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   Abstract 
 

In this paper, using industry sector stock returns as proxies of firm asset values, we obtain bank 
capital requirements (through the cycle). This is achieved by Montecarlo simulation of a bank loan 
portfolio loss density.  We depart from the Basel 2 analytical formula developed by Gordy (2003) 
for the computation of the economic capital by, first, allowing dynamic heterogeneity in the factor 
loadings, and, also, by accounting for stochastic dependent recoveries. Dynamic heterogeneity in 
the factor loadings is introduced by using dynamic forecast of a Dynamic Factor model fitted to a 
large dataset of macroeconomic credit drivers. The empirical findings show that there is a decrease 
in the degree of Portfolio Credit Risk, once we move from the Basel 2 analytic formula to the 
Dynamic Factor model specification.  
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1. Introduction 

The Internal Rating Based method, IRB, underlying Pillar 1 of the Basel 2 accord, assigns greater 

sensitivity of capital requirements to the credit risk inherent in bank loan portfolios.  In light of the 

Basel 2 directives to reform the regulation of bank capital, there has been an extensive research on 

study of the bank loan portfolio loss density. Particular emphasis is on the measurement of the 

Value at Risk (VaR). A crucial input of a portfolio credit risk model, PCR, is the appropriate 

characterisation of default correlations. The first study which provided the theoretical underpinnings 

of the Basel 2 IRB formula for the determination of the economic capital (through the cycle) is due 

to Vasicek (2002) (see also Schonbucker, 2000). In this study default correlation is modelled 

through dependence of firm asset values upon a white noise Gaussian common shock. The other 

important assumption underlying the study of Vasicek (2002) is the existence of an infinite granular 

homogeneous portfolio, e.g. a portfolio with homogenous unconditional probability of default, PD, 

and factor loading and with obligors sharing the same exposure 1/N (where N, a large number, is the 

number of obligors). The final Basel 2 IRB formula is due to Gordy (2003) which allows for 

heterogeneity in both the (unconditional) probability of default, PD, and in the common factor 

loadings. Recently the study of Hanson et al. (2007) has found (analytically) that, once the expected 

loss is controlled for, heterogeneity in the PD is the most important source of credit risk 

diversification benefits, that is, it contributes the most to obtain measures of economic capital 

smaller than those obtained from the fully homogeneous IRB model of Vasicek (2002). The studies 

of Pytkin (2004) and of Cespedes et al. (2006) explore (in terms of closed form solution) the 

aforementioned benefits of credit risk diversification when multiple common factors underlie 

default correlation. Furthermore, the study of Hanson et al. (2007) shows, through simulation, that a 

two factor CAPM model implies a reduction in the economic capital when the benchmark is the 

Vasicek (2002) model. The aforementioned studies explore credit risk diversification benefits in 

terms of “static” parameter heterogeneity, given that they rely on static factor models, that is models 

which produce the same multi-step ahead loss density predictions, regardless of the forecast 
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horizon. In this study we investigate the role played by “dynamic” heterogeneity (only in the factor 

loadings) to achieve credit diversification benefits, having as a benchmark, the IRB formula of 

Gordy (2003). For this purpose we use a Dynamic Factor model (see Stock and Watson, 2002, and 

also Forni et al., 2005) fitted to a large dataset macro variables used as a proxy of the state of the 

business cycle.  To our knowledge, the Dynamic Factor model, as a prediction tool, has been used, 

so far, for the purpose of point forecast. Our focus is instead on density forecast. More specifically, 

we are interested in one year ahead density forecasts, using monthly data. For this purpose we 

employ the dynamic forecasting method (e.g. we roll forward one step ahead predictions) of the 

Dynamic Factor model to produce multi step ahead projections, and this gives a sufficient degree of 

heterogeneity in the impulse response of the observables to a single common systemic shock 

(modelled as a Gaussian random variable). The one year forecast horizon and the dynamic 

prediction method employed then imply the need of generating twelve Gaussian innovations, one 

per each interim multiplier characterising the impulse response profile. Therefore, we cannot use 

the single Gaussian common factor analytic formulas for capital requirements developed by 

Vasicek (2002) or by Gordy (2003). Specifically, the unconditional Portfolio Density forecast is 

obtained Montecarlo simulation, and the measurement of the economic capital is obtained by 

retrieving Value at Risk quantiles of the unconditional Portfolio Loss density.  

