
 

RECent: c/o Dipartimento di Economia Politica, Viale Berengario 51, I-41100 Modena, ITALY   
Phone +39 059 2056856, Fax +39 059 2056947, E-mail: RECent@unimore.it 

 
 

 

 
 
 

 
 
 
 
 
 
 

WORKING PAPER SERIES 
 
 
 

Optimization heuristics for determining 
internal grading scales 

 
Marianna Lyra, Johannes Paha, Sandra Paterlini and 

Peter Winker 
 
 

Working Paper 23 
 

September 2008 
 

 
 
 
 

 
 
 
 
 
 
 
 

www.recent.unimore.it 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7043091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Optimization Heuristics for Determining

Internal Rating Grading Scales∗

Marianna Lyra† Johannes Paha† Sandra Paterlini‡

Peter Winker†

September 17, 2008

Abstract

Basel II imposes regulatory capital on banks related to the de-

fault risk of their credit portfolio. Banks using an internal rating

approach compute the regulatory capital from pooled probabilities

of default. These pooled probabilities can be calculated by cluster-

ing credit borrowers into different buckets and computing the mean

PD for each bucket. The clustering problem can become very com-

plex when Basel II regulations and real-world constraints are taken
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into account. Search heuristics have already proven remarkable per-

formance in tackling this problem as complex as it is. A Threshold

Accepting algorithm is proposed, which exploits the inherent discrete

nature of the clustering problem. This algorithm is found to out-

perform alternative methodologies already proposed in the literature,

such as standard k-means and Differential Evolution. Besides consid-

ering several clustering objectives for a given number of buckets, we

extend the analysis further by introducing new methods to determine

the optimal number of buckets in which to cluster banks’ clients.

Keywords: credit risk, probability of default, clustering, Threshold Accept-

ing, Differential Evolution.

1 Introduction

The second Basel Accord on Banking Supervision requires banks to hold a

minimum level of shareholders’ capital in excess of provisions. This regula-

tory capital (RC) may be regarded as some form of self-insurance (in excess

of provisions) against the consequences of an unexpectedly high number of

defaults. This amount of capital depends on the exposure to risk of the bank.

Financial intermediaries then have to assess the clients’ riskiness by evalu-

ating their probability of default (PD), i.e., the probability that a borrower

will default over the subsequent 12 months. Afterwards, clients are pooled

together in buckets (PD-buckets) and are assigned the same “pooled” PD.
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While many studies have been devoted to the phases of rating assignment,

quantification, and validation, the problem of determining the width and the

number of PD buckets has received much less attention. We propose to fill

the gap in the literature by proposing an error-based statistical methodology

to determine the optimal structure of PD-buckets. Thereby, we consider the

problem of determining the PD-buckets as a clustering problem, where the

aim is to find the cluster structure that allows to minimize a given error mea-

sure under the relevant real-world constraints. Previous related work can be

found, e.g., in Foglia et al. (2001), Krink et al. (2007) and Krink et al. (in

press). We extend the analysis mainly in two directions.

First, we propose a methodology not only to tackle the problem of de-

termining the PD buckets width, but also to determine the optimal number

of buckets in which to partition the banks’ clients. This problem is complex

to tackle since there is a trade-off between having a small number of large

buckets and a high number of small buckets. In fact, clients belonging to the

same buckets are assigned the same pooled PD. Hence, we would like to have

a large number of buckets in order to minimize the loss of precision. However,

in such a case it would be difficult to validate the consistency of the rating

scheme ex post, since the number of defaults in each bucket would probably

be too low for statistical validation. On the contrary, if the number in which

to partition the clients is small, buckets tend to be too wide which might

lead to an overstatement of the capital charge, given the concave shape of

the capital function (Kiefer and Larson, 2004), and to opportunistic behavior
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and adverse selection of clients.

Second, we introduce the Threshold Accepting (TA) algorithm (Dueck

and Scheuer, 1990; Winker, 2001) in order to determine the optimal PD

buckets structure. Compared to the Differential Evolution (DE) heuristic

used in previous studies (Krink et al., 2007), TA is particularly suited for

discrete search spaces. By exploiting the discreteness of the search space of

the PD bucketing problem, it avoids to search on plateaus of the objective

function, but can still deal with local minima. Our extensive investigation

on a real-world dataset shows that TA can be a faster and more robust

alternative to DE.

The paper is structured as follows. Section 2 introduces the formal frame-

work for the error-based approach to PD bucketing by considering the reg-

ulations put forward by the Basel II accord and some other real-world con-

straints. Several objective functions and constraints for the optimization

problem are presented. Section 3 describes the two optimization heuristics,

namely Differential Evolution and Threshold Accepting. Empirical results

and performance comparison are then reported in Section 4. Section 5 ex-

tends our formal framework by introducing the endogenous choice of the

optimum number of buckets and discusses some results. Finally, Section 6

concludes and suggests further research perspectives.
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2 Basel II and Clustering of Credit Risk

The framework of Basel II puts a strong emphasis on the adequacy of banks’

equity for a given risk profile. Thereby, a core risk measure is the value at

risk. A bank’s value at risk (V aRi) associated with some borrower i is equal

to this debtor’s exposure at default (EADi) times the fraction (loss given

default, LGDi) of EADi that may not be recovered. A bank may account

for the expected part of V aR (i.e., V aR times borrower i’s probability of

default PDi) by provisioning. However, under sufficiently negative economic

conditions the conditional (also called stressed or through the cycle) proba-

bility of default (PDc,i) is likely to exceed PDi and thus may cause losses in

excess of provisions. In order to ensure the stability of the banking system,

banks are required by the second Basel Capital Accord (Basel II) to hold

regulatory capital (RC) that is related to these unexpected losses.

For determining RC borrowers have to be assigned to at least seven in-

ternal borrower grades b (also called groups or buckets) for non-defaulted

borrowers based on their creditworthiness. Then, RC can be computed by

e.g. treating the mean PD (PDb) of all borrowers in bucket b as a proxy of

an individual borrower’s PD. We assume that a bank employs a statistical

default prediction model so that an estimator for each borrower’s individual

PD is available. Then, RC for an individual borrower (RC(PDi)), when

no maturity adjustment is considered, is given by equation (1) where the

stressed PD (PDc,i) is given by equation (2). Φ and Φ−1 denote the cumu-
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lative standard normal density function and its inverse, respectively. The

asset correlation R reflects how the individual PDs are linked together by

the general state of the economy, the firm’s size (as measured by sales) and

the size of their EAD.

RC(PDi) = 1.06 · EADi · LGD · (PDc,i − PDi) . (1)

PDc,i = Φ

(
Φ−1 (PDi)−

√
Ri · Φ−1(0.001)√

1−Ri

)
. (2)

If a borrower i is assigned to bucket b her conditional PD (PDc,i,b) can be

determined by replacing PDi with PDb in equation (2). The sum of RC for

all borrowers i over all buckets b may be computed as (3):1

RC =
∑

b

∑
i

1.06 · EADi · LGD · (PDc,i,b − PDb

)
. (3)

Computing RC from pooled PDs as shown above results in an approxima-

tion error. Therefore, Basel II requires banks to perform credit risk rating,

i.e., assigning borrowers to buckets meaningfully. On the one hand, this

means to maximize the homogeneity of borrowers within a given bucket.

