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The century-old "law of the minimum" proposed by von Liebig was tested using five
independent sets of crop response data on wheat, corn, cotton, silage, and sugar beets.
The rival models were polynomial functions reported in the literature as the most
suitable models for interpreting those data. Overall, the von Liebig model performed
very well. While the nonnested hypothesis test was inconclusive with regard to silage
and sugar beets, the von Liebig model rejected the polynomial specifications for
wheat, corn and cotton.
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Attempts to develop production functions for
irrigated crops have been numerous and can
be classified in two main categories depending
upon whether or not the timing of input ap-
plication is explicitly considered in the model
formulation. In most empirical studies water
production functions have been estimated on
the basis of data obtained from field experi-
ments using small plots or lysimeters and fol-
low some specific criterion to determine tim-
ing of irrigation applications. Hence, the
extrapolation of the results is conditioned on
following the same criterion: whenever the soil
moisture tension rises to a certain level, suf-
ficient water must be applied to restore soil
moisture to field capacity in the entire root
zone.

In contrast, the scope of this paper is limited
to water production functions where timing of
irrigation is not explicitly considered in the
model.1 From an economic viewpoint, the sig-
nificant explanatory variable is applied water
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I This cumulation of water applications is not analytically dif-
ferent from the practice of aggregating all service flows of labor,
from planting to harvest, into a single, timeless variable.

because it is the resource over which farmers
exercise direct control and whose unit cost can
easily be assessed. Because it does not repre-
sent the amount of water actually used by the
plant, researchers have adopted some varia-
tions of its measure such as the amount ob-
tained by adding up the water applied through
irrigation, the rainfall, and the difference be-
tween the soil water content at planting time
(usually at field capacity) and harvest time.

Cobb-Douglas, Mitscherlich and polyno-
mial functions of varying degree (quadratic,
three-halves, and square root) have been most
often used to specify water production func-
tions. Invariably, the polynomial forms have
been selected as the most adequate. Hexem,
Sposito, and Heady, for example, recognized
that the Mitscherlich specification is relatively
complex to estimate when two or more ex-
planatory variables are included, and the poly-
nomial specifications fit as well or better ac-
cording to the results of experiments with corn
conducted in Colorado and Kansas. Koster and
Whittlesey rejected the Cobb-Douglas speci-
fication for describing wheat response to irri-
gation water and nitrogen because it is unable
to represent negative marginal productivity and
a maximum yield is not defined. Polynomial
forms are appealing because they are easy to
manipulate allowing specification of the joint
effect of water and other inputs as well as for
negative marginal productivity. Examples of
studies using polynomial forms are those by
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Koster and Whittlesey, and Hexem and Heady
in the United States; Eckert, Chaudhry, and
Qureshi in Pakistan; Yaron in Israel; Stutler
et al., in El Salvador; Iruthayaraj and Mora-
chan in India.

In 1978, Hexem and Heady published Water
Production Functions for Irrigated Agriculture
to introduce agronomists to the economic
principles of water allocation and production
function estimation. In a literature review
about crop-water production functions, Vaux
and Pruitt write that "The work of Hexem and
Heady represents the single most important
contribution of empirical studies" (p. 81).
Heady and Hexem illustrated their proposed
methodology using experimental data on var-
ious combinations of irrigation water and ni-
trogen fertilizer involving different sites, year,
and crops. The functional forms of the re-
sponse were restricted to quadratic, three-
halves, and square root polynomial functions.
Hexem and Heady interpreted the fitted pro-
duction functions as if substitution between
water and nitrogen were possible. In contrast,
the hypothesis of this paper attempts to model
the agronomic principle according to which
major nutrients (including water and nitrogen)
are essential and follow von Liebig's law of the
minimum. Nutrients are, thus, complements
and not substitutes.

The objective of this paper is to put to a
rigorous statistical test the century-old idea that
crop response can be modeled following the
limiting nutrient principle for all macronutri-
ents, including water. For this purpose, non-
nested hypothesis tests will be applied using
as rival hypotheses the most relevant specifi-
cations formulated to date, namely, the poly-
nomial response models. Following a brief de-
scription of the sample information used in
this study, the specification of the von Liebig
model and its unfamiliar estimation require-
ments are discussed. Nonnested hypotheses
testing and the construction of two relevant
statistics are then presented in some detail.
The discussion of the empirical results and
suggestions for further work conclude the pa-
per.

