Other types of math-
ematical expansions, such as the Muntz-Szatz
(Barnett and Jonas), have been developed the-
oretically but remain to be implemented em-
pirically. The type of mathematical expression
from which some FFF are derived is sum-
marized in column 2 of table 1.

Although each type of expansion possesses
some desirable characteristics, the Taylor-se-
ries expansion results in FFF which have fewer
unconstrained parameters than do the Laurent
or Fourier.> The minflex Laurents have the
same degree of “parametric freedom™ as the
translog and generalized Leontief because the
additional parameters are subject to inequality
restrictions (Barnett and Lee). The Fourier
functional form is not readily comparable be-
cause the number of estimated parameters must
be chosen according to a sample size rule to
assure consistent estimation (Elbadawi, Gal-
lant, and Souza) (column 3 of table 1).

Solely on the basis of mathematical expan-
sions, no particular FFF emerges as the most
attractive. Both Taylor- and Laurent-series ex-
pansions are Diewert-flexible (Barnett 1983),

3 The comparison of number of parameters is for second-order
expansions. ’
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whereas the Fourier is Sobolev-flexible.* From
a strictly mathematical standpoint, Laurent and
Taylor series may not provide accurate nu-
merical approximations if the data lie outside
the interval of convergence. The Fourier, in
contrast, provides a global approximation in
the sense that it minimizes average bias across
all data points. Regardless of the type of ex-
pansion, the order of the expansion required
to obtain a ‘“good” approximation is not
known; truncation error is a possible source of
error for Taylor-series, Laurent, and Fourier
expansions alike (Weaver 1983, 1984). Ac-
cordingly, third-order functions have been ad-
vocated and estimated (Dalal, Hayes). Hence,
the theoretical ability of each class of FFF to
approximate satisfactorily—whether locally or
globally—an arbitrary function is not guar-
anteed.

One caveat on comparing FFF in terms of
mathematical expansions is that not all FFF
are derived directly from a mathematical ex-
pansion. The generalized McFadden and gen-
eralized Barnett functions are not derived sole-
Iy from an underlying mathematical expansion
(Diewert and Wales). Neither of these two FFF
can be directly compared in terms of expan-
sion remainder terms even though each has
been proved Diewert-flexible.

Approximations vis-a-vis True Functions

In empirical studies, FFF have been treated
both as approximations to some unknown true
function and as true functions despite the fact
that Diewert-flexibility and Sobolev-flexibility
are notions based on approximations. How-
ever, interpretation of FFF as approximations
rather than as exact functions has generated
criticism in three areas: estimation, hypothesis
testing, and separability properties. The po-
tential bias of estimating FFF parameters with
ordinary least squares (OLS) on the basis of
approximations made at a particular point has
caused contention (White, Gallant 1981, By-
ron and Bera). Difficulties in making statistical
inferences on the basis of approximations also
occur in consumer demand applications
(Hayes, Simmons and Weiserbs). Separability
restrictions and tests for separability differ de-

4 Barnett (1983) notes that Gallant’s Fourier model has not been
proved to satisfy Diewert’s definition of flexibility. Gallant, how-
ever, asserts that the Fourier is Diewert-flexible in certain cases
(1981, p. 220).
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pending on whether FFF are treated as ap-
proximations or true functions.

Separability

The potential restrictions imposed by the sep-
arability properties deserve attention in em-
pirical studies utilizing FFF. Whether FFF
models are interpreted as exact functions or
approximations, separability restrictions are
essential for consistent aggregation, sequential
optimization, and specification of marginal
substitution relationships.

When common second-order FFF are in-
terpreted as approximations to an unknown
true function rather than as exact functions,
Blackorby, Primont, and Russell (1977) have
proved that such FFF are “separability-inflex-
ible.” For those second-order FFF, weak sep-
arability implies strong separability and, more
important, their weakly separable forms (see
column 4 of table 1) cannot provide second-
order approximations about an arbitrary point.
If the FFF is interpreted as an exact function,
then testing for the existence of an aggregate
input is also a test of homotheticity for the
aggregator function.

For production applications, Lopez indi-
cates that those second-order FFF which are
distinguished by a linear transformation of the
dependent variable, such as profit, imply a
special type of additive separability and quasi-
homotheticity restrictions (see column 5 of ta-
ble 1). Even when weak separability is not im-
posed by these linear dependent variable FFF,
the restrictions hold.’ Nonlinear FFF, which
are characterized by some nonlinear transfor-
mation of the dependent variable, do not im-
pose these restrictions.