An additional reason motivating the use of Montecarlo simulation is due to taking into account the 

role of uncertain recoveries for the determination of Portfolio Credit Risk. The empirical studies of 

Hu and Perraudin (2002), Altman et al. (2005) show the existence of a negative correlation between 

probability of default and recovery rate. This finding can, for instance, be explained by observing 

that both default and recovery are dependent on the state of the macro-economy (see Frye 2000). In 

particular, given a negative cyclical downturn, collateral values as well as asset firm values would 

fall, and, as a consequence, there would be an increase in the number of defaults and a decrease in 

the number of recoveries (given their dependence on the collateral). Acharya et al. (2007) suggest 

the importance of industry factors in explaining recovery rates. Bruche and Aguado (2007) account 
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for the dependence of default intensities and recovery rates on the business cycle (as well as other 

controls, such as the seniority of bondholders). Using a time varying beta distribution (conditional 

upon the business cycle, seniority and industry class), Bruche and Aguado (2007) show that the 

existence of stochastic dependent recoveries plays a minor role (compared to stochastic defaults) in 

explaining 99% Credit Portfolio VaR. In our study, based upon stochastic simulation, recoveries 

and defaults are modelled to be dependent (and inversely related) on specific common systemic 

shock. In particular, we follow the approach of Altman et al. (2002) and we impose (a conservative) 

perfect rank correlation between default and loss given default for each of the one million scenarios 

considered in the Montecarlo simulation. 

 

The empirical findings show that there is a substantial reduction in the risk associated to the bank 

loan portfolio once we move from the one (static) factor Portfolio Credit Risk model of Basel 2 to 

the Dynamic Factor model. These findings hold across the different empirical model specification 

considered and for both the case of constant and stochastic dependent recovery. 

 

The outline of the paper is as follows. In section 2 and 3 we describe the basic definitions 

underlying the credit portfolio loss distribution, and the IRB method for the capital requirements 

advocated by Basel 2, respectively. In section 4 we describe the Dynamic Factor modelling 

approach and the stochastic simulation exercise; in section 5 we describe the data used together 

with the empirical results, and, finally, in section 6, we conclude. 

 

2. Credit Portfolio Loss Distribution 

The credit portfolio loss L is given by:  

 

          (1) 

 
1
( * )

N

j j
j

L D L
=
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where N is the number of counterparts, Dj  is a default indicator for obligor j (e.g. it takes value 1 if 

firm j defaults, 0 otherwise). Furthermore, the loss from counterpart j is given by: 

 

 
1

*
H

j hj h j
h

L EAD LGD
=

=∑                             (2) 

       

where EADhj is the exposure at default to the h business unit of obligor j. Finally, LGDhj is the 

corresponding loss given default (equal to one minus the recovery rate, see below).  

Since L is a random variable, it is crucial to retrieve its probability distribution to measure portfolio 

credit risk. For this purpose, from (1) and (2) we can observe that we need to consider as a random 

variable, at least one from DJj, EADhj, and LGDhj.  In this paper, we concentrate on the stochastic 

nature of Dj and LGDh, treating the exposures as deterministic.  

 

Beyond the expected loss, EL, two are the quantiles of the Portfolio Loss density which are of 

particular interest. The first, associated with the measurement of the economic capital is the 

unexpected loss, UL,  measured as the difference between the 99.9% Value aat Risk, VaR, and the 

expected loss. If the forecast horizon is a year, then the unexpected loss predicts the minimum loss 

(above the expected one) that can occur once every thousand years. Finally, if such an extreme 

(rare) event occurs, the loss is predicted by the expected shortfall, ES, computed as the mean of the 

distribution values beyond the 99.9% VaR.  

 

3. The IRB formula for Portfolio Credit Risk analysis 

It is customary, in Portfolio Credit Portfolio Risk analysis, to capture default correlation using a 

common factor model specification for asset returns. In particular, the  firm j’s asset value, Aj, is 

given by:  
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1j j j jA Uρ ρ ν= + −                             (3) 

 

where U is a systematic risk shock affecting simultaneously every firm (parodying the state of the 

macro-economy) and νj is an idiosyncratic (firm specific) risk shock. The parameter jρ   measures 

the loading of the common shock on the firm j asset value.  According to Merton (1974), a firm 

defaults when its asset value index falls below a threshold cj. Specifically, define Aj as the level of 

firm j’s asset value index, proxied, in line with the studies of Pesaran et al. (2006) and of Hanson et 

al. (2007) by stock return.  Let Dj symbolise the default event of firm j, then we can observe that: 

 

if Aj < cj, then Dj = 1; Dj = 0 otherwise.              (4) 

 

For given values of the (unconditional) probabilities of default PDj, we can obtain the default 

boundaries cj from the unconditional cumulative distribution of the asset return, that is:  

 

PDj = P(Aj < cj) = Φ(cj)                          (5) 

 

where Φ is the cumulative probability distribution. From eq. (5) it is possible to retrieve the default 

threshold cj, which is given by Φ-1(PDj). In this paper, under the assumption of a Gaussian white 

noise common shock with persistence in the propagation mechanism, Φ  is obtained through 

stochastic simulation.  Therefore cj is the simulated quantile corresponding to a given PDj. 