Data Source

The data set for this research consists of field
experiment results used by Hexem and Heady
who presented the sample information in mi-
crofiche form as an appendix to their book.

These experiments, conducted in several west-
ern states during the period 1969-72 and span-
ning a variety of soil and climate conditions,
were designed to estimate water and nitrogen
response functions for corn, corn silage, wheat,
cotton lint, and sugar beets. One experiment
for each crop was selected for this research.
The corn experiment (1971) involved the Prai-
rie Valley 40-S hybrid on Keith silt loam soil
at the Colby Branch Experiment Station in
Kansas. The corn silage experiment (1970) in-
volved the Funks G-711-AA variety on Lav-
een clay loam soil at Mesa, Arizona. The win-
ter wheat experiment (1971-72) was carried
out on Glendale silty clay loam soil at Yuma
Valley, Arizona. The cotton experiment (1969)
involved Alcala SJ-1 and was conducted on
Panoche clay loam soil at the West Side Field
Station, in Fresno County, California. The sug-
ar beets experiment (1970-71) involved the
monogerm variety S301-H8 on Laveen clay
loam soil at the Mesa Branch Experiment Sta-
tion in Arizona. A detailed description of each
experiment is found in Hexem and Heady.

The design of the various experiments fol-
lows the incomplete factorial specification
which is particularly suitable for estimating
polynomial responses. In the analysis carried
out in this paper, therefore, the initial advan-
tage is given to the rival polynomial models.
A good performance of the von Liebig hy-
pothesis under these conditions would indicate
the robustness of the model under different
scenarios.

Model Specification

In formulating the "law of the minimum" von
Liebig assumed a linear crop response to the
limiting nutrient until a maximum plateau is
reached and another factor becomes limiting.
This proportionality concept was criticized by
Mitscherlich and many soil scientists who as-
sumed a response with diminishing marginal
productivity. Boyd, however, studied several
fertilization experiments with sugar beets,
wheat, barley, and potatoes and concluded that
in most instances crop responses to nitrogen,
phosphorus, and potassium can be character-
ized by a linear-plateau model. Waugh et al.;
Anderson and Nelson; Waggoner and Norvell;
and Ackello-Ogutu, Paris, and Williams ar-
rived at similar conclusions. Hence, in this
research, it is assumed that crop response to
nitrogen and irrigation water follows von Lie-

A von Liebig Model 183



Western Journal of Agricultural Economics

big's principle of a linear response to the lim-
iting nutrient, with a sharp transition to a pla-
teau maximum. This assumption will be tested
against the polynomial specifications selected
by Hexem and Heady by means of nonnested
hypotheses procedures.

A von Liebig (two-factor) crop response
model can be expressed as

(1) Y = min[f( W, 0w),fN(N, ON)] + u,

where Y is the observed crop yield, W is ap-
plied irrigation water, N is applied nitrogen,
0 w and ON are vectors of parameters to be es-
timated, and u is a Gaussian disturbance. The
response functions fw and fN can assume any
functional form compatible with production
technology and theory. A salient feature of the
von Liebig model is the absence of factor sub-
stitution.

Von Liebig's original specification of the re-
sponse functions assumes that fw and fN are
linear in water and nitrogen, respectively. The
crop yield is regulated by a plateau maximum,
m, which depends on various growth factors
such as genetic load, other nutrients, etc. Un-
der this formulation, (1) specializes to the fol-
lowing model

(2) Y= min{a0 + alW, 3o + fN, m} + u,

where ai, fi, i = 0, 1 and m are the unknown
parameters. The combination of water and ni-
trogen which maximizes crop yield is given by

(3) ao + aWK = lo + IiNK = m,

where WK and NK are the optimal quantities
of water and nitrogen, usually referred to in
the literature as knots.

The polynomial response functions consid-
ered in this paper are the quadratic, the three-
halves and the square root specifications writ-
ten as

(4)

(5)

(6)

Y = ao + a1 W + a2N + aollW 2 + a2 2N
2

+ a, 2WN + u,
Y = ao + alW + 2N + alWml5S + -a22N 1 5

+ al2WN + t,

Y = ao + a,1 W a+ a2N 1lWD/5
+ a022N

0 5
+ aC2 (WN)

0
.
5 + U,

where the symbols are as defined above. These
specific polynomial forms are those chosen by
Hexem and Heady to represent response to
water and nitrogen for the selected crops. In
this study, the experimental design's advan-
tage (incomplete factorial design) is entirely in
favor of the polynomial specifications. Hence,

a good performance of the von Liebig model
under these circumstances would indicate a
strong reliability for it.