This may be done by grouping borrowers in minimizing some objective func-

1In our implementation we compute the asset correlation according to paragraph 273
of the Basel II framework by normalizing debtors’ sales to EUR 5 million if they are below
that threshold and to EUR 50 million if they are above this threshold. Consequently, we
do not treat small firms’ exposures as retail exposures as stated in paragraph 232. 1.06 is
an empirically derived scaling factor that prevents RC calculated under Basel II to drop
below RC under the Basel I framework.
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tion using an optimization technique as described in Section 3. On the other

hand, adjacent buckets must be clearly distinguishable, i.e., heterogeneous.

There is a trade-off between homogeneity and heterogeneity since increasing

the number of buckets is likely to decrease heterogeneity within buckets but

raise homogeneity between buckets. This trade-off as well as the necessity

to ex post validate the meaningfulness of the credit risk rating system leads

us to the question which number of buckets to choose. We will address this

issue in Section 5.

The goal of maximizing within-buckets homogeneity may be operational-

ized by different objective functions. First, one may minimize the squared

error that arises from substituting a borrower’s individual PD by the mean

of its bucket. This may be done using unconditional PDs (point-in-time

approach) resulting in the following objective function:

min
∑

b

∑

i∈b

(
PDi − PDb

)2
. (4)

However, if a bank’s portfolio is strongly affected by overall business con-

ditions the use of conditional PDs in a through-the-cycle approach may be

more appropriate:

min
∑

b

∑

i∈b

(
PDc,i − PDc,b

)2
. (5)

It may be supposed that banks grant higher loans to good borrowers than

to borrowers with a relatively high PD. Thus, VaR that arises from a good

borrower may be comparatively high, as well. Consequently, it might be more
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reasonable to use weighted versions of the objective functions (4) and (5)

using the EADs as weights, e.g., for the conditional PDs (5):

min
∑

b

∑

i∈b

EADi ·
(
PDc,i − PDc,b

)2
. (6)

Moreover, banks may want to minimize excess regulatory capital resulting in

objective function 7:

min
∑

b

∑

i∈b

∣∣RC (PDi)−RC
(
PDb

)∣∣ . (7)

Apart from the selection of an appropriate objective function, several

constraints imposed by the Basel II framework have to be taken into account

when rating credit risk. First, according to paragraph 285 of the framework

the pooled PD for corporate and bank exposures must be no smaller than

0.03%.2 Second, paragraphs 403 and 406 of the framework require banks to

have a meaningful distribution of exposures without excessive concentrations.

Thus, following Krink et al. (2007), we assume that no bucket may contain

more than 35% of a bank’s total exposure:

∑
i∈b EADb,i∑

b

∑
i∈b EADb,i

≤ 35% . (8)

Third, in order to avoid buckets that are too small, the number of borrowers

2This constraint is not binding in our application since no PD in our dataset is smaller
than 0.03%.

8



in a bucket (Nb) should be larger than some percentage x of the entire number

of borrowers N :

Nb ≥ x ·N . (9)

Again following Krink et al. (2007), we will assume x = 1% for our application

in Section 4. However, we will define x based on statistical criteria when

endogenizing the number of buckets in Section 5.

Fourth, the clustering algorithm must be set up such that buckets do

not overlap and the union of buckets is the set of all borrowers. Further-

more, paragraph 404 of the framework requires banks to have at least seven

borrower grades for non-defaulted borrowers.

3 Two Optimization Heuristics for Credit Risk

Bucketing

We tackle the PD bucketing problem as a clustering one, i.e., we want to

determine the optimal partition of N bank clients in B buckets with respect

to a given objective function and subject to some constraints (see Section 2).

Since clustering problems are NP-hard when the number of cluster exceeds

three (Brucker, 1978), stochastic search heuristics, such as Differential Evolu-

tion and Threshold Acceptance, can be a valid tool to tackle such problems.

Furthermore, the presence of constraints narrows and segments further the

search space. DE and TA allow to explore the whole search space, not focus-
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ing on the borders resulting from the constraints as conventional approaches

often do. Following Krink et al. (2007), we build candidate solutions in TA

or DE to encode the thresholds of buckets. Hence, when considering the

problem in a continuous domain, the fitness landscape has large plateaus

given that a change in the threshold of one bucket modifies the categoriza-

tion only if there are some clients in the PD interval between the old and the

new thresholds, e.g, if a threshold varies from 0.2 to 0.21, the PD-bucketing

partition would vary only if there are clients with PD in the interval ]0.2,

0.21]. Then, the fitness value of each individual will vary across generation

only when the new bucketing thresholds correspond to a new categorization.

Given this inherent discrete nature of the problem, we expect TA to be a

better alternative than DE.

3.1 Differential Evolution

Differential Evolution (DE) is a search heuristic, introduced by Storn and

Price (1997), which has shown remarkable performance in continuous nu-

merical problems when compared with other heuristics (e.g., Corne et al.

(1999), Price et al. (2005), and Vesterstom and Thomsen (2004)). The main

advantage of DE is its robustness in converging towards the optimal solu-

tion and the insensitiveness to parameter tuning. Recent investigations have

shown that such heuristics can be a reliable tool in tackling real-world finan-

cial problems, such as index tracking (Maringer and Oyewumi (2007)) and

multi-objective portfolio optimization (Krink and Paterlini (2008)). Even if
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DE is specialized on continuous numerical problems, DE has already shown

better performance than GA and PSO in tackling the credit risk bucketing

Krink et al. (2007).

Algorithm 1 Pseudocode for Differential Evolution.
1: Initialize parameters np, nG, F and CR

2: Initialize population P
(1)
j,i , j = 1, · · ·B − 1, i = 1, · · · , np

3: for k = 1 to nG do
4: P (0) = P (1)

5: for i = 1 to np do
6: Generate r1,r2,r3 ∈1, · · · ,np, r1 6= r2 6= r3 6= i

7: Compute P
(υ)
.,i = P

(0)
.,r1 + F × (P (0)

.,r2 - P
(0)
.,r3)

8: for i = 1 to B − 1 do
9: if u < CR then

10: P
(u)
j,i = P

(υ)
j,i

11: else
12: P

(u)
j,i = P

(0)
j,i

13: end if
14: end for
15: if f(P (u)

.,i ) < f(P (0)
.,i ) then

16: P
(1)
.,i = P

(u)
.,i

17: else
18: P

(1)
.,i = P

(0)
.,i

19: end if
20: end for
21: end for

Algorithm 1 describes the general outline of our DE implementation. Ini-

tially, the algorithm randomly generates and evaluates np candidate solutions

(2:). Each solution is made of B − 1 buckets thresholds. Next, for a pre-

defined number of generations, nG, the following steps are repeated. For

each current element of the population a new candidate solution is generated

through differential mutation (7:) and uniform crossover with the current el-

ement (9:-14:). Differential mutation generates a new solution by multiplying

11



the difference between two randomly selected solution vectors by the scaled

factor F and adding the result to a third vector. Then, a uniform crossover

is applied. During crossover, the algorithm recombines the initial solution

with the new candidates by replacing each component P
(0)
j,i with mutant ones

resulting from the differential mutation step P
(υ)
j,i with a probability CR. The

resulting new trial solution is denoted by P
(u)
j,i . Then, the objective function

f is calculated and the new candidate solution replaces the current one only

if it has better fitness value. Otherwise, the current solution is carried over

to the next generation. The algorithm terminates after a predefined number

of generations.