 

Assuming an infinitely granular homogeneous portfolio driven only by one common white noise 

Gaussian shock (without persistence in the propagation mechanism), and assuming constant 
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recovery, Vasicek (2002) provides an analytic formula for the unexpected portfolio loss useful for 

the determination of the economic capital. The closed form solution formula used by Basel 2 is due 

to Gordy (2003) and it allows heterogeneity in both the unconditional probability of default and 

common factor loadings. Specifically, the unexpected loss, ULj (as a fraction of total exposure) for 

each obligor is given by (ignoring a maturity adjustment): 

 

1 1( ( ) * (0.999))
*

1
j j

j j j
j

PD
UL EAD LGD PD

ρ

ρ

− −  Φ + Φ  = Φ − 
−    

                                   (6) 

 

where EADj is the exposure at default of obligor j (expressed as a percentage of the total exposure); 

LGD is equal to one minus the constant recovery rate (set by the Basel 2 accord to 0.55); Φ  is the 

standard cumulative Normal distribution; Φ -1(.) is  the inverse of the cumulative Normal 

distribution and 0.999 is the confidence level. Finally, ρj, the asset correlation function, is given by1: 

 

50 50

50 50

1 10.12* 0.24* 1
1 1

j jPD PD

j
e e

e e
ρ

− −

− −

   − −
= + −      − −   

                                                                 (6’) 

 

As shown by Gordy (2003), the total economic capital is simply obtained by adding the individual 

capital charges given by (6). In this paper, we are interested in comparing the Basel 2 formula for 

determination of the total unexpected loss (hence, the total economic capital) based upon (6) and 

(6’) with the one obtained from different Dynamic Factor model specifications. For this purpose, we 

need to resort to stochastic simulation since we cannot rely on the conditional independence 

assumption useful to obtain the analytic closed form solution for the unexpected portfolio loss. 

Although there is only one common systemic shock underlying the dynamics of several macro-

                                                           
1 Given that we consider only a corporate portfolio, the asset correlation function we consider is the one corresponding 
to corporate borrowers only. 
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credit drivers of the Portfolio Loss density, the use of a Dynamic Forecasting method leads to multi 

step ahead conditional projections for the stock returns (see below) dependent upon twelve common 

innovations each for a different horizon. The use of stochastic simulation is also motivated by the 

study of the Portfolio Loss density in presence of stochastic dependent recoveries.  

 

4. Dynamic Factor model of Portfolio Credit Risk 

Contrary to the Basel 2 formula for the determination of economic capital which is based upon a 

single white noise Gaussian common shock with no persistence in the propagation mechanism, 

there are Portfolio Credit Risk studies which introduce autoregressive dynamics. The study of 

Wilson (1997) allows for an AR(2) in the macro-credit drivers and the study of Pesaran et al. (2006) 

is based upon a cointegrated Vector Autoregression, VAR, model. Once the autoregressive 

dynamics is introduced, multi step ahead Portfolio Loss density forecasts can be obtained by means 

of Dynamic Forecasting. This implies that, in case of VAR models, the number of common systemic 

shocks is given by the number of endogenous variables (considered in the empirical model) times 

the forecast horizon. Therefore, a large dimensional set of common shocks influencing the systemic 

component of the Portfolio Credit risk model requires the use of a large number of replications to 

simulate the Portfolio Loss distribution. In this paper, we also use Dynamic Forecasting to produce 

conditional multi step ahead projection, but we only consider one common systemic shock as the 

primitive innovation (with persistence in the propagation mechanism) hitting a large number of 

macroeconomic aggregates. This is achieved by means of Dynamic Factor modelling (see Stock and 

Watson, 2002, and Forni et al, 2005). Therefore, the computational intensity of a stochastic 

simulation exercise can be considerably reduced. It is also important to observe that, given that we 

rely on an unobservable common shock, it is not meaningful to carry stress testing (see, for 

instance, Pesaran et al., 2006, for a study on the conditional Portfolio Loss density), but we can only 

focus on modelling the unconditional Portfolio Loss density. Therefore, in this study, we are only 
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interested in measuring capital requirements through the cycle and in comparing the values 

generated by Dynamic Factor modelling with those obtained using the Basel 2 formula.  

 

Dynamic Factor model 

In order to model the persistence in the propagation mechanism of a single white noise Gaussian 

common shock, underlying the dynamics of a large dataset of macro-variables (used as a proxy of 

the state of the macro-economy), we follow Stock and Watson (2002), and also Forni et al. (2005), 

by considering the following specification for xnt, which is the n dimensional dataset of credit 

drivers (e.g. the macro-variables): 

  

nt t tx Cf ξ= +            (7) 

 

the first addend of the r.h.s. of  (7) is the common component for each credit driver given by the 

product of the r dimensional vector of static factors ft and C, which is the n r× coefficient matrix of 

factor loadings. The factor dynamics is modelled as follows (see Forni et al, 2005): 

  

ttt RuDff += −1           (8) 

 

 

where R measures the impact multiplier effect of q common shocks ut (e.g. dynamic factors) on ft.  