Estimation

The estimation of the von Liebig model as
expressed in (2) was carried out within a max-
imum likelihood framework. Recent exten-
sions of asymptotic theory have allowed the
derivation of maximum likelihood (asymp-
totically efficient) estimators for models that
deviate from traditional specifications (Bates
and White). One important aspect concerning
the von Liebig model (2) is that the corre-
sponding likelihood function is not differen-
tiable at the knots WK and NK, where the tran-
sition from a response to a plateau occurs. In
other words, the likelihood function does not
possess first and second derivatives with re-
spect to the parameters at one specific point
or, technically, it is not differentiable on a set
of measure zero.

Bates and White have developed the theory
of maximum likelihood estimators which are
also asympotically normal and efficient for the
case where the likelihood function is "almost
surely" (a.s.), differentiable. Hence, the a.s. as-
sumption includes the von Liebig model. That
the lack of differentiability at one point is not
crucial can be illustrated in at least two ways.
First of all, the probability that farmers will
select the combination of water and nitrogen
which exactly corresponds to the knots is zero.
Second, the von Liebig model must be con-
sidered an approximation to the appropriate
response function. Hence, the following ap-
proximation is also admissible: it is always
possible to select a small interval around the
knots and to join its end points with a cubic
spline guaranteeing the existence of first and
second derivatives of the likelihood function
everywhere.

Maximum likelihood estimates of the von
Liebig models' parameters and their corre-
sponding asymptotic variances were obtained
by following the assumptions of Bates and
White, as discussed above. The final reparam-
eterization of model (2) adopted in the esti-
mation procedure exploited the conditions
specified in (3) to produce

(7) Yi = min[m + a,(W, - WK)D,;
m + l,(N - NK)D2 + u,,

where
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D = 1 if 0 Wi < WK
= 0 if WK < W,

D2 = 1ifO < N < NK
= OifNK - Ni.

In the specification of (7), the plateau, m, as-
sumes the role of a common intercept for the
water and nitrogen regimes. The a,(Wi -
WK)Dl and 11(N - NK)D2 terms always rep-
resent nonpositive quantities which reduce the
response level measured from the plateau (in-
tercept), m. The individual intercept proper of
the water and nitrogen regimes can easily be
recovered by means of the identities ao = m -
al WK and 0o = m - OANK, implied by (3).

The linear and plateau model as formulated
in (7) was estimated by solving the following
nonlinear programming model:

T T \

(8) Minimize u2 + Pen SwSni ,
i=1 i=1

subject to

Yi = m + a,(Wi - WK)D, - Sw, + ui

Yi = m + 1(N - NK)D2- Sni + ui

Swi > 0, Sni >- 0, m > 0,

ai, 1, and ui free variables.

Notice that for each observation the slack vari-
able (Swi or Sn,) for the limiting factor should
be equal to zero, while the slack variable for
the nonlimiting factor will assume a nonneg-
ative value. This condition is achieved by in-
troducing a sufficiently high penalty (Pen) as-
sociated with this sum of products of slack
variables.

The problem represented in (8) was solved
using a nonlinear programming algorithm de-
veloped by Murtagh and Saunders (MINOS/
Augmented, Version 4, simply, MINOSV4).
Asymptotic standard errors of the parameter
estimates in model (8) (including the knots)
were computed from the inverse of the nega-
tive expectation of the information matrix.

Hypothesis Testing

Researchers are constantly faced with the
problem of choosing among models. By far,
the most popular procedure has been to select
the model which minimizes the mean square
error (MSE) or maximizes the multiple deter-
mination coefficient (R2). It is known that the
use of the residual variance as a choice crite-
rion gives rise "on the average" to the correct

choice, provided that one of the alternative
models considered is the "true" model. The
requirement that the "true" model is known
is rather stringent and often unrealistic. Fur-
thermore, the choice of a functional form for
approximating the "true" model, performed
on the basis of its relative goodness to fit, can-
not avoid an exercise in subjectivity. In spite
of such shortcomings, this and other informal
decision rules have often been used for dis-
criminating among models when the objective
was to obtain the "best" mathematical speci-
fication of a given relationship. These decision
rules do not imply an hypothesis test, where
the disregarded models are declared "false,"
but they represent only a subjective judgment
as to the "best" approximation of some "true"
model for the specific sample under investi-
gation.