The tuning parameters of the DE implementation are the scaling factor

F and the crossover probability CR. These settings might affect the quality

of results depending on the properties of the problem. To determine the

parameter values that result in the best objective function values, we run

the algorithm 30 times for different combinations of F and CR, ranging

between 0.5 and 0.9. Thereby, the objective function (6) was considered.

The distribution of the results indicate that, for the specific problem instance,

tuning the technical parameters does not affect the solution quality for values

of CR larger than 0.6, while the choice of F within the given interval appears

to be irrelevant.
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3.2 Threshold Accepting

The idea of TA is to iteratively compare the objective function values of two

candidate solutions that belong to the same neighborhood and to select one

of them for further refinement. Thereby, the current candidate solution is

replaced by a new one

• if this results in an improvement of the objective function value, and

• if a deterioration of the objective function value does not exceed a

threshold as defined by a threshold sequence.

Due to the second feature, TA may overcome local optima.

TA requires to set an initial candidate solution and a criterion that ter-

minates the search process. It turns out to be best to determine an initial

candidate solution completely at random. Moreover, the search is stopped

after a predetermined number of iterations. A nice feature of this stopping

criterion is that the computation time can be controlled quite effectively.

In TA the current candidate solution is compared with a neighboring

solution. Thus, the implementation requires to define a neighborhood struc-

ture. It is adjuvant to define neighborhoods quite large at the beginning of

the search but small towards its end. The idea underlying this procedure is

to put more emphasis on exploring wide areas of the search space first but

emphasizing a narrow search and refinement of a supposedly good candidate

solution towards the end of the search.
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Suppose the TA algorithm has generated for 7 bucket the starting solution

gc = (3%, 6%, 10%, 12%, 17%, 21%) and PDs in our dataset are bound by

the interval [0.2%; 24%]. Suppose further that the second bucket threshold

is randomly selected for modification. The new candidate solution will be a

neighbor to the old one if the second bucket threshold is determined randomly

from all PDs in the interval ]3%; 10%[. The intervals for the remaining bucket

thresholds can be found accordingly. The procedure is illustrated in Figure 1.

Figure 1: Bucket intervals.

As the search proceeds, these intervals shrink linearly in the current num-

ber of iterations relative to the total number of iterations. I.e., the contrac-

tion factor takes the form [(I + 1)− i]/I. Consequently, after performing for

example 20% of the iterations the second bucket threshold would be deter-

mined from the interval ]6%− 0.8 · (6%− 3%); 6% + 0.8 · (10%− 6%)[.

New candidate solutions are generated from old ones by first determining

randomly a bucket threshold of the current candidate solution and then re-

placing it with a random element from the above interval. This procedure is

advantageous in at least two aspects. First, the objective function value of

the new candidate solution gn differs from the objective function value of the
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current candidate solution gc only in the contribution of the two buckets that

are affected by the alteration. Thus, fast updating of the objective function

is feasible. Moreover, computation time becomes vastly independent of the

number of buckets. This is due to the fact that for any number of buckets

TA only has to compute the fitness of two buckets per iteration. On the

contrary, in DE, as implemented in (Krink et al., 2007), the fitness for all

buckets is computed in every iteration. This results in a higher computation

time. This disadvantage of DE becomes more pronounced for higher num-

bers of buckets.3 Second, since in TA new bucket thresholds are chosen from

the PDs in the dataset, each new candidate solution constitutes a different

partition and, consequently, a different value of the objective function which

is not the case for our DE implementation on a continuous search space.

A final crucial element of any TA implementation is its threshold sequence

since it determines TA’s ability to overcome local optima. Basically, the idea

is to accept gn if its objective function value is better or if it is not much

worse than that of gc where not much worse means the deterioration may

not exceed some threshold T defined by the threshold sequence.

We propose a threshold sequence that is based on the differences in the

fitness of candidate solutions that are found in a certain area of the search

space. Instead of using an ex ante simulation of local differences of the

fitness function as proposed by Winker and Fang (1997), the local differences

3It has to be left for future research to consider updating rules for DE similar to the
ones employed for TA in the present application.
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actually calculated during the optimization run are considered. By using

a moving average, a smooth threshold sequence is obtained. Algorithm 2

provides the pseudocode for the TA implementation with the data driven

generation of the threshold sequence.

Algorithm 2 Pseudocode for TA with data driven generation of threshold
sequence.
1: Initialize I, Ls = (0, . . . , 0) of length 100
2: Generate at random an initial solution gc, set T = f(gc)
3: for i = 1 to I do
4: Generate at random gn ∈ N (gc)
5: Delete first element of Ls
6: if f(gn)− f(gc) < 0 then
7: add |f(gn)− f(gc)| · (i/I) as last element to Ls
8: else
9: add |f(gn)− f(gc)| · (1− i/I) as last element to Ls

10: end if
11: T = Ls · (1− i/I)
12: if f(gn) + T ≤ f(gc) then
13: gc = gn

14: end if
15: end for

The threshold sequence is calculated during the run time of the algo-

rithm and exhibits the following properties. First, it adapts to the region

of the search space to which the current solution belongs. Second, it takes

into account the current definition of the neighborhood. Third, and most

importantly, it adapts to the objective function used. As a result, this data

driven threshold sequence is readily available for use with any objective func-

tion, constraint handling technique or neighborhood structure and does not

require any fine-tuning.
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The current value of the threshold T is defined as the weighted mean Ls

over the last 100 fitness differences (11:). A general requirement in TA is

that thresholds should be larger at the beginning of the search in order to

overcome local optima and decrease to zero at the end in order to reach at

least a local, if not the global optimum. In order to satisfy this requirement,

the weighted mean Ls is multiplied with a scaling factor decreasing linearly

from one to zero with the number of iterations (11:).

Apart from this global weights, each fitness difference entering the vector

Ls obtains a particular weight. At the beginning of the search process, one

might expect many fitness improvements. For not being too generous in ac-

cepting deteriorations of the objective function, objective fitness differences

corresponding to improvements are downweighted by the factor i/I, i.e., the

share of iterations already done (7:). In contrast, towards the end of the

search procedure, one has to expect that most trials result in a deterioration

of the objective function. To avoid too generous thresholds, the correspond-

ing elements of Ls are downweighted by the factor (1−i/I) decreasing to zero

with the number of iterations (9:). It is obvious that this threshold sequence

adapts to the local structure of the search space. If the algorithm moves

candidate solutions towards an optimum, fitness improvements are likely to

become smaller the closer the algorithm approaches this optimum. Then, T

declines and forces the algorithm not to deviate from its track towards the

optimum. Once a (local) optimum is found only fitness deteriorations will

be observed resulting which makes T to increase and eventually allows the
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algorithm to depart from that optimum and examine another part of the

search space. By using a moving average, a smooth threshold sequence is

obtained (11:).