When FFF are considered as approxima-
tions to some arbitrary function characterized
by particular properties, the implied separa-
bility restrictions are modified. For the second-
order translog approximation to an arbitrary
production function, Denny and Fuss prove
that the tests for weak separability do not im-
ply a test of strong separability. Hayes extends
the precision of the separability tests by deriv-
ing them from a third-order translog utility
function. A test for distinguishing between
weak separability and general partial strong

s In profit function applications, quasi-homotheticity implies that
the marginal rate of substitution between inputs is invariant to
output level. :
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separability is possible with Hayes’ third-order
model.

The separability properties of more recently
developed FFF, such as the minflex Laurents,
generalized Barnett, generalized McFadden
(Diewert and Wales), generalized Fuss (Die-
wert and Ostensoe), and biquadratic (Diewert),
have not been examined. The general qua-
dratic function separability results from
Blackorby, Primont, and Russell cannot be di-
rectly applied to all these newer FFF because
they are not solely quadratic functions. Rather,
some of these FFF may be considered as non-
negative sums of concave functions.

Global Regularity Conditions

Satisfaction of regularity conditions provides
another theoretical criterion for judging
whether alternative FFF conform to the prop-
erties of microeconomic theory. All but one of
the FFF considered here do not satisfy global
convexity (concavity) conditions. Only the
normalized quadratic is capable of satisfying
global convexity (concavity) restrictions with-
out additional constraints in estimation. The
capability of different FFF to satisfy regularity
conditions can be measured by regular regions.
Regular regions of different FFF are calculated
by fixing relevant elasticity values at some cho-
sen level and then determining the parameter
values for which the regularity conditions hold.
In general, the larger is the FFF’s regular region
for a given elasticity of substitution, the more
theoretically compatible is the FFF. If a priori
information exists about the magnitude of the
elasticities of substitution for a particular ap-
plication, size of the regular regions provides
a means for discriminating between FFF. More
usefully, over a wide range of substitution elas-
ticity values, a given FFF may have a larger
regular region than other FFF.

In what follows, regularity conditions are
referred to solely in terms of the indirect utility
function because all of the previous studies
have focused on this consumer case. Regular-
ity conditions are (a) monotonicity and (b)
quasi-convexity; homogeneity is customarily
imposed. Barnett, Lee, and Wolfe (1985, 1987)
have extended Caves and Christensen’s orig-
inal work to consider the three-good,
nonhomothetic case for the generalized Leon-
tief, translog, and minflex Laurent generalized
Leontief and minflex Laurent translog indirect
utility functions. The minflex Laurent models
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generally possess larger regular regions than
either the generalized Leontief or translog.s The
generalized Leontief and translog both have
large regular regions in the neighborhood of
their globally regular special cases—Leontief
and Cobb-Douglas, respectively—but their
regular regions diminish rapidly for elasticity
values diverging from these special cases. The
minflex translog tends to possess a larger reg-
ular region than the minflex generalized Leon-
tief except in cases where there is limited sub-
stitutability between pairs of goods (Barnett,
Lee, and Wolfe).

No studies have examined regular regions
for the consumer case of more than three goods
nor have production applications been ex-
plored. While the two-dimensional consumer
cases have an intuitively appealing interpre-
tation with indifference curves (see Caves and
Christensen), generalization of the regular re-
gion notion to three-space requires volume
measures which are envisioned less easily. Ex-
tensions to higher dimensions would require
higher-order volume measures.

Empirical procedures can be employed to
impose regularity conditions in the estimation
of FFF parameters. Lau (1978a) demonstrated
a procedure for imposing global concavity
(convexity) conditions with econometric esti-
mation. Lau also suggested that monotonicity
may be imposed by squaring the appropriate
parameters. Jorgenson and Fraumeni used
Lau’s method of imposing concavity by re-
stricting the elements of the Cholesky factor-
ization of the matrix of share elasticities de-
rived from a price function. The imposition

of concavity, however, resulted in setting a large -

number of the elasticities equal to zero. More-
over, imposing negative semidefiniteness on
the matrix of own and cross price elasticities
of the translog cost function can bias the re-
sulting estimated elasticities (Diewert and
Wales).