In order to estimate the system given by equation (7) and (8), we follow Stock and Watson  (2002) 

who suggest to estimate consistently the space spanned by the factors ft by retrieving the principal 

components of the dataset xt :  

 

^
'1

t n ntf W x
n

=             (9) 
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where nW  is the n×r matrix having on the columns the eigenvectors corresponding to the first r 

largest eigenvalues of the covariance matrix of xnt As shown by Forni et al. (2005), given that the 

static factor vector contains current and past values of the common shocks u, the system given by 

(8) has (at least asymptotically) some equations which are identities. This implies that the 

covariance matrix of reduced form shocks in (8), e.g. 'RR , is singular. Therefore, in the second 

stage of the analysis, as suggested by Forni et al. (2005), we fit an OLS regression to the reduced 

form VAR(1):  

 

ttt ff ε+Γ= −1

^^
          (10) 

 

The structural form impact multiplier matrix R in (8) is given by KMH, where: 

 

1) M is the diagonal matrix having on the diagonal the square roots of the q largest eigenvalues 

of covariance matrix of the residuals εtt. 

2) K is the r×q matrix whose columns are the eigenvectors corresponding to the q largest 

eigenvalues of covariance matrix of the residuals εtt. 

3) H is a q×q rotation matrix 

 

We set q equal to one (therefore, the matrix H is normalised to unity); in other words we consider 

only one common systemic shock u hitting the whole dataset of macro-credit drivers xn. 

 

Multi- step conditional projection of stock returns 

Given that the credit drivers used in this paper are observed at monthly frequency and the forecast 

horizon of a bank is one year, we need to obtain twelve steps ahead projections. Since εtt  = KMHut 



 11

we can derive the h-step ahead projection of the static factors by rolling forward the VAR(1) in 

(10): 

 





 ++Γ+Γ= ++

−
+ htt

h
t

h
ht KMHuKMHuff ...1

1
^^

      (11) 

In order to obtain the conditional projection of stock returns, we retrieve the rx1 vector of 

sensitivities coefficients βj, by an OLS regression of the stock return of obligor j on the r estimated 

static factors. Therefore,  the prediction of the systemic component of the stock returns (proxy of 

firms asset values) is given by:  

 

htjhtj fA ++ =
^

, β              (12) 

 

We can observe from (11) and (12) that, in line with multifactor models for asset returns, the 

systemic component can be split in two parts. The first, described the first addend in the r.h.s of eq. 

(11), is the predictable component, which is using information on the macro dataset up to and 

including time t. The remaining addends in (11) capture the unanticipated systemic component, 

given that they are a function only of future common innovations. Finally, the (partial) 

unpredictability of Aj is further enhanced by allowing an idiosyncratic (firm specific) disturbance to 

affect the asset returns. Consequently, plugging (11) in (12), the h step ahead projection of the firm j 

asset return is given by: 

 

 

^
1

, 1 ...h h
j t h j t t h jtA f KMHu KMHuβ ν−
+ + +

 = Γ +Γ + + +  
     (13) 

 

where νtj is the idiosyncratic (firm specific) innovation.  
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For the purpose of Portfolio Credit Risk measurement (e.g. the derivation of the unexpected loss 

and expected shortfall) what matters is only the unanticipated systemic component of asset returns. 

Therefore, we need to de-mean the simulated density forecast in (11) by subtracting the point 

forecast 
^

h
tfΓ .  The final specification for the simulated density forecast of the asset return is given 

by: 

 

( )1
, 1 ...h

j t h j t t h jA Ru Ruβ ν−
+ + += Γ + + +                 (14) 

 

In equation (14) Aj is the un-standardised simulated value of asset returns. Consequently, the  

default threshold, cj that we obtain through the stochastic simulation experiment described below is 

un-standardised as well.  

Finally, in the Montecarlo simulation experiment (see below), we consider both the common 

systemic shock and the idiosyncratic innovation as standardised Gaussian.  