3.3 Constraint Handling

When running the optimization heuristics TA and DE, the constraints de-

scribed in Section 2 have to be taken into account. To this end, two alter-

native methods can be considered: rewriting the definition of domination,

such that it includes the constraint handling (Deb et al., 2002) or imposing

a penalty on infeasible solutions.

The first possibility has been described for the current application in

Krink et al. (2007). The intuitive idea of this constraint handling technique

is to leave the infeasible area of the search space as quickly as possible and

never return. For minimization problems, the procedure can be described as

follows within Algorithm 2:

1. If the new candidate solution gn and the current candidate solution gc

satisfy the constraints, gn replaces gc if its fitness f(gn) satisfies the

condition f(gn) + T ≤ f(gc). In TA T represents the threshold as

defined by the threshold sequence. In DE, we set T = 0.

2. If only one candidate solution is feasible, select the feasible one

3. If both solutions violate constraints, . . .

18



(a) . . . select the one that violates fewer constraints.

(b) . . . if both solutions violate the same number of constraints, gn

replaces gc if its fitness f(gn) satisfies the condition f(gn) + T ≤
f(gc). Again, T either takes a value as defined by the threshold

sequence or we set T = 0 in DE.

In contrast, the penalty technique allows infeasible candidate solutions

while running the algorithm as a stepping stone to get closer to promising

regions of the search space. In this case, the objective function is multiplied

by a penalty term. Solutions should be penalized the stronger the more they

violate the constraints. Moreover, in order to guarantee a feasible solution

at the end, the penalty should increase over the runtime of the algorithm.

Equation (10) states that the objective function value fu of a candidate

solution is increased by some penalty factor A ∈ [1; 2] that puts more weight

on penalties the more the current iteration i approaches the overall number

of iterations I. The exponent a may take values in the interval [0; 1]. No

penalty is placed on fu if no constraint is violated so that a = 0. However, if

the constraints are violated most strongly, i.e., all borrowers are concentrated

in one bucket leaving the remaining buckets empty, the exponent takes the

value a = 1. A more formal description of this penalty technique is given in

the appendix.

fc(g) = fu(g) · A = fu(g) ·
(

1 +

√
i

I

)a

. (10)
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For the current application, DE is only implemented with the constraint-

dominated handling technique, while for TA both methods are implemented.

Generally, the constraint-dominated handling technique performs well while

taking comparatively little computation time. However, depending on the

kind of objective function used the penalty technique may improve the reli-

ability of TA, i.e., reduce the variance of the results obtained.

4 Results and Relative Performance

For our empirical application we consider the dataset comprising 11995 de-

faulted and non-defaulted borrowers of a major Italian bank already analyzed

by Krink et al. (2007). The PDus range between 0.21% and 23.94%. More-

over, conditional probability of default (PDc) was computed using equa-

tion (2). The PDcs range between 4.52% and 64.88%.

All algorithms are implemented from scratch in Matlab 7.6 and run on

a PC with Intel Duo Core processors operating at 2.40 GHz and running

Windows XP.

4.1 Results for Fixed Number of Buckets

Tables 1 to 3 report the empirical results of the two heuristic algorithms

for 7, 10, and 15 buckets, the two different constraint handling techniques

and the three objective functions described above. Both algorithms were

restarted 30 times on each problem instance to control for the stochasticity
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of heuristic optimization techniques. For the comparison of the two methods,

we report the best value, the median, the worst value, the variance, the 80%

percentile, the 90% percentile, and the frequency the best value occurs in all

30 repetitions.

Table 1: Objective function (5) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 5.9184 5.9184 5.9184 0.0000 5.9184 5.9184 20/30
TAb 5.9184 5.9184 5.9184 0.0000 5.9184 5.9184 30/30
DE 5.9184 5.9211 5.9223 0.0018 5.9223 5.9223 9/30

B = 10
TAa 3.9155 3.9226 3.9369 0.0101 3.9366 3.9366 18/30
TAb 3.9155 3.9190 3.9366 0.0080 3.9155 3.9366 19/30
DE 3.9155 9.9319 4.1663 0.0496 3.9195 3.9527 2/30

B = 15
TAa 2.8842 2.8848 2.8929 0.0016 2.8855 2.8855 6/30
TAb 2.8842 2.8874 2.9064 0.0053 2.8929 2.8933 7/30
DE 2.8964 2.9761 3.0199 0.0428 3.0083 3.0140 1/30

aRejection based constraint handling technique
bPenalty technique

For DE the initial parameter settings were population size np = 100

and number of generations nG = 1000, while the scaling factor F and the

crossover rate CR were kept constant at 0.5 and 0.8, respectively.4 In the

case of TA, the algorithm was run for I = 100 000 iterations, in order to

attain analogy with DE’s population size and number of generations.5

4Extensive parameter tuning on DE suggests that DE is rather insensitive to the choice
of F and CR. Results are available upon request.

5It should be noted that due to the local updating method in TA, the 100 000 iterations
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Table 2: Objective function (6) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 4,582.86 4,582.86 4,582.86 0.0000 4,582.86 4,582.86 30/30
TAb 4,582.86 4,582.86 4,582.86 0.0000 4,582.86 4,582.86 30/30
DE 4,582.86 4,587.35 4.671.38 16.5569 4,583.52 4,585.09 2/30

B = 10
TAa 3,471.68 3,479.97 3,483.92 1.8592 3,480.01 3,480.21 1/30
TAb 3,471.68 3,480.33 3,483.92 2.8705 3,483.66 3,483.92 2/30
DE 3,471.51 3,475.47 3,498.96 5.4891 3,479.96 3,480.18 4/30

B = 15
TAa 2,821.00 2,833.55 2,865.98 14.1177 2,844.24 2,856.92 8/30
TAb 2,821.00 2,830.55 2,860.02 11.5971 2,840.99 2,844.24 3/30
DE 2,866.23 2,943.09 3,122.39 57.9240 2,958.48 3,005.19 1/30

aRejection based constraint handling technique
bPenalty technique

Table 1 presents a statistical summary of the results using objective func-

tion (5). The TA algorithm was run using both the rejection based constraint

handling technique and the penalty technique. The results are affected by the

choice of the constraint handling technique, as the best value is obtained with

an equal or higher frequency when using the penalty technique. However,

these results cannot be generalized for the alternative objective functions (6)

and (7) (see Tables 2 and 3), especially for a larger number of buckets, i.e.,

B = 10, 15. In general, the performance of the TA implementation is excel-

lent for the case of seven buckets and still gives good results with low variance

of TA will require less computing time than the corresponding run of DE. The relative
merits of both methods in terms of computational load and result quality are reported in
Section 4.2.
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for the larger problem instances.

