
 
 

 
 

 
NCER Working Paper Series 
 
 
 
Weak Instruments: A Guide to the Literature 
 
Adrian Pagan 

 
 
Working Paper #13 

 
 

April 2007 
 



Weak Instruments: A Guide to the Literature∗

Adrian Pagan

School of Economics and Finance

Queensland University of Technology

March 2007

Contents

1 Introduction 2

2 Distributional Problems of the IV Estimator with Weak In-

struments 2

3 Detection of Weak Instruments 6

4 Inferences with the IV Estimator 8

5 Constructing Useful Test Statistics 9

6 Examples of Weak Instruments 13

6.1 Estimating the Phillips Curve in a New Keynesian Model . . . 13
6.2 Euler Equations for Inventory Problems . . . . . . . . . . . . 14

7 References 17

Abstract

Weak instruments have become an issue in many contexts in which

econometric methods have been used. Some progress has been made

∗Research Supported by ESRC Grant 000 23-0244. This is an English version of a

paper published in Russian in Quantile, Issue #2, March 2007.
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into how one diagnoses the problem and how one makes an allowance

for it. The present paper gives a partial survey of this literature,

focussing upon some of the major contributions and trying to provide

a relatively simple exposition of the proposed solutions.

1 Introduction

These notes are meant to be a selective guide to the literature on weak
instruments. They use simple models to illustrate the problems raised by
weak instruments and the suggestions that have been made to solve them.
Because the literature is one that is still developing we only briefly touch on
some recent developments. The origin of the present form of these lectures
were the courses Economics 4202 at the University of New South Wales in
2002-4 and Economics 607 at Johns Hopkins University in 2004.

2 Distributional Problems of the IV Estima-

tor with Weak Instruments

Consider the simple model
yt = xtθ + ut

where ut is i.i.d.(0, σ
2

u), E(xtut) �= 0, and there exist variables zt, instruments,
such that E(ztut) = 0. We assume that

[
zt
xt

]
˜i.i.d.(

[
0
0

]
,

[
σzz σzx
σxz σxx

]
)

Thus there is a single regressor and a single instrument. Then we have the
simple IV estimator.
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θ̂ − θ0 =
(∑

ztxt
)
−1 (∑

ztut
)

=

(
1

T

∑
ztxt

σ̂zσ̂x

)−1

1

σ̂zσ̂x

1

T

∑
ztut

=

(
1

T

∑
ztxt

σ̂zσ̂x

)−1( 1

T

∑
ztut

σ̂zσu

)
σu
σ̂x

= ρ̂−1

zx ρ̂zu ·
σu
σ̂x
. (1)

where σ̂z, σ̂x are the estimated standard deviations of zt and xt and the
ρ̂′s are the estimated correlation coefficients (ρ̂zu involves the true standard
deviation of ut, σu). From this expression the distribution of θ̂ − θ0 depends
on the product of three random variables. Of these, we would expect σu/σ̂x
to converge quickly to a constant, leaving ρ̂zu/ρ̂zx as the random variable to
be studied. Any problems with the distribution of θ̂ clearly come from ρ̂zx;
specifically the issue is how random ρ̂zx is and whether small realizations of
this random variable are possible. If we get such realizations then, because
ρ̂zx is on the denominator, we get a big value for θ̂ − θ0, and this will tend
to produce a skewed density for θ̂ − θ0.

Now asymptotic theory proceeds by assuming that the sample size is large
enough to treat ρ̂zx as a constant i.e. we would normally look at

T 1/2(θ̂ − θ0) = ρ̂−1

zx (T
1/2ρ̂zu) ·

σu
σ̂x

and, because T 1/2(ρ̂zu − ρzu) = T 1/2ρ̂zu, we expect that T 1/2ρ̂zu would be
asymptotically normally distributed as N(0, 1) (when ρzu = 0). We also
expect that the other quantities all converge to their true values. So, provided

ρzx �= 0, we find that T 1/2(θ̂ − θ0) will be N(0, σ2
u

σxxρ2zx
).