 

Montecarlo Simulation  

In addition to the estimated coefficient matrices, β, Γ and R in (14), we use as inputs, for the 

purpose of generating artificially the scenarios, the exposures at default, EAD and the unconditional 

PD (obtained from the internal rating of a specific bank). The Montecarlo simulation experiment 

can be described as follows.  First, we consider 1000 random draws from N(0,1) univariate 

distribution for each of the twelve common systemic shocks entering in the systemic component of 

(14)2. Therefore a joint set of realisations for these twelve innovations defines a particular 

macroeconomic scenario. Conditional on each draw for these common shocks, we carry 1000 draws 

from a N(0,1) distribution for each of the 6628 obligors entering in the loan portfolio, describing the 

realisation of the firm specific scenarios. In total we obtain one million observations and by sorting 

                                                           
2 We use the Normal pseudo random number generator available from Gauss 6.0. 
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them in ascending order, we obtain the empirical distribution of the obligor j asset return. The given 

unconditional PD for obligor j is then used to retrieve the corresponding (simulated) quantile, by 

picking the value of the simulated density that leaves to its left the aforementioned unconditional 

PD. This simulated quantile is the unconditional threshold for obligor j, e.g. cj in equation (5). The 

comparison between the projection of Aj for a particular scenario (defined by a joint draw for the 

common and firm specific innovations) with the artificially generated unconditional threshold 

allows to predict whether default occurs in each scenario. Finally, assuming a constant recovery rate 

equal to 55%, we are then able to obtain the prediction of the total portfolio loss for that specific 

scenario. By repeating this exercise for the whole set of one million scenarios, we obtain the 

unconditional Portfolio Loss density.  

 

We now consider the case of stochastic dependent recoveries. In line with the study of Altman et al. 

(2002), we model stochastic dependent recoveries, by imposing a perfect rank correlation between 

the LGD and the default rate associated with the common shock scenarios. In particular, we sort (in 

descending order) the number of defaults for each common shock scenario, from the worst case 

scenario (e.g. the one with the highest number of defaults) to the one with the smallest number of 

defaults. The stochastic recovery rate is modelled through the beta distribution (seee Gupton et al., 

2000, among the others). This distribution, usually employed by rating agencies to model 

recoveries, depends only on two parameters a and b and it has support [0, 1]. More specifically, the 

shape of the beta distribution depends on the parameters a and b, linked to the sample mean and to 

the standard deviation of the recovery rate, µ and σ,  respectively, as follows: b ={[µ* (µ-

1)2]/σ2+µ-1};  a=(b*µ)/(µ-1). We use the sample mean and variance of the recovery rate for senior 

unsecured loans (obtained from the study of Altman et al., 2005). The values of these parameters 

are set to 55% and 28.4%, respectively. In order to retrieve stochastic recovery rates, we assign the 

lowest probability of recovery to the scenario with the largest number of default and, then, we invert 

the cumulative beta distribution, and we carry with this type of sorting till we consider the scenario 
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with the smallest number default3. Therefore, the recovery rates are sorted in ascending order and 

they are associated with the corresponding common scenarios sorted in terms of number of defaults. 

We argue that the perfect rank correlation between PD’s and an aggregate recovery rate as specified 

in the simulation experiment allows is to investigate the most conservative scenario framework, 

setting an upper bound to the various measures of Portfolio Credit Risk.  

Finally, the one million replications for the stochastic simulation experiment imply that the 0.1% 

probability tail we focus on (in line with Basel 2 suggestions) is made of one thousand observations.    

 

5. Empirical analysis 

Data 

We consider a corporate portfolio, describing the exposures of an Italian bank towards corporate. 

The obligors with marginal exposure have been grouped in homogenous clusters in terms of rating 

and economic sector. This allows us to consider a portfolio with 6628 obligors (with cluster and 

non-clusters), with the corresponding EAD (exposure at default), and unconditional PD’s (obtained 

from the internal rating system of the bank), treated as input in the Portfolio Credit Risk VaR 

The sample of observations (monthly frequency) runs from the first month industry sector MIB 

stock price indices are available, e.g. January 1996, till December 2005. Proxies of the firm asset 

values are stock returns in line with the studies of Pesaran et al. (2006) and of Hanson et al. (2007) 

twenty one MIB sector specific and aggregate stock price indices (transformed into log returns) 

described in Appendix 2. It is important to observe that given the presence of SME in the corporate 

loan portfolio considered, the heterogeneity in the systematic component of equation (14) occurs 

only across industry sectors. The dataset for the Italian economy macro-variables is described in 

Appendix 1. This dataset includes a total of 68 macro time series for prices, output and interest 

rates. More specifically we consider short term and long term interest rates, consumer prices and 

producer prices (both aggregate and industry sector specific); real seasonally adjusted indices for 

                                                           
3 The inverse of the cumulative beta distribution is obtained from the  PDF library In Gauss developed by D. Baird.  
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aggregate and sector specific industrial production; real seasonally adjusted aggregate and sector 

specific sales and orders. Finally, for the purpose of principal component analysis, each series in the 

macro-economic variables dataset has been standardised to have zero mean and unit variance. 