Table 3: Objective function (7) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 45,791.49 45,793.18 45,825.62 6.4870 45,791.49 45,791.72 26/30
TAb 45,791.49 45,794.11 45,826.57 7.7787 45,791.49 45,801.65 25/30
DE 45,791.49 45,810.09 46,004.19 39.4151 45,828.39 45,828.39 4/30

B = 10
TAa 31,942.19 31,951.30 31,996.89 19.9770 31,946.42 31,994.72 21/30
TAb 31,942.19 31,951.25 31,994.73 18.8050 31,946.42 31,992.74 18/30
DE 31,995.28 32.166.86 32.299.00 119.9837 32.299.00 32,299.00 1/30

B = 15
TAa 20,711.93 20,729.26 20,973.53 62.6797 20,713.36 20,714.88 10/30
TAb 20,711.93 20,725.99 20,951.01 49.5889 20,714.88 20,715.61 1/30
DE 20,970.37 24,916.30 35,003.82 4875.7503 31,215.84 33,676.88 1/30

arejection based constraint handling technique
bpenalty technique

Considering the performance of the DE implementation, we observe that

the best value is obtained for B = 7 at a frequency of 9 out of 30 restarts.

While, for a higher number of buckets, the best value does not deviate much

from the optimum, the efficiency worsens. The same pattern is observed for

all three objective functions.

We conclude that the TA implementation is superior for most problem

instances in terms of mean solution quality and variance for all objective

functions considered. The clustering of credit risk is a problem on a discrete

search space. In contrast to the DE algorithm, the TA implementation takes

this discrete feature of the search space into account. This might explain its
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superior performance.

4.2 Relative Performance of DE and TA

Section 4.1 provides evidence of the good performance of both algorithms for

the credit risk bucketing problem. Given that TA exploits the discrete struc-

ture of the search space and uses a local updating procedure, it is significantly

faster than DE for a given number of function evaluations.

Therefore, in order to obtain a fair comparison of both algorithms, we

consider two settings. First, we analyze the distribution of results obtained

from both algorithms when running them for the same time. Second, we

fix a quality goal, e.g., not to deviate by more than 1% from the best so-

lution documented above. Then, both algorithms are run using increasing

computational time until at least 50% of the restarts meet the quality goal.

For the first approach, the following setup is used. We run the DE algo-

rithm with the same parameters as above, i.e., population size np = 100 and

number of generations nG = 1000, and – to have a comparison for a small

amount of computational resources – with np = 40 and nG = 50. Then, we

estimate the number of iterations I which can be performed by our TA algo-

rithm using the same computational time. In fact, this number of iterations

will depend on the objective function used and on the number of buckets B,

as the advantage of updating becomes more pronounced for larger B.

Table 4 summarizes the findings. The first four columns report respec-

tively the objective function, the number of buckets B, the population size
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np and the number of generations nG of DE. Column (5) displays the com-

puting time for a single restart of our implementations. Column (6) reports

the number of iterations I in TA that equalizes computation time for DE and

TA. Columns (7) and (8) displays the difference in the mean and standard

deviation between TA and DE. Thereby, negative values indicate an advan-

tage of the TA implementation. Finally, column (9) reports the number of

times, TA outperforms DE.

Table 4: Relative performance of DE and TA for given computing time

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CPU I ∆ ∆ better result

Obj. B nP nG time for TA mean Std. for TA for DE
(7) 7 100 1000 32.4m 786 600 -18.4 −38.3 25/30 0/30

10 100 1000 36.0m 1 050 000 -220.7 −108.0 21/30 0/30
15 100 1000 192.7m 6 760 511 -4202.8 −4873.9 5/30 0/30

(7) 7 40 50 42.3s 17 000 −13 145 −10 210 6/30 0/30
10 40 50 51.7s 25 000 −16 355 −8 630 6/30 0/30
15 40 50 66.7s 38 000 −23 441 −64 880 1/30 0/30

Table 4 reports results for objective function (7) and B = 7, 10, 15 buck-

ets. When considering the original setting for DE with nP = 100 and

nG = 1000, the number of iterations for TA can be increased above the

value of 100 000 given the same computation time. This further increase in

the number of iterations does not affect the quality of results. However, when

considering a smaller amount of available computational time, e.g., nP = 40

and nG = 50, it becomes obvious that TA still outperforms DE when using

the same computational time. Despite the mean objective function value
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being only slightly better, the standard deviation is drastically reduced for

TA.

For the second approach mentioned above, we consider three quality lev-

els, i.e., 10%, 5% and 1% departure from the optimum values reported. Tak-

ing into account computation time, we only report findings for objective

function (6) and B = 7 and B = 15 buckets, respectively. For DE we fix

np = 100 and increase the number of generations nG, while for TA the num-

ber of iterations I varies. For both algorithms the parameter (nG or I) is

increased stepwise until the algorithm finds a solution meeting the quality

level in at least 50% out of 30 replications. The results are summarized in

Table 5 providing both the parameters actually used for the two algorithms

and the corresponding CPU times for a single restart.

Table 5: Timing of DE and TA for given solution quality

DE TA
Precision B nP nG time I time

10% 7 100 30 44.44s 200 0.62s
5% 40 58.45s 300 0.72s
1% 70 104.24s 800 1.27s
10% 15 100 100 5.19m 2 000 0.03m
5% 1000 45.75m 3 000 0.05m
1% ∗ ∗ 15 000 0.21m

∗: No solution obtained for nG ≤ 5000 generations.

It is evident that a given quality of the solutions can be obtained much

faster with TA. The relative advantage becomes even more pronounced for

the larger problem instance (B = 15). This effect is due to the local updating
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used with the TA algorithm. In fact, for B = 15, the quality goal of 1% from

the best value could not be satisfied in at least 50% of the cases by DE even

when using nG = 5000 generations. For this parameter setting, a single run

of the DE algorithm takes more than 4 hours of CPU time. By contrast,

the same quality goal can be obtained by the TA algorithm in less than a

minute.

5 Endogenous Determination of Number of

Buckets

The Basel II framework requires banks to have a meaningful credit risk rating

system. This does not only refer to the clustering of clients into a given num-

ber of PD-buckets, but also to the choice of the number of buckets. Thereby,

a trade-off has to be faced. On the one hand, the clusters of borrowers should

be rather homogenous. Increasing the number of buckets will reduce the loss

in precision that comes from replacing individual PDs with pooled PDs. This

effect causes objective function values to decline as the number of buckets is

raised, resulting in a larger optimum number of PD-buckets.

On the other hand, both banks and regulators will be interested in an

ex post validation of the classification system. For example, one may want

to evaluate ex post if the observed number of defaults matches the ones

predicted by the credit risk rating system. In this context, looking at the

number of defaults may be seen as a proxy for evaluating whether the credit
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risk rating system will predict unexpected losses correctly, which in turn,

results in a statement about the adequacy of banks’ regulatory capital. Al-

ternatively, one might consider directly the precision of the estimates of unex-

pected losses. A crucial factor driving the precision of any ex post evaluation

is the number of borrowers per bucket. Thus, imposing a requirement on the

minimum number of borrowers in a bucket based on ideas of ex post valida-

tion will result in an optimum (maximum) number of buckets still satisfying

this constraint.