More recently, other procedures for impos-
ing global concavity on FFF have been ad-
vanced by Gallant and Golub, and Diewert
and Wales. Development of the generalized
McFadden, generalized Barnett, and general-
ized Fuss forms by Diewert and Wales was
motivated by the need to impose globally con-
vexity (or concavity). The techniques of as-
suring satisfaction of global curvature condi-

¢ The minflex Laurent also displays increasing regular region
volume for trended time-series data.

Flexible Functional Forms 175

tions may be classified as system estimation,
possibly nonlinear, subject to restrictions.’
Gallant and Golub suggest a two-stage opti-
mization technique for imposing curvature
conditions at every data point. Diewert and
Wales propose a restricted estimation tech-
nique equivalent to Lau’s restrictions on the
Cholesky factorization of the relevant hessian
matrix.®

Imposition of curvature restrictions for some
FFF may provide more credible elasticity es-
timates over the entire range of the sample
data. Clearly, theoretical primal-dual map-
pings may be invoked in empirical studies if
the regularity—curvature, monotonicity, and
homogeneity —conditions are imposed. From
an estimation standpoint, more efficient pa-
rameter estimates are obtained from estima-
tion subject to restrictions; imposition of er-
roneous constraints would result in biased or
inconsistent estimates, however.

Review of Theoretical Criteria

The theoretical criteria enumerated could lead
1o contradictory conclusions in the choice be-
tween currently available functional forms. The
difficulty in using the theoretical criteria is
complicated insofar as FFF may be interpreted
as approximations or true functions. A sum-
mary of the theoretical properties in table 1
indicates the potential for contradictory the-
oretical prescriptions.

From a mathematical standpoint, using well-
behaved expansions, such as the Laurent and
Fourier, provide more desirable approxima-
tions. If curvature conditions are also a con-
sideration, a potentially fruitful development
may be FFF which are the nonnegative sums
of concave functions because these functions
readily allow the imposition of global curva-
ture conditions. However, the separability
properties of the newer FFF—minflex Laurent
translog and generalized Leontief, generalized
McFadden, and generalized Barnett—have yet
to be compared systematically. Thus, as might

7 Hazilla and Kopp imposed regularity conditions by means of
nonlinear restrictions on a long-run cost function. The restrictions
were imposed only at the point of approximation, however, be-
cause the cost function was interpreted as an approximation to a
true function.

8 The Cholesky techniques proposed by Lau and by Diewert and
Wales were used earlier by Wiley, Schmidt, and Bramble. The
Cholesky decomposition converts a constrained linear estimation
problem into an unconstrained nonlinear estimation problem.
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be expected, no single FFF appears unambig-
uously to dominate all others on theoretical
grounds. However, the relative theoretical
strengths and weaknesses of each are apparent.

Empirical Criteria and Techniques

Empirical criteria for judging FFF are char-
acterized by their ex post role in the choice of
functional forms. Empirical criteria by defi-
nition are less general than theoretical criteria
because of their application in a specific data
setting; different empirical criteria can be ap-
plied in both consumer and production prob-
lems, but they are contingent upon the data
analyzed. Thus, nearly all empirical criteria
yield data-specific conclusions.

Empirical criteria for distinguishing be-
tween alternative FFF can be catalogued into
four groups: (@) Monte Carlo studies; (b) para-
metric models; (c) bayesian analysis; and (d)
nonnested hypothesis testing. In Monte Carlo
studies, the ability of an FFF to approximate
a known underlying technology or preference
mapping is measured. In the latter three cases,
however, data-generated measures are used to
compare competing functional forms where the
underlying function is unknown. Knowledge
of the data generating process in Monte Carlo
studies permits more hypothetical consider-
ation of the approximating abilities of the FFF
than the data-generated criteria. Monte Carlo
results may provide some ex ante indication
of an FFF’s comparative strengths and weak-
nesses, given various data sets.

Monte Carlo Studies

In the first application of Monte Carlo tech-
niques for assessing the approximation capa-
bilities of FFF, Wales compared the ability of
translog and generalized Leontief reciprocal
indirect utility functions to approximate a
homothetic two-good CES utility function. The
theoretical results derived from examining reg-
ular regions were corroborated: the translog
performed well when substitution elasticities
were near unity, whereas the generalized
Leontief better approximated substitution
elasticities near zero. Both functional forms
violated regularity conditions—quasi-concav-
ity and monotonicity —even though they fit the
data well in terms of R? and closely estimated
the true substitution elasticities.