 

Portfolio Credit Risk measurement 

Standard AIC and BIC criteria to select the number of static factors cannot be employed since they 

rely on the minimisation of a penalty function only of the time series dimension.  Therefore, we 

employ the method suggested by Bai-Ng (2002), which involves the minimisation of a penalty 

function depending on both the cross section and time series dimension. Setting to eight the 

maximum number of factors, the log version of the Bai-Ng statistics suggest the use of four and 

eight factors.  Given the inconclusive evidence of the optimal number of principal components, we 

have carried the stochastic simulation using various DF model specifications with four, five, six, 

seven and eight principal components. According to the mean adjusted R2 obtained by averaging 

this goodness of fit measure for a set of OLS regressions of each macro time series, the average 

systematic variability explained by four, five, six, seven and eight principal components is 45%, 

49%, 53%, 57%, and 59%, respectively.  

Employing the scenario generation described in section 4.3, we obtain the simulated loss 

distributions. As we can observe (see Exhibits 3-12) the shape of the unconditional loss distribution 

is asymmetric and highly skewed (with the degree of asymmetry increasing in presence of 

stochastic dependent recoveries). From the Figures below and Exhibits 1 and 2 we can draw the 

following conclusions. First, given that we control for the expected loss, the latter is allowed to vary 

only when we switch from the constant to the stochastic dependent recovery assumption. More 

specifically, the expected loss for stochastic dependent recovery is 1.543%, nearly twice as much 

the one associated with constant recovery, which is equal to 0.871%. Second, within a given model 

specification for the LGD, the shape of portfolio loss density is dependent on the Dynamic Factor 

model specification. The Portfolio Credit Risk measures are not too sensitive to the different 
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Dynamic Factor model specifications. In particular, the values of unexpected loss vary between 

1.121% and 1.126% for the case of constant recovery and 2.071% and 2.079% for the case of 

stochastic dependent recovery. Similar findings apply to the values of the expected shortfall.  Third, 

by comparing the last five columns of Exhibits 1 with the first one, we can observe that the Basel 2 

measure of the unexpected loss (obtained from the analytic solution described in equation (6), is 

bigger than the one obtained by stochastic simulation of multifactor models. This finding suggests 

that, on one hand, the (average) covariance of asset return, given by 

( )11 11 10 10 '' ' ' ' ... 'j jRR RR RRβ βΓ Γ +Γ Γ + +  , increases the further ahead is the forecast horizon. This 

factor tends to increase Portfolio Credit Risk. On the other hand, there is also a considerable degree 

of (dynamic) heterogeneity in the impulse response coefficients, and this offsets the impact of an 

increasing innovation uncertainty for a twelve months ahead horizon. Given that both the 

benchmark model we consider (e.g. Basel 2 analytic formula) and the one based upon Dynamic 

Factor simulation share the same type of heterogeneity in unconditional PD, our study differs from  

Hanson et al. (2007) who investigate both the impact of heterogeneity in the unconditional PD and 

in the factor loadings on Portfolio Credit Risk. We only explore the second type of parameter 

heterogeneity. While Hanson et al (2007) consider only the case of static heterogeneity, given the 

static factor models they analyse, we argue that the benefits of credit risk diversification (e.g. a 

reduction in the unexpected loss relative to Basel 2 analytic formula with heterogeneity in the factor 

loadings, modelled through 6’) are due to dynamic heterogeneity in the factor loadings as described 

by the conditional projection in equation (14).  Furthermore, even though we have imposed in the 

simulation experiment a perfect rank correlation between PD’s and loss given default, we still 

obtain values of the unexpected loss below the one obtained by using the analytic formula given by 

equations (6) and (6’). Finally, although the assumption of perfect rank correlation between PD’s 

and loss given default, provides an upper bound to Portfolio Credit Risk, the simulation findings 

suggest that ignoring stochastic dependent recoveries implies a considerable under-provision of 

minimum capital requirements.  



 17

 

6. Conclusions 

The aim of this paper is to measure bank capital requirements through the cycle. More specifically, 

we compare the unexpected loss (hence the economic capital) associated with Basel 2 formula due 

to Gordy (2003) with the one obtained through stochastic simulation of a Dynamic Factor, DF 

model (see Stock and Watson, 2002, and Forni et al., 2005) fitted to a large dataset of macro-credit 

drivers. Both models depend on a single Gaussian common shock and they exhibit the same degree 

of heterogeneity in the unconditional probability of default, PD, but differ in terms of heterogeneity 

in the factor loadings. In particular, the Basel 2 formula models heterogeneity in the factor loadings 

in a “static” way allowing the loadings to be inversely related to the PD. The heterogeneity in the 

loadings obtained from the DF model is of a “dynamic” type, given that it is obtained through 