In the following, we will analyse both the ex post validation of the actual

number of defaults and of the unexpected losses.

5.1 Validation of Actual Number of Defaults

First, we compare the actual number of defaults Da
b in a given bucket b with

the forecast Df
b based on the mean PDb and the number of borrowers Nb:

Df
b = NbPDb .

In order to be able to judge whether a deviation of Da
b from Df

b should

be considered as being significant, i.e., challenging the credit classification

system, the distribution of Df
b has to be analyzed under the null hypothesis

that PDb is an unbiased estimator.

Given that the actual default for a loan is a binary variable, the number of
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actual defaults within a bucket can be modeled by the binomial distribution.6

Consequently, a 1− α confidence interval for Da
b is defined by:

Pint = Pb (Db,min ≤ Da
b ≤ Db,max)

=

Db,max∑

k=Db,min

(
Nb

k

)
· PD

k

b ·
(
1− PDb

)Nb−k ≥ 1− α . (11)

The corresponding confidence interval for the default rates, i.e. Da
b /Nb

will shrink with a growing number of borrowers Nb in bucket b. Thus, any

requirement on the size of the confidence interval will impose a lower bound

on Nb. In a first approach, we consider symmetric confidence intervals around

Df
b of size 2ε as long as the confidence interval falls in the interval [0, 1],

otherwise, the confidence interval is censored, i.e.,

Db,min = Nb ·max(PDb − ε, 0) . (12)

Db,max = Nb ·min(PDb + ε, 1) . (13)

The choice of an absolute definition of approximation errors rather than

imposing a relative error margin is motivated by its economic impact. In

fact, any deviation of the actual ex post default rates from the estimated

ones by, e.g., one percentage point will have the same effect on actual defaults

6Thereby, we made the simplifying assumption that the default risks are independent,
which might be a sensible assumption for retail loans, but might be challenged for other
segments of the loan market.
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independent from the level of the estimated default rate ceteris paribus.

Given that we impose a minimum constraint on the precision, we do not

have to solve equation (11) for the number of elements in the bucket Nb.

Instead, for a given bucket b of size Nb, we just have to check whether the

constraint Pint ≥ 1 − α is satisfied. Thus, our requirement on the precision

of ex post validation imposes an additional constraint to the optimization

problem.7

Using this concept, we define a credit classification system as meaningful

if it allows for an ex post validation at a given level of precision as described

by the two parameters α and ε. The sample composition, in particular the

total sample size, and bank objectives will affect the choice of ε.

However, it has to be taken into account that not all combinations of α

and ε will be feasible for a given total number of loans to be considered and

taking into account the other constraints imposed by the Basel II framework.

In fact, a rough back of the envelope calculation shows that for our data

with a mean PD of around 20% in the last bucket, values of α = 0.95 and

ε = 1% would require more than 4 000 observations in the last bucket. This

is not feasible given the sample size and the other constraints imposed, in

particular the constraint that no more than 35% of total exposure at default

should belong to one bucket. Therefore, we restrain from reporting results

for this approach as we would have to use unreasonably low values of α and

7For the consideration of this additional constraint in the penalty term, see the details
provided in the appendix.
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almost meaningless high values of ε to obtain feasible results. We leave the

application of this method to future research working with a larger dataset.

If feasible, the procedure would work in two steps. First, the optimization

is done for different fixed numbers of buckets. Then, the optimum number

of buckets is selected to be the one corresponding to the best value of the

objective function obtained for the different runs. In principle, one could also

think about integrating the number of buckets as an additional parameter

directly in the optimization routine. However, given its very discrete nature,

the sequential procedure might be more advantageous.8

Constructing buckets as previously described allows to easily validate

the accuracy (as determined by the choice of ε) of a bank’s credit risk rating

system. If we find the actual number of defaults in any bucket b to lie outside

the interval [Db,min; Db,max] we can state with confidence 1−α that the credit

risk rating system is not suitable for predicting defaults in that bucket. This

may have at least two reasons. First, the objective function that is used for

partitioning the dataset may not be appropriate. One may easily check for

this problem by using different objective functions and then assessing which

ones yield results that do not cause actual defaults to lie outside the above

bounds. Second, the bank employs a statistical default prediction model that

does not forecast defaults correctly and thus needs to be improved.

8A similar two-step procedure is suggested by Winker and Maringer (2004) in the
context of model selection.

31



5.2 Validating Unexpected Losses

As an alternative to an ex post validation of predicted default rates, val-

idation may also be based on the correct statement of unexpected losses,

respectively regulatory capital since RC = 1.06 · UL. Supervisory author-

ities’ objective is to motivate banks to set aside equity capital equaling at

least 8% of their risk-weighted assets in order to ensure the stability of the

banking system. On the contrary, the objective of profit maximization re-

quires banks’ to back up their risk-weighted assets with no more than the

supervisory authority’s minimum requirements. These objectives can be op-

erationalized by stating that in no bucket b actual unexpected losses in a

stress-situation (ULb,a) shall be smaller or larger than predicted unexpected

losses (ULb) plus or minus some fraction ε of bucket b’s stake in total un-

expected losses as measured by the percentage of its borrowers (Nb) in the

number of all borrowers (N) (see equation (14)). Total unexpected losses,

unexpected losses of bucket b and pooled conditional probabilities of default

are given by equations (15), (16), and (17), respectively.

ULb − ε ·
(

UL · Nb

N

)
≤ ULb,a ≤ ULb + ε ·

(
UL · Nb

N

)
(14)

UL = 0.45 ·
∑

(EADi · (PDc,i − PDi)) (15)

ULb = 0.45 ·
∑

i∈b

(EADi · (PDc,b − PDb)) (16)

PDc,b =

∑
i∈b PDc,i

Nb

. (17)
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Equation (14) is not operational since we do not know the distribution

of unexpected losses. Given that we know the distribution of defaults, we

can approximate ULb,a by Nb · ULb. Then, dividing equation (14) by ULb

and multiplying it with PDb, we obtain equation (18). This equation can be

interpreted meaningfully as well since it says that for condition (14) to hold

the actual number of defaults in bucket b (Da
b ) must lie within an interval

[Db,min; Db,max]. The size of this interval is determined by several param-

eters. Obviously, it increases with the expected probability of default and

the number of borrowers in bucket b. Moreover, it rises with ε. Finally, the

interval becomes larger and thus easier to satisfy if the mean unexpected loss

in bucket b (ULb) is smaller than the mean of total unexpected loss (UL),

i.e., the default of a borrower in this bucket is less likely to endanger the

bank’s stability than an average borrower’s default. On the other hand, the

interval shrinks and thus becomes harder to satisfy if borrowers are likely to

cause an above average unexpected loss.