Western Journal of Agricultural Economics

Guilkey and Lovell, and Guilkey and Sickles
extended the Monte Carlo technique to
measure approximation of true substitution
elasticities, economies of scale, and single vis-
a-vis systems estimation techniques. In the
second study, the single output, three-input
cost function was used to compare the translog,
generalized Leontief, and the generalized Cobb-
Douglas. Generally, the translog dominated the
other two forms, although Guilkey and Sickles
stressed that the better performance of the
translog did not imply that it was acceptable
in all instances. Furthermore, the deviation of
the estimated substitution elasticities from the
true clasticities as measured by bias and mean
absolute deviation was not substantially dif-
ferent for the three functional forms in some
cases. In more complex cases with diverging
true partial substitution elasticities and com-
plementarity, the systems estimator (Zellner’s
iterative seemingly unrelated regressions) was
preferred.

A recent Monte Carlo study by Chalfant and
Gallant assessed the ability of the logarithmic
Fourier functional form to approximate sub-
stitution elasticities generated by a three-input,
homothetic generalized Box-Cox cost func-
tion. The logarithmic Fourier, which nests the
translog as a special case, approximated elas-
ticities of substitution with little bias. Exper-
iments with different sample sizes suggested
that the measured bias was due to errors-in-
variables, not to specification bias. Hence, for
purposes of testing economic theory, the Fou-
rier appears to be the least ambiguous form
for statistical inference.

Dixon, Garcia, and Anderson conducted
Monte Carlo simulations to evaluate the use-
fulness of pretests in testing the behavioral as-
sumptions and regularity conditions for the
translog and generalized Leontief profit func-
tions. While concluding that such pretests are
generally not useful validation tools, they not-
ed difficulty in choosing between the translog
and generalized Leontief functional forms. The
generalized Leontief consistently underesti-
mated substitution elasticities, while the trans-
log elasticity estimates displayed extreme vari-
ations about the true means.

The Monte Carlo results discussed are spe-
cific to the data generated and the microeco-
nomic context analyzed. Both consumer (in-
direct utility function) and production (cost
and profit function) applications have been
considered. Thus, the results of the studies are
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not directly comparable on economic grounds.
Experimental design differs considerably across
these Monte Carlo studies: data generation,
sample size, number of replications, and sto-
chastic disturbance specifications vary
throughout.

Fruitful ground for future studies lies in the
comparison of a wider range of FFF, such as
the generalized Box-Cox, minflex Laurent,
Fourier, and nonnegatively summed concave
functions while varying assumptions regarding
data generation and sample size.

Parametric Modeling

Parametric methods have been proposed to
assess the plausibility of different functional
forms in fitting actual data. The generalized
Box-Cox function has been used for paramet-
ric testing; with suitable parameter restric-
tions, the generalized Box-Cox nests the trans-
log, generalized Leontief, and the generalized
square-root quadratic functions as special cases
(see Griffin, Montgomery, and Rister). Hence,
rather than estimating any one of the special
cases with the functional form as a maintained
hypothesis, the functional form can be tested
through hypothesis tests of the appropriate pa-
rameter restrictions.

Comparison of the parametric test results
across studies using different data sets indi-
cates that many commonly used functional
forms are rejected. Using updated production
data from Berndt and Christensen, Appel-
baum rejected the translog and generalized
Leontief in primal and dual share equation
models but failed to reject the generalized
square root quadratic in the dual setting. Using
similar production data from Berndt and
Wood, Berndt and Khaled could not reject the
generalized Leontief but rejected the general-
ized square root quadratic and probably re-
jected the translog for approximating the cost
function.® Using aggregate agricultural input
data, Chalfant rejected all three functional
forms in a cost function context.