Dynamic Forecasting of the Dynamic Factor model. Although there is a considerable degree of 

innovation uncertainty for a twelve month ahead horizon, the heterogeneity in the impulse response 

coefficients implies Portfolio Credit Risk measures (in particular, the unexpected loss) below those 

suggested by the analytic formula used by Basel 2. Furthermore, we also account for stochastic 

dependent recoveries, by imposing (a conservative) perfect rank correlation between default and 

loss given default for each of the one million scenarios considered in the simulation. The empirical 

findings show that, when using the Dynamic Factor model, ignoring stochastic dependent 

recoveries implies a considerable under-provision of minimum capital requirements.  
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Exhibits 1: Unconditional Portfolio Loss with constant recovery 

 Analytic 

solution  
Simulation: 

4 factors 
Simulation: 

5 factors 
Simulation: 

6 factors 
Simulation:  

7 factors 
Simulation:  

8 factors 
EL  

 

0.871% 0.871% 0.871% 0.871% 0.871% 0.871% 

UL 5.644% 1.125% 1.126% 1.124% 1.126% 1.121% 

ES        - 2.145% 2.146% 2.153% 2.144% 2.148% 

Note: numbers are in percentages of total exposure. EL is the Expected Loss; UL is the unexpected 
Loss; ES is the expected shortfall 
 

Exhibits 2: Unconditional Portfolio Loss with stochastic dependent  
recovery 
 Simulation: 

4 factors 
Simulation: 

5 factors 
Simulation: 

6 factors 
Simulation:  

7 factors 
Simulation:  

8 factors 
EL  

 

0.971% 0.971% 0.971% 0.971% 0.971% 

UL 2.071% 2.079% 2.074% 2.074% 2.073% 

ES 3.306% 3.314% 3.311% 3.308% 3.305% 

Note: numbers are in percentages of total exposure. EL is the Expected Loss; 
 UL is the unexpected Loss; ES is the expected shortfall 
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Exhibits 3: Portfolio Loss Density with 4 factors; constant recovery 
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Exhibits 4: Portfolio Loss Density with 4 factors; stochastic dependent recovery 
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Exhibits 5: Portfolio Loss Density with 5 factors; constant recovery 
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Exhibits 6: Portfolio Loss Density with 5 factors; stochastic dependent recovery 
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Exhibits 7: Portfolio Loss Density with 6 factors; constant recovery 
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Exhibits 8: Portfolio Loss Density with 6 factors; stochastic dependent recovery 
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Exhibits 9: Portfolio Loss Density with 7 factors; constant recovery 
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Exhibits 10: Portfolio Loss Density with 7 factors; stochastic dependent recovery 
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Exhibits 11: Portfolio Loss Density with 8 factors; constant recovery 
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Exhibits 12: Portfolio Loss Density with 8 factors; stochastic dependent recovery 
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Appendix 1: Macro-variables dataset  
 