In this research, however, the interest is in
hypothesis testing rather than discrimination
because the objective is to determine which
model is correct rather than selecting the mod-
el that better fits the sample data. Under the
classical framework, the null hypothesis (Ho)
is tested against an alternative hypothesis (H1)
and Ho is either rejected or not rejected at a
predetermined probability level of a type I
error. Because the decision rule is restricted to
only two possibilities (the truth of one hy-
pothesis means the falsity of the other), it im-
plies that one of the models is the true speci-
fication. This approach seems inappropriate
when the true form of the relationship being
tested is unknown and it might be the case that
none of the specifications tested corresponds
to the true model.

The objective of this research, therefore, is
to contrast the von Liebig model (2) for each
of the five experiments against the polynomial
form selected for each by Hexem and Heady.
In order to achieve this goal, methods for test-
ing nonnested hypotheses must be applied. In
the context of regression analysis, two hypoth-
eses are said to be nonnested when the cor-
responding models belong to separate para-
metric families and one model cannot be
obtained from the other as a limiting process.

Let the hypotheses being tested be repre-
sented by

(9)
(10)

Ho:f(X, a) + Uo = Xa + Uo,

Hi: g(Z, f) + U1 = Zf + Ul,

wherefand g are crop response functions rep-
resented by two nonnested models, X and Z
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Table 1. Results for the Polynomial Response Functions

Silage Cotton Sugar Beets
Coefficient Corn Quadratic Three-Halves Wheat Quadratic Square-Root Quadratic

ao -1,337.7 -54,709.0 -10,530.0 -1,751.6 6.0151
(1,098.4)a (34,177.0) (5,163.3) (309.7) (8.9437)

a, 430.47 5,291.9 850.41 -80.261 .8004
(147.97) (2,213.6) (394.25) (12.345) (.4733)

a2 40.025 156.07 11.255 -1.458 .0695
(3.551) (48.45) (6.462) (.448) (.0256)

al, -10.868 -510.84 -12.944 912.29 -. 0109
(4.597) (214.81) (7.499) (125.92) (.0066)

a22 -. 0834 -9.4479 -. 0322 16.463 -. 00019
(.0085) (2.0201) (.0130) (11.966) (.00004)

al12 .3737 1.3940 .1062 4.712 .00095
(.1711) (.6555) (.2188) (1.656) (.00065)

R2 .935 .758 .761 .934 .616
Observations 44 44 66 26 44

a Numbers in parentheses are standard errors.

are the matrices of explanatory variables in a
linear specification off and g; and a and 3 are
the parameter vectors of the two models. The
hypothesis specified in (9) and (10) will be tested
by means of two statistics known in the lit-
erature under the names of the CP test, and
the W test.

The original approach for testing nonnested
hypotheses is due to Cox, who derived the
asymptotic distribution of a test statistic based
on the Neyman-Pearson likelihood ratio. Lat-
er, Cox's procedure was elaborated by Pesaran
for linear regression models and by Pesaran
and Deaton for nonlinear regression models.
The Cox-Pesaran (CP) approach encompasses
the possibility of rejecting both hypotheses un-
der consideration. Each alternative is taken as
the null hypothesis in succession and, there-
fore, each model is on an equal footing.

In a Monte-Carlo analysis, Pesaran showed
that when the sample size is as small as 20,
the CP test tends to reject H0 far more fre-
quently than it should and that this overrejec-
tion of the null hypothesis becomes increas-
ingly more serious as the number of variables
increases relative to the sample size. To correct
this unfavorable small sample feature of the
CP test, Godfrey and Pesaran derived the W
test, which is an adjusted Cox-type statistic in
closer agreement with small sample and
asymptotic significant levels. For the defini-
tion and construction of the CP and W tests
the reader is referred to Godfrey and Pesaran.