The primary limitation of the generalized
Box-Cox as previously formulated is that para-

° The Berndt and Khaled formulation of the generalized Box-
Cox does not allow for direct testing of the translog because por-
tions of the likelihood function of the generalized Box-Cox become
degenerate when parameter values yield the translog special case
(Berndt and Khaled, p. 1227). Tests for parameter values ap-
proaching those of the translog lead to rejection of those functional
forms. :
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metric tests can only discriminate among a
subset of FFF. Laurent, Fourier, generalized
McFadden, and generalized Barnett functions
cannot be tested as special cases of the gen-
eralized Box-Cox.!° Further, the usual caveats
regarding power of hypothesis tests are appli-
cable with the use of the generalized Box-Cox
model.

Bayesian Analysis

An alternative to parametric testing is bayes-
ian analysis by which a posteriori comparisons
of FFF can be made. The attraction of this
method is that it allows comparison of fun-
damentally different models on the basis of
actual data; nonnested models can be com-
pared on the basis of diffuse priors.

In a consumer application, Berndt, Dar-
rough, and Diewert compared the translog,
generalized Leontief, and generalized Cobb-
Douglas in estimating market demand shares
for Canadian consumption data. With and
without symmetry restrictions imposed, the
translog was preferred a posteriori while the
generalized Leontief and generalized Cobb-
Douglas had nearly identical log likelihood
values in both cases. For U.S. time-series food
consumption data, Wohlgenant estimated two-
good demand functions with the generalized
Leontief, translog, and Fourier forms. The
Fourier form dominated the translog and gen-
eralized Leontief forms with posterior odds
ratio of 9.83:1 and 41.95:1, respectively. The
Fourier also performed favorably when own-
price and income clasticities of demand were
compared at each sample point. In a produc-
tion study using the Berndt and Wood data on
aggregate U.S. manufacturing, Rossi com-
pared the translog and logarithmic Fourier for
a three-input cost share system exclusive of
the cost function. Two methods to calculate
the posterior odds ratio were used, and the
logarithmic Fourier was preferred by a ratio
of approximately 3:2.

Whether applied in a consumer or produc-
tion setting, bayesian analysis affords a con-
venient means for discriminating among com-
peting FFF on the basis of actual data. Yet,
there exists potential for conflict between mi-

10 The logarithmic Fourier nests the translog, the minflex trans-
log nests the translog, and the minflex generalized Leontief nests
the generalized Leontief. Hypothesis tests of subsets of the param-
eters in each of these models could be used to test the special cases.
However, none nests a wide range of alternative models.
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croeconomic theoretical results and the esti-
mated parameters of the FFF chosen a pos-
teriori. The functional form with the highest
posterior odds ratio could possess, for exam-
ple, own-price elasticities which are positive
or violate other regularity conditions. The ap-
plicability of microlevel theoretical results in
aggregate or market studies would have to be
assessed in light of the bayesian results.

Nonnested Hypothesis Testing

Nonnested hypothesis testing allows the re-
searcher to make pair-wise comparisons be-
tween competing models. A conceptual differ-
ence between nonnested testing and bayesian
analysis is that nonnested testing allows for all
proposed models to be rejected on the basis of
the data. For FFF interpreted as approxima-
tions, nonnested tests provide the possibility
of rejecting all approximations to the unknown
underlying function. With bayesian analysis,
in contrast, the models would be ranked on
the basis of posterior odds ratios so that some
alternative model would probably be deemed
the most plausible.

Although myriad nonnested tests have been
proposed recently, the Cox test for nonnested,
nonlinear equations systems (Pesaran and
Deaton) is the most general for testing alter-
native FFF in budget or cost (profit) share
equation systems. The only apparent limita-
tion for the Cox test is that all competing func-
tional forms must be specified with the same
transformations of the dependent variables.
The Cox statistic has been developed for test-
ing linear and log-linear single equation regres-
sion models (Aneuryn-Evans and Deaton).
However, empirical applications of the Cox
test for linear and logarithmic dependent vari-
ables have not been made to either single-
equation nonlinear regressions or multiple
equation regressions. Share equation and de-
mand/supply equation systems which have dif-
ferent transformations of the dependent vari-
ables (e.g., shares vs. single variables) could
not be used directly to perform a nonnested
test with the Cox statistic.

Few empirical studies have used the Cox
statistic to compare functional forms (Pesaran
and Deaton; Deaton). Alternative functional
forms, not flexible functional forms, have been
tested in the single-equation agricultural pro-
duction function applications (Ackello-Ogutu,
Paris, and Williams). The extent to which non-
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nested testing results coincide with bayesian
results is a potential methodological and em-
pirical question.