Code Data description Transformation 
EUR001M Euribor 1 mesi 3 

EUR003M Euribor 3 mesi 3 

EUR006M Euribor 6 mesi 3 

ILRSGVTG Italy rendista govt bond 3 

ITISCOKE COKE SA SALES 3 

ITISELEC ELECTRICS SA SALES 3 

ITISFOOD FOOD SALES 3 

ITISFSAT FOREIGN SALES SA 3 

ITISLEAT LEATHER SA SALES 3 

ITISMACH MACHINERY SA SALES 3 

ITISMANF MANUFACTORING SA SALES 3 

ITISMETL METALS SA SALES 3 

ITISMINE MINERALS SA SALES 3 

ITISNMET NON METALS SA SALES 3 

ITISNSAT DOMESTIC SALES SA 3 

ITISOTHR OTHERS SA SALES 3 

ITISPAPR PAPER SA SALES 3 

ITISRUBB RUBBER SA SALES 3 

ITISSCO CONSUPTION GOODS SA SALES 3 

ITISSEN ENERGY SA SALES 3 

ITISSIN INVESTIMENT GOODS SA SALES 3 

ITISSINT INTERM GOODS SA SALES 3 

ITISTEXT TEXTILES SA SALES 3 

ITISTRAN TRANSPORT SA SALES 3 

ITISTSAT TOTAL SALES SA 3 

ITISWOOD WOOD SA SALES 3 

ITORFSAL ITALY FOREIGN INDUSTRIAL ORDER SA 3 

ITORNSAL ITALY NATIONAL INDUSTRIAL ORDER SA 3 

ITORTSAL ITALY INDUSTRIAL ORDER SA 3 

ITPRENS ITALY INDUSTRIAL PRODUCTION ENERGY SA 3 

ITPRINS ITALY INDUSTRIAL PRODUCTION INVESTIMENT GOODS SA 3 

ITPRITS ITALY INDUSTRIAL PRODUCTION INTERMED GOODS SA 3 

ITPRSAN ITALY INDUSTRIAL PRODUCTION SA 3 

ITPRSCI ITALY INDUSTRIAL PRODUCTION CHEMICALS SA 3 

ITPRSDI ITALY INDUSTRIAL PRODUCTION FOOD SA 3 

ITPRSEI ITALY INDUSTRIAL PRODUCTION ELECTRICS SA 3 

ITPRSFI ITALY INDUSTRIAL PRODUCTION MANUFACTURING SA 3 

ITPRSHI ITALY INDUSTRIAL PRODUCTION MACHINERY SA 3 

ITPRSKI ITALY INDUSTRIAL PRODUCTION COKE SA 3 

ITPRSLI ITALY INDUSTRIAL PRODUCTION LEATHER SA 3 

ITPRSNI ITALY INDUSTRIAL PRODUCTION NON METALS SA 3 

ITPRSOI ITALY INDUSTRIAL PRODUCTION OTHER SA 3 

ITPRSPI ITALY INDUSTRIAL PRODUCTION PAPER SA 3 

ITPRSRI ITALY INDUSTRIAL PRODUCTION RUBBER SA 3 
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ITPRSSI ITALY INDUSTRIAL PRODUCTION METALS SA 3 

ITPRSTI ITALY INDUSTRIAL PRODUCTION TEXTILES SA 3 

ITPRSWI ITALY INDUSTRIAL PRODUCTION WOOD SA 3 

ITPRSXI ITALY INDUSTRIAL PRODUCTION FURNITURE SA 3 

CPALIT ALL ITEM CPI ITALIA 4 

CPCLITI CLOTHING AND FOOTWEAR CPI ITALIA 4 

CPCMITI COMMUNICATIONSCPI ITALIA 4 

CPEDITI EDUCATION CPI ITALIA 4 

CPENITI ENERGY CPI ITALIA 4 

CPEXITI CORECPI ITALIA 4 

CPFDITI FOOD CPI ITALIA 4 

CPFNITI FURNISHING CPI ITALIA 4 

CPGGITI GOODS CPI ITALIA 4 

CPHLITI HEALTH CPI ITALIA 4 

CPHRITI RESTURANT AND HOTELS CPI ITALIA 4 

CPMSITI MISCELLANEOUS CPI ITALIA 4 

CPRNITI RECREATION CPI ITALIA 4 

CPTRITI TRANSPORT CPI ITALIA 4 

CPXNITI EXCLUDING ENERGY CPI ITALIA 4 

PPENIT PPI ENERGY 4 

PPMNIT PPI MANUFACTURING ITALIA 4 

PPNGIT PPI NON DOURABLE GOODS ITALIA 4 

PPTXIT TOTAL PRODUCER PRICE EX CONSTRUCTION ITALIA 4 

ITPRSPI ITALY INDUSTRIAL PRODUCTION PAPER SA 3 

ITPRSRI ITALY INDUSTRIAL PRODUCTION RUBBER SA 3 

ITPRSSI ITALY INDUSTRIAL PRODUCTION METALS SA 3 

ITPRSTI ITALY INDUSTRIAL PRODUCTION TEXTILES SA 3 

ITPRSWI ITALY INDUSTRIAL PRODUCTION WOOD SA 3 

ITPRSXI ITALY INDUSTRIAL PRODUCTION FURNITURE SA 3 

Note: In the third column, the number are associated to a specific transformation of each raw series. Specifically, the 

transformations are as follows: 2 = no transformation; 3 = first difference of the log level; 4 = annualised growth rate, 

that is, y which is the log level of the time series, is transformed into is (yt - yt-12).  As for the interest rates (the first four 

series) variables in the second column, these are the transformed annualised rates, r, into monthly gross rates, using 

(1/12)*log(1+r/100)]. We then apply the first order difference transformation. Transformation 4 is for the prices series 

whose raw observations are not seasonally adjusted. 
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Appendix 2: MIB stock price data 
Code Data description 
MIBFOODH  
 

MIB Food/Grocery  

MIBINSH  
 

MIB Insurance 

MIBBANKH  
 

MIB Banking 

MIBPAPH  MIB Paper Print 

MIBBUILH  
 

MIB Building 

MIBCHEMH  
 

MIB Chemicals 

MIBCOMH  
 

MIB Transport/Tourism 

MIBCUMH  
 

MIB Distribution 

MIBELECH  
 

MIB Electrical 

MIBREALH  
 

MIB Real Estate 

MIBMECH  
 

MIB Auto 

MIBMINH  
 

MIB Metal/Mining 

MIBTEXTH  
 

MIB Textiles 

MIBMISCH  
 

MIB Industrial Miscellaneous 

MIBPLNTH  
 

MIB Plants/Machinery 

MIBFNCLH  
 

MIB Financial Services 

MIBFINCH  
 

MIB Finance/Part 

MIBFINMH  
 

MIB Financial Miscellaneous 

MIBPUBLH  
 

MIB Public Utility 

MIBPRNTH  
 

MIB Media 

MIB30 MIB 30  
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