The statistics CPo and W0 are asymptotically
distributed as a standardized normal variate

when Ho is true, and are only valid for testing
the truth of Ho. The procedure to test the truth
of H1 is to reverse the roles of Ho and H1 and
carry out the tests again. The new statistics are
denoted CP1, and W1 , indicating that now the
previous alternative hypothesis is assumed to
be the null model. For a given level of signif-
icance, say a = .05, these tests can lead to four
possible outcomes:

(a) Accept Ho and reject HI whenever

ITo < 1.96 and I T I 1.96

(b) Reject Ho and accept H1 whenever

I Tol I 1.96 and I Tl < 1.96

(c) Reject both Ho and H1 whenever

| To > 1.96 and I T 1> 1.96

(d) Accept both Ho'and H1 whenever

I To < 1.96 and IT, I < 1.96,

where To and T1 stand for either CPo, WO and
CP1, W1, respectively.

Results and Discussion

The estimated polynomial forms representing
yield-water-nitrogen relationships for corn,
corn silage, wheat, cotton, and sugar beets are
presented in table 1. They correspond, respec-
tively, to equations (6.1), (6.31), (7.1), (8.6),
and (9.8) in Water Production Functions for
Irrigated Agriculture by Hexem and Heady.
The parameter estimates and respective stan-
dard errors, as well as the R2s, presented in
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Table 2. Results for the von Liebig Model

Coefficient Corn Silage Wheat Cotton Sugar Beets

m 9,046.55 47,477.30 5,140.78 1,146.64 35.46
(181.38)a (1,823.66) (95.65) (16.93) (1.14)

a, 453.38 445.10 274.09 56.29 .32
(83.27) (167.47) (37.30) (3.95) (.13)

,1 50.66 174.14 15.54 3.66 .07
(4.69) (37.23) (4.38) (.53) (.02)

WK 15.00 54.00 29.00 23.00 45.00

(.92) (6.25) (.88) (.73) (5.65)

NK 140.00 120.00 140.00 105.00 197.00
(12.31) (24.94) (22.32) (13.34) (48.42)

ao 2,245.79 23,441.74 -2,807.71 -148.03 20.99
(929.02) (7,482.10) (881.06) (59.84) (5.01)

0o 1,954.39 26,580.62 2,964.90 762.68 21.11
(204.40) (1,926.55) (340.90) (28.29) (2.29)

R2 .949 .713 .763 .962 .615

Observations 44 44 66 26 44

a Numbers in parentheses are asymptotic standard errors.

table 1 closely correspond to those reported by
the authors.

The estimated regression coefficients for the
quadratic function describing corn response to
irrigation and nitrogen fertilization are all sig-
nificant at the 5% level, except for the inter-
cept. Similar results are observed in the corn
silage experiment, where a three-halves poly-
nomial was fitted. In the case of wheat, how-
ever, only the intercept and the regression coef-
ficients for W and N2 of the quadratic function
are significant at the 5% level. The square root
function fitted for the cotton experiment re-
veals all estimated coefficients significant at the
5% level, except the coefficient associated with
N.5. In the case of sugar beets, only the regres-
sion coefficients associated with N and N2 in
the quadratic production function are signifi-
cant at the 5% level. First-order interaction
terms are significant at a 95% confidence level
for corn and silage and at a 99% level for cot-
ton. 2

The estimated von Liebig production func-
tions for corn, corn silage, wheat, cotton, and
sugar beets are presented in table 2. Recall that
WK and NK are the knots linking the ascending
linear response to the plateau; that is, they rep-
resent the level of irrigated water and applied
nitrogen at which the maximum yield (m) is

2 Alternative specifications with second-order interaction terms
were estimated. In all cases this type of interaction was barely
"accepted" at a 5% level of significance and rejected at a 1% level.

reached when both production factors are not
limiting output.

The estimates of ao and 1o are derived from
those of the five primary parameters a1 , i,
WK, NK, and m, according to the relationships
specified in a previous section. Their standard
errors are computed using the familiar formula
by Bohrstedt and Goldberger. For example,
the variance of &O was computed as

V(Oa) = V(rm) + V(aOl) WK + V(WK)a& + cov(Oa, WK)
- 2 cov(mf, WK)&^ - 2 cov(m, a) WK.

The linear-plateau functions estimated for
the five experiments present all regression coef-
ficients significant at the 1% level, indicating
a clear response for all the five crops to irri-
gation water and applied nitrogen.