Review of Empirical Criteria

Overall assessment of the compatibility of dif-
ferent FFF with empirical data does not lead
to the acceptance of any clearly superior func-
tional form. Monte Carlo studies offer the most
gencral empirical means for choosing among
FFF by comparing their abilities to approxi-
mate underlying partial substitution elastici-
ties. However, no studies of a wide range of
prospective FFF have been published. The rel-
ative attractiveness of FFF in both production
and consumer Monte Carlo applications may
also yield useful results for applied researchers.

Dixon, Garcia, and Anderson shed doubt on
the usefulness of pretests in assessing main-
tained behavioral hypotheses. Nonparametric
alternatives to the parametric tests analyzed
by Dixon, Garcia, and Anderson might be a
useful pretest for maintained behavioral hy-
potheses. Varian (1982, 1984), for example,
has developed nonparametric procedures
whereby data can be tested for consistency with
utility-maximizing, cost-minimizing, or prof-
it-maximizing behavior. If the nonparametric
tests did not reject the behavioral hypotheses,
the parametric analysis with FFF could be pur-
sued with more confidence (see Barnhart and
Whitney).

Unless a more general composite model than
the generalized Box-Cox is found, the most
promising techniques for testing alternative
FFF are bayesian inference and nonnested hy-
pothesis testing. In practice, calculation of pos-
terior odds may require fewer, less complicat-
ed operations than are necessary for deriving
a Cox statistic. When appropriate, nonnested
tests based on instrumental variable esti-
mators could also be used (see Godfrey and
Pesaran). The fundamental methodological
advantage of nonnested testing is that no par-
ticular functional form is necessarily accepted
on the basis of the data; all prospective FFF
may be rejected in pair-wise tests. Whether
bayesian or nonnested techniques are used, the
ability to test models with different transfor-
mations of the dependent variable—logarith-
mic versus linear, for example—is necessary
for discriminating between a wide range of cur-
rently available FFF.
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Conclusions

An extensive array of theoretical criteria and
empirical techniques for choosing among FFF
has been reviewed. Ample opportunity exists
in many empirical studies to compare com-
peting FFF more systematically on the basis
of these theoretical and empirical measures.
Although any comparison of all available func-
tional forms by all these measures may not
yield an unambiguous choice, the relative ad-
vantages of competing FFF in the particular
empirical problem should provide more com-
pelling grounds for choice of flexible functional
forms.

As Griffin, Montgomery, and Rister have
remarked, the choice of functional form should
be included explicitly in empirical studies be-
cause nearly all econometric model specifica-
tions may be considered as approximations of
some unknown underlying data generation
process. One avenue for formalizing the selec-
tion process of FFF in duality modeling might
be the following empirical testing procedure:

(a) Test the behavioral assumptions of the
duality model (utility maximization, cost min-
imization, or profit maximization) using the
nonparametric testing procedures from Vari-
an. Choice among alternative flexible func-
tional forms is valid conditional upon the be-
havioral assumptions being appropriate. If the
data are not consistent with the behavioral as-
sumptions, one would have to judge whether
the inconsistencies are caused by measurement
error or to cross-sectional and time-series het-
erogeneity (Hanoch and Rothschild). In the
case of measurement error inconsistencies, the
violating data points might be adjusted or the
sample might be censored to purge the incon-
sistent data points (see Barnhart and Whitney).
Cross-sectional and time-series heterogeneity,
such as differing firm endowments, regional
differences, and technical progress, might call
for alternative models which account for the
inconsistencies.

(b) If the data are consistent with the be-
havioral assumptions, test other appropriate
theoretical properties of the data such as re-

turns to scale, homotheticity, and separability -

using similar nonparametric tests. The appro-
priate theoretical properties to be tested will,
of course, vary according to the particular
problem.

(¢) Choose flexible functional forms which
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can embody the behavioral assumptions and
properties not rejected by the nonparametric
tests. Parametric tests of the relevant theoret-
ical properties for each flexible functional form
may then be performed. If the parametric tests
do not reject the theoretical properties, the
properties can then be imposed in subsequent
estimation.

(d) Choose among flexible functional forms
using one or both of the following techniques:

(i) Bayesian analysis: compare the alter-
native FFF on the basis of posterior odds.
The principal advantage of bayesian analy-
sis is that FFF with different transformations
of the dependent variables may be com-
pared.