Nb · PDb ·
[
1− ε · UL

ULb

]
≤ Da

b ≤ Nb · PDb ·
[
1 + ε · UL

ULb

]
. (18)

The central idea of this approach is to have a sufficient number of bor-

rowers in each bucket so that we can ex ante state with a certain confi-

dence 1−α that the actual number of defaults should lie within the interval

[Db,min; Db,max]. Since defaults follow a binomial distribution we can express

the above idea by equation (11).
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In terms of our optimization problem the above condition replaces the

constraint to have at least 1% of all borrowers in each bucket. Following

the above idea that a high number of buckets reduces the precision error

occurring from substituting individual PDs by pooled PDs we then choose

as the optimum number of buckets the maximum number of buckets that is

consistent with some predefined values for α and ε. In practice, these values

have to be chosen meaningfully by regulation authorities and/or banks based

on their objectives. As noted for the case of ex post validation of the PDs,

not all combinations of α and ε will be feasible for a given sample size.

It is of some interest how to incorporate this constraint in our optimiza-

tion algorithm. When constraints are considered based on rejection of in-

feasible candidate solutions the algorithm described above will not change.

However, if the penalty technique is used it is necessary to alter the term that

captures the degree of violation of this constraint (see Appendix for details).

5.3 Results for Endogenous Number of Buckets

In this section we evaluate the quality of the UL-constraint proposed in

Section 5.2. The results were obtained from running TA 30 times with 200 000

iterations. We evaluate objective functions (5) based on squared differences

of PDcs, (6) based on weighted squared differences of PDcs, and (7) based

on differences in RC in absolute terms. We choose α = 10% since it gives
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a sufficient level of confidence and allows us to choose ε = 30%.9 Thus, if

we find ex post the actual number of defaults in all buckets to lie in the

interval defined by equation (18) we can state with 90% confidence that

actual unexpected losses do not deviate from unexpected losses predicted by

the credit risk rating system by more than ±30% of the buckets’ fraction (as

measured by the number of borrowers) in total unexpected loss. Taking into

account the small size of our sample (11 995 borrowers) we are confident that

these values can be improved drastically for larger samples.

Using the UL-constraint gives similar results for objective functions (5)

and (6) such that stylized facts on these functions can be presented to-

gether.10

1. First results indicate that the best number of buckets is between 10

(for objective function (6) and 12 (for objective function (5)).

2. When increasing the number of buckets, the algorithm does not allways

find a feasible solution. In fact, the UL-constraint makes the optimiza-

tion problem more complex by narrowing the search space even more.

3. For a seven bucket setting an idealized solution-vector of buckets’ mean

PDs looks like gs = (0.25%; 0.55%; 1.5%; 4%; 8%; 14%; 21%). The UL-

9Please note that the higher a value we choose for α the larger will be the risk of a
β-error, i.e. accepting PDb as an unbiased estimator of bucket b’s true default rate while
it is not.

10Please note that without using the UL-constraint objective functions (5) and (6) pro-
duce quite dissimilar results, i.e., objective function (5) places a sizeable amount of bor-
rowers in the first bucket while objective function (6) produces a more evenly distribution
of borrowers across buckets.
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constraint shapes the solution in a way that we must not reject the va-

lidity of the credit risk rating system if we find ex post actual PDbs that

deviate from predicted PDbs by less than ± the allowed deviations (in

percentage points) given by d = (0.2%; 0.25%; 0.4%; 1%; 1.8%; 3.5%; 6.5%).

(a) We find that the UL-constraint imposes constraints on mean PDs

that are of a reasonable size.

(b) The constraint on the first bucket is quite generous since it con-

tains good borrowers that are unlikely to default.

(c) It is restrictive for mid-range borrowers allowing actual mean PDs

to only deviate from predicted mean PDs by roughly 1/4. This

is reasonable since it is highly uncertain whether these borrowers

will default and cause a high unexpected risk for the bank.

(d) The UL-constraint becomes more generous for the last bucket

again, allowing actual mean PDs to deviate from predicted mean

PDs by roughly 1/3. This is reasonable since these borrowers’

default is quite likely such that high provisions have already been

recognized. Hence, a smaller portion of their default risk must be

backed up with capital requirements.

4. The rejection based constraint handling technique gives us better re-

sults (i.e. better objective function values and fewer runs converging

to an infeasible solution) than the penalty technique.
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Objective function (7) gives slightly different results since it allocates

borrowers more evenly and especially puts less borrowers in the first bucket.

We find the idealized vectors gs = (0.23%; 0.3%; 0.6%; 0.9%; 3%; 7%; 18%)

and d = (0.2%; 0.2%; 0.25%; 0.25%; 1%; 2%; 5%) using the terminology intro-

duced before.

Summarizing, we find that the structure of results when using the UL-

constraint is quite reasonable. It puts more emphasis on critical, i.e. mid-

range borrowers and yields intervals around mean PDs that reflect the struc-

ture of borrowers. Moreover, imposing the UL-constraint somewhat in-

creases the computational burden by narrowing down the search space. As

a consequence, for 200 000 iterations the TA optimization heuristic con-

verges towards different solutions in repeated runs. A nice feature of the

UL-constraint, even for our small dataset, is to give us feasible solutions

for reasonable values of α and ε. This enables us to test our validation-

hypothesis. Thus, for a larger number of borrowers results may be expected

to improve massively.

6 Conclusion

The Basel II capital accord requires banks to group loans according to their

creditworthiness and set aside equity in order to self-insure against unex-

pected losses from borrowers’ defaults that occur under sufficiently negative

economic conditions. Previous work has shown that this task can be tackled
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as a clustering problem, where the objective is to minimize the loss in preci-

sion, which inevitably occurs when borrowers in the same bucket are assigned

the same probability of default. Furthermore, real-world constraints can in-

crease the complexity of the optimization problem. Optimization heuristics

can then be a reliable and viable tool to use.

In this work, we extend previous research in two directions.

First, we suggest to use the Threshold Accepting algorithm and show

that this approach allows to minimize the loss in precision more effectively,

more reliably, and more efficiently than Differential Evolution. I.e., TA finds

partitions that have a smaller loss in precision than those found by DE. TA

converges to better grouping solutions in less computational time and with

a smaller number of iterations.

Second, we propose two different approaches for determining the optimal

number of buckets. To our knowledge, this topic has not been addressed in

the literature before although it is of great importance for practitioners. We

aim to tackle the problem by designing a bank’s credit rating system such

that its quality may be validated ex-post. The loss in precision by grouping

borrowers together rather than treating them as individuals decreases as the

number of buckets increases. Moreover, banks and regulatory authorities are

concerned with stating regulatory capital (respectively unexpected losses)

correctly. Thus, we propose to cluster borrowers such that we may evaluate ex

post with a given confidence level whether actual unexpected losses fall within

a sufficiently narrow interval around predicted unexpected losses. Then, the
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optimal number of buckets is the maximum number of buckets that allows

us to support our statement with a given confidence level. Our evaluations

of this constraint suggest that it influences the structure of clusters in a

reasonable way. Moreover, we find that even for small sample sizes it allows

us to use up to eleven buckets for reasonable confidence- and precision-levels.