In contrast to the polynomial forms, the lin-
ear-plateau model possesses an intercept for
each production factor. The intercept for water
(ao) represents the expected crop yield in ab-
sence of irrigation and rainfall (except in the
case of the corn experiment where rainfall is
not included in the W variable), when water
availability in the soil is the most limiting pro-
duction factor. The intercept for nitrogen (o0 )
indicates the expected yield for the different
crops when nitrogen is the most limiting factor
and none is added to the soil, given that water
is fixed at the lowest treatment level.

Notice that the R2s are rather similar for
each pair of corresponding specifications in ta-
bles 1 and 2, making the choice of either model
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Table 3. Water and Nitrogen Levels for Maximum Yield

Polynomial Model von Liebig Model

Water Nitrogen Water Nitrogen
(acre- (lbs./ (acre- (lbs./

Crop Form inches) acre) Yield inches) acre) Yield

Corn Quadratic 24.9 296 9,936 15 140 9,047
Silage Three-halves 54.7 269 48,905 54 120 47,477
Wheat Quadratic 33.8 231 5,139 29 140 5,141
Cotton Square root 37.7 242 1,177 23 105 1,147
Sugar beetsa Quadratic 50.2 308 36.80 45 200 35.51

a Tons per acre (root yield adjusted to 15% sucrose content).

rather difficult without a sharper criterion. It
is, however, important to point out that these
similar levels of fit are obtained by the two
models with a different number of parameters:
the two-input polynomial models have six pa-
rameters (an intercept and five slope coeffi-
cients) while the two-input von Liebig model
has five parameters (a common plateau, two
slopes, and two knots). Therefore, the von Lie-
big model is parsimonious as well as more
agronomically meaningful.

The objective of fitting crop production
functions is not only to describe crop response
to inputs but also to estimate the optimum
input levels, based on some optimization cri-
terion. The levels of water and nitrogen nec-
essary to maximize the yield of the five dif-
ferent crops according to the polynomial and
von Liebig models are presented in table 3.
There is a sharp difference between the two
sets of results, especially with respect to nitro-
gen where a double amount would be neces-
sary for maximizing yields if the polynomial
models were used. The differences are rela-
tively smaller for water, but the optimal levels
are consistently higher for the polynomial
model. As reported by Boyd; Anderson and
Nelson; Waugh et al.; Sanchez and Salinas; and
Ackello-Ogutu, Paris, and Williams, these re-
sults confirm the tendency of the polynomial
model to overestimate the optimal input levels.

The levels of water and nitrogen necessary
to maximize profits according to the polyno-
mial forms are presented in table 4 with ni-
trogen priced at $0.33 per pound and water at
$1.98 per acre-inch. For the given output and
input prices, the input levels for profit maxi-
mization of the von Liebig response functions
correspond to the knots for each production
factor for all the five crops studied (table 3).
The comparison between the two models points

to the fact that the adoption of polynomial
crop responses would lead to higher input uti-
lization in all cases, except for water in corn
silage. These differences are especially large in
the case of water for corn and cotton, and in
the case of nitrogen for corn, corn silage, and
sugar beets.

A graphical representation of the sample
data, the von Liebig and the polynomial models
(based on tables 1 and 2) for the five crops is
given in figure 1. The number of scatter points
does not correspond to the reported number
of observations because water and nitrogen
treatments were replicated. It is interesting to
observe that some scatter diagrams (corn and
cotton, for example) exhibit a clear plateau
discernible also by inspection. For the other
crops the detection of such a plateau by in-
spection is more difficult and one has to rely
on a more objective procedure. The important
fact to underscore is that the measure of fit,
R2, for both the polynomial and von Liebig
models is very similar for all crops under con-
sideration. This fact confirms the inappro-
priateness of the R2 statistic as a criterion for
selecting functional forms describing crop re-
sponse. For this goal, a more formal criterion
such as the nonnested hypotheses tests de-
scribed above is required. The results of such
tests are presented in table 5.