(i) Nonnested hypothesis tests: perform
pair-wise comparisons of the alternative FFF
using classical statistical techniques. The
main disadvantage is that systems of equa-
tions with different transformations of the
dependent variables may not be compared
with current formulations of the nonnested
tests. With nonnested tests, no particular
model might emerge as the best. Note that
bayesian and nonnested test results might
conflict.

(e) Check the robustness of the economic
measures, such as price and partial substitu-
tion elasticities calculated from the flexible
functional form(s), to determine the sensitivity
of the measures to the choice of flexible func-
tional form.

Presumably, more credible parameter and
elasticity estimates may be obtained by these
explicit comparisons of flexible functional
forms when the maintained hypotheses of
duality analysis are appropriate. The empirical
selection procedure also appears to be be con-
sistent with this journal’s new policy of making
econometric specification searches more ex-
plicit. Whether the benefits of such a formal
selection procedure would outweigh the costs
in the context of a data set of questionable
quality is a judgment that the researcher must
make.

[Received September 1987, final revision
received July 1988.]
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Appendix
Flexible Functional Forms

(1) Quadratic Form
¢() = a, + a’x + Yx'Bx
(@) Normalized Quadratic: (Lau 1978a, p. 194)

o=y a'=la,...,al x=[k,...,x]
B = {b;} by = by Fij
(b) Generalized Leontief: (Diewert 1971)
=y a=0  x'=[x*%...,x"]

B = {b;} by =b;, Fij
(¢) Translog: (Christensen, Jorgenson, and Lau)
o()=Iny a'=la,...,a, x'=[nx,...,Inx)
B={b;} b, =b; Fij
(2) Quadratic Mean of Order Rho: (Denny, Kadiyala)

i/p
y= <E 2 bm%“)
i

i

172
y= <E axr + 2 > byxf;x;>
i i J
(3) Generalized Cobb-Douglas: (Diewert 1973b)
y= II H (Vax; + Yax)bu by=b; F'ij
i
(4) Generalized Square Root Quadratic: (Diewert 1971)
y = (x'Bx)* x'=x, ..., X B=1{b;} by=1b; Fij
(5) Generalized Box-Cox: (nonhomothetic) (Berndt and Khaled, Applebaum)

@) = {1 + AGX)}
where

GX)=a, + 2 aP(N) + % D 2 b;PNPN)

and
PA) = P¥2=1\/2
(6) Symmetric Generalized McFadden: (Diewert and Wales)

o) = gx) + 2 b, + <E qx,)

gx)=Yx'Bx/0'x 6>0 x'=1Ix,..., X B=1{b;} b;=b; Fij
(7) Generalized Barnett: (Diewert and Wales)

o) = glx) + 2 bix; + <2 ci-xi>

N N N N
gx) =2 2 byxtat — 2 2 dpdxrixt

=1 j=1 =2 j=2
i P
N N b,-j = bj, =0
- 2 €,XT XX d;=d; =0
=2 j=2 e; > 0

(8) Generalized Fuss: (Diewert and Ostensoe)
y = Yad'zx'Axx; ' + YoB8'xz’'Bzzy! + x'Cz
+ B'xb’zzi! + VaB'xbyzi + x'c
>0 pg>0 A=A{a;)} a;=a, Fij
a;=a,=0



Thompson

b'=10,b...,04] B=1{b} by=10b, Fij
b;=b,=0
c'=ley, ..., al C={c;}
(9) Biquadratic: (Diewert 1986)
N N—1 N—1
y= 2 ax, +%h Y X buxxx
n=1 n=1 i=1

b,=b l<n<i<N
(10) Minflex Laurents: (Barnett 1983, 1985)
) =ay + 2 2 ax, + 2 ap + 2 (@xx; — bxix)
(a) Minflex Laurent Generalized Leontief:
M=y  x=xp
(b) Minflex Laurent Translog:
¢(y)=Iny X;=Inx;
(11) Fourier: (Gallant 1981)

in

A J
Y=Y + b + VoxBx + Dy Vo, + 2 2, [V,,c08(Ak’,X) — v sin{jrk’,x)]

a=i j=i

and

A
B=-2 wkk,.
a=1

Flexible Functional Forms
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