We show that our approach can provide meaningful insights into the prob-

lem of determining the optimal structure of PD buckets. However, we are

aware that further research and empirical investigation on larger real-world

datasets is required. Moreover, it is of special interest which confidence- and

precision-levels may be used for different sample sizes. In this context, also

different assumptions about the dependency structure of unexpected losses

in a credit portfolio might be considered. Finally, although the constraint

imposed on unexpected losses has a strong theoretical support, one might

also consider alternative formulations or approximations resulting in a lower

computational complexity for calculating the constraints. Thereby, the effi-

ciency of the algorithm could be improved even further.

Appendix

Penalty Term

The exponent a used in the penalty term (10) is defined as follows:
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a =

(
0.5 ·

∑

b

DEAD,b ·
∑

i∈b EADb,i − 35% ·∑b

∑
i∈b EADb,i

65% ·∑b

∑
i∈b EADb,i

)
+

+

(
0.5 ·

∑
b DN,b · x·N−Nb

x·N∑
b DN,b

)
. (19)

The idea of the penalty technique is to allow infeasible candidate solutions

while running the algorithm as a stepping stone to get closer to promising

regions of the search space. In this case, a penalty is multiplied on the

objective function value that depends on the extent of constraint violations.

In order to guarantee a feasible solution at the end, this penalty should

increase over the runtime of the algorithm. The problem-specific penalty

weights used in our application are defined by equations (10) and (19). They

state that the objective function value fu of a candidate solution is increased

by some penalty factor A ∈ [1; 2] that puts more weight on penalties the

more the current iteration i approaches the overall number of iterations I.

No penalty is placed on fu if no constraint is violated so that a = 0. However,

the variable a may take values up to 1 if the violation of the constraints

reaches its maximum value. If the sum of EAD in some bucket b exceeds

35% of total EAD DEAD,D takes value 1 and 0 otherwise. DN,b takes value 1

if bucket b contains less than 1% of all borrowers. Both binding constraints

are equally weighted.
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Confidence Interval

Let us define the dummy variable DN,b, which takes the value 1 if the con-

straint is violated and 0 otherwise. When constraints are considered based

on rejection of infeasible candidate solutions the algorithms described above

will not change. However, if the penalty technique is used it is necessary to

alter equation (19) by removing the second summand in (19) and adding a

term for the degree of violation of the additional constraint as exhibited by

the second term in (20):

a =

(
0.5 ·

∑

b

· · ·
)

+

(
0.5 ·

∑
b DN.b · 1−α−Pint

1−α∑
b DN,b

)
. (20)

Results with Ex Post Validation

In the following, the numerical results shall be presented that are discussed

and interpreted in Section 5. In this section we evaluate the quality of the

UL-constraint. The results were obtained from running TA 30 times with

200 000 iterations. We evaluate objective functions (5) based on squared

differences of PDcs, (6) based on weighted squared differences of PDcs, and

(7) based on differences in RC in absolute terms. We choose α = 10% and

ε = 30%. The last column gives the number of runs that converge towards

the best solution relative to all runs that produce a solution meeting all

constraints. For the problem instances, for which no feasible solution could

be found in 30 runs, we report “n.a.” in the corresponding cells of the tables.
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Table 6: Objective function (5) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 5.9757 6.0164 6.0946 0.0273 6.0324 6.0606 1/30
TAb 6.0028 6.1336 6.2236 0.0568 6.1781 6.1985 1/30

B = 8
TAa 5.2325 5.5768 6.8232 0.2999 5.6743 5.7408 1/30
TAb 5.4304 5.7657 6.0490 0.1405 5.8737 5.9186 1/30

B = 9
TAa 5.0450 5.8765 7.1784 0.5355 6.4458 6.6844 1/30
TAb 5.3768 5.8476 6.2477 0.2487 6.0762 6.1363 1/30

B = 10
TAa 4.9733 5.7567 8.2735 0.708 6.0658 6.5098 1/25
TAb 5.4881 6.1514 7.0235 0.41826 6.4237 6.6459 1/25

B = 11
TAa 5.0589 5.6022 6.6355 0.5143 5.8587 6.3196 1/13
TAb 5.9513 8.7813 19.51 5.9981 6.1685 19.51 1/5

B = 12
TAa 4.6789 4.6789 4.6789 0.0000 4.6789 4.6789 1/1
TAb 7.7075 7.7075 7.7075 0.0000 7.7075 7.7075 1/1

B = 13
TAa 5.722 6.0172 6.3125 0.4176 6.3125 6.3125 1/2
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

aRejection based constraint handling technique
bPenalty technique
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Table 7: Objective function (6) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 4,722.39 4,880.31 6,175.71 264.77 4,893.71 5,027.66 1/30
TAb 4,905.15 5,169.61 5,325.29 107.53 5,255.33 5,272.40 1/30

B = 8
TAa 4,582.44 4,957.22 6,299.73 390.81 5,036.84 5,431.29 1/30
TAb 4,859.07 5,112.88 5,477.91 161.00 5,237.02 5,327.58 1/30

B = 9
TAa 4,573.68 5,203.98 6,693.43 569.72 5,431.46 6,312.35 1/30
TAb 4,749.35 5,388.93 6,187.62 301.73 5,640.82 5,735.11 1/29

B = 10
TAa 4,426.02 4,770.40 5,116.55 190.36 4,904.38 5,025.04 1/11
TAb 5,330.69 6,211.82 8,367.79 1,022.38 7,015.54 7,431.06 1/11

B = 11
TAa 5,068.02 5,068.02 5,068.02 0.00 5,068.02 5,068.02 1/1
TAb 5,081.86 5,376.79 5,671.71 417.09 5,671.71 5,671.71 1/2

B = 12
TAa n.a. n.a. n.a. n.a. n.a. n.a. 0/0
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

B = 13
TAa 6,473.01 6,473.01 6,473.01 0.00 6,473.01 6,473.01 1/1
TAb 6,573.46 6,573.46 6,573.46 0.00 6,573.46 6,573.46 1/1

aRejection based constraint handling technique
bPenalty technique
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Table 8: Objective function (7) in EUR

Best Mean Worst s.d. q80% q90% Freq
B = 7

TAa 52,188.31 55,366.40 57,103.79 809.19 55,779.96 55,897.19 1/30
TAb 55,334.48 59,123.42 63,163.35 2,144.92 60,799.91 61,600.04 1/30

B = 8
TAa 49,608.70 53,181.84 57,558.35 2,326.82 55,048.37 55,073.45 1/27
TAb 55,769.95 62,561.90 68,083.51 2965.40 64,448.67 65,081.21 1/18

B = 9
TAa 47,053.88 51,589.92 54,441.70 3,025.26 54,078.58 54,078.58 1/6
TAb 55,140.37 58,516.37 61,387.41 2,592.12 60,652.09 61,387.41 1/5

B = 10
TAa 48,106.88 50,195.77 52,284.67 2,954.15 52,284.67 52,284.67 1/2
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

B = 11
TAa n.a. n.a. n.a. n.a. n.a. n.a. 0/0
TAb n.a. n.a. n.a. n.a. n.a. n.a. 0/0

B = 12
TAa n.a. n.a. n.a. n.a. n.a. n.a. 0/0
TAb 94,083.11 94,083.11 94,083.11 0.00 94,083.11 94,083.11 1/1

aRejection based constraint handling technique
bPenalty technique
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