Hypotheses Tests

The focus of the analysis is on the W test as
the more appropriate criterion, as suggested by
Godfrey and Pesaran. The original Cox-Pe-
saran (CP) test is also reported for comparison.
According to the Wtest, the von Liebig model
is not rejected for any of the five crops. On the
contrary, the polynomial model is clearly re-
jected for corn, wheat, and cotton, while it is
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Table 4. Water and Nitrogen Levels for Maximum Profits

Crop Crop Price Polynomial Model Water Nitrogen Yield

($/lb.)
Corn .054 Quadratic 22.5 254 9,764
Silage .010 Three-halves 48.7 182 46,958
Wheat .060 Quadratic 32.2 143 4,869
Cotton .600 Square-root 33.2 118 1,142

($/ton)
Sugar beets 38.0 Quadratic 46.4 275 36.56

not rejected for corn silage and sugar beets.
The size of the CP test is considerably higher
than that of the W test, indicating the possi-
bility of overrejection of the null hypothesis,
as discussed by Godfrey and Pesaran. Overall,
the von Liebig model, as specified above, out-
performs the polynomial functions in three out
of the five cases while the sample information
of the silage and sugar beets experiments is
insufficient for choosing among the rival
models.

Conclusions

This study of yield response to water and ni-
trogen has confirmed that the von Liebig mod-
el, based upon the limiting factor and the non-
substitution hypotheses, is a strong candidate
for representing crop response to macro nu-
trients in a homogenous setting of soil and
climate conditions. Conjectures as to why the
von Liebig model failed to reject the polyno-
mial response (although it was not rejected by
it) to corn silage and sugar beets, can range
from lack of sufficient sample information to

the more interesting one according to which
the von Liebig model might be suitable for
yields that do not include the entire plant, to
the fact that the experimental design favored
the polynomial specifications. Another con-
jecture may be based on the notion of second-
order interaction between nutrients. Let us re-
call that a von Liebig specification as stated in
(1) and (7) implies a first-order interaction be-
tween water and nitrogen. A second-order in-
teraction, then, could be specified as

(I1) Y = min[feW(W, w), fN/(N, ON] + u,

where the water and nitrogen response func-
tions are now conditioned on the level of the
other nutrient. This second-order interaction
can take many forms, and further research is
needed to assess the validity of this conjecture.

The above analysis has dealt with purely
agronomic data. If the von Liebig model rep-
resents a preferred specification for crop re-
sponse to macronutrients, how can economic
choices of inputs such as labor and capital, for
example, be integrated in it? One suggestion is
contained in the following specification. As-
suming the researcher knows the aggregate

Table 5. Results of the Nonnested Hypotheses Tests

Crop Hypoth- H: von Liebig Ho: Polynomial
(Polynomial) esis Test H1 : Polynomial H1: von Liebig

Corn CP-test -1.83 -6.45*a
(Quadratic) W-test -1.36 -3.91*

Corn silage CP-test -3.33* .75
(Three-halves) W-test -1.87 .55

Wheat CP-test -1.22 -5.22*
(Quadratic) W-test -.96 -3.85*

Cotton CP-test .79 -5.99*
(Square root) W-test .61 -3.01*

Sugar beets CP-test .37 -2.39*
(Quadratic) W-test .23 -1.60

a Asterisk indicates significant at the 1% level for a two-tail test.
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quantities of labor (L) and capital (C) applied
to the crop, then

(12) Y= min[fw(W, L, C), f(N, L, C)] + u

is a plausible specification which maintains the
von Liebig hypothesis of nonsubstitution be-
tween macronutrients but allows substitution
between nonnutrient inputs. In other words,
labor and capital inputs affect yield only via
the nutrient functions which are subject to the
law of the minimum. A specification of the
von Liebig model such as (12) is suitable for
using data generated by behavioral choices.
Lack of suitable information has prevented so
far a verification of this framework.

The von Liebig hypothesis about crop re-
sponse, widely known as "the law of mini-
mum," has often been paid lip service but rare-
ly taken seriously in its analytical and economic
implications concerning the fertilization prob-
lem. Its deceptively simple formulation has
appeared implausible to many researchers and,
over the century, it has been pushed aside
without a rigorous verification. The necessary
statistical procedures for such a test became
available only in recent times. The fate of the
von Liebig hypothesis is indeed intriguing.
Originally formulated for explaining a limited
biological phenomenon, it was rejected for its
naivete and alleged analytical rigidity in rep-
resenting crop response to macronutrients. It
ended up embraced by economists almost one
hundred years later in a more rigid specifica-
tion known as the Leontief model, which has
been widely applied as a research and policy
tool. The results of this study are interesting
because they show that a 130-year old conjec-
ture can be reintroduced in its original field
since it is capable of explaining crop response
at least as well as, and often better than, the
most regarded specification.

[Received April 1987; final revision
received August 1987.]
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