Now things get messy when ρzx = 0 since, if we followed the approach
above, then we would be dividing by zero in large samples. In this case,
when ρzx = 0, the instruments are said to be irrelevant. They are valid
instruments, since ρzu = 0, but they are of little use to us. But we can say
a bit more than that. In particular let us assume that asymptotically the
estimator of ρzx is also normally distributed around its true value (zero in
this case) i.e. T 1/2ρ̂zx is N(0, v) ( when ρzx = 0 then v = 1). Then we have

(θ̂ − θ0) = (T 1/2ρ̂zx)
−1(T 1/2ρ̂zu) ·

σu
σ̂x
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and so in large samples this becomes

N(0, 1)

N(0, 1)
· σu
σ̂x

From this it is clear that θ̂ is not a consistent estimator i.e. there is always a
random gap between θ̂ and θ0. Another way of saying this is that, unlike the
standard case where the var(θ̂−θ0) goes to zero as T → ∞, here the variance
of (θ̂ − θ0) does not decline with the sample size. Thus this benchmark
case shows that, if instruments are irrelevant, all the nice properties of IV
estimators fail to hold. Moreover, if the two random variables N(0, 1) and
N(0, 1) were independent, (θ̂−θ0) would be distributed as a Cauchy random
variable i.e. have no moments.

Now it seems unlikely that ρzx would be exactly zero. It is more likely
that it will have a small value. Thus we want to look more closely at the
analysis in this case. To do so we will assume that

xt = ztπ + ξt

where E(ztξt) = 0. This is essentially a reduced form equation where the zt
are regarded as being exogenous. Assuming that E(zt) = E(xt) = 0 (for
convenience) we have

E(ztxt) = E(z2t )π

so that

ρzx =
E(ztxt)

σxσz
=
E(z2t )π

σxσz
=
πσz
σx

Now we will describe a weak instrument as one in which ρzx is small. This
will be taken to mean that π is small.

At first glance it seems as if the asymptotic theory still applies when there
are weak rather than irrelevant instruments since ρ̂zx converges to a non-zero
quantity. Indeed this is correct but one has to be nervous about such a
conclusion. After all if ρzx = 0 the theory fails, so, if ρzx departed from zero
by an extremely small amount, one has the intuition that the effects on the
estimator would be more like the ρzx = 0 case than the ρzx �= 0 case. Of
course, this is really a statement about the finite sample properties of the
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estimator i.e. how big does T have to be to get the asymptotic theory to cut
in.

Perhaps it’s useful to think about this in a heuristic way by writing ρ̂zx
as ρzx + η where η is N(0, v/T ) so that we get

T 1/2(θ̂ − θ0) = { T 1/2ρ̂zu
ρxz +N(0, v/T )

}σu
σ̂x

It is clear that, as T becomes large, the term N(0, v/T ) disappears, making
realizations of the term in the denominator, ρzx +N(0, v/T ), become closer
and closer to the non-zero value ρzx. But, for a small sample, and with v
big enough, it would be possible that a realization for ρ̂zx is produced that
is close to zero. In that case a large value for T 1/2(θ̂ − θ0) will eventuate.
In this case the asymptotic theory would not provide a good guide to the
behaviour of the estimator of θ in small samples. Thus it is clear that a very
small value of ρzx may mean that the sampling properties look more like the
ρzx = 0 case than the ρzx �= 0 case.

So we want to get some idea of what happens as we shrink ρzx towards
zero. The situation is like that encountered with test statistics that always
reject a false null in large samples i.e. are consistent. In order to compare
such tests we use the idea of a local alternative i.e. the distributions of the
tests are found as the alternative becomes closer to the null as the sample
size increased. We will therefore do the same thing here. Specifically we will
make π = φ√

T
. Then

T 1/2ρ̂zx = T 1/2ρzx + T 1/2η

=
φσz
σx

+ T 1/2η

=
φσz
σx

+ ε

where ε is N(0, v). So now let’s analyze what happens with weak instruments.
We have

(θ̂ − θ0) = (T 1/2ρ̂zx)
−1(T 1/2ρ̂zu) ·

σu
σ̂x

→ N(0, 1)

N(φσz
σx
, v)

σu
σx
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Now this is bad news since it implies that asymptotically (θ̂−θ0) is the ratio
of two random variables and so does not converge to zero i.e. θ̂ is not a
consistent estimator of θ0. Moreover (θ̂ − θ0) can’t be normal. Therefore,
when ρzx is small, we expect that this analysis is a better predictor of the
properties of θ̂− θ0 than the standard asymptotics, and that has been shown
to be true in simulation experiments. Essentially it is a relatively simple
way of doing small sample theory. Consequently, it is likely that the small
sample distribution of (θ̂−θ0) will be highly non-normal when there are weak
instruments and there will be a substantial bias in the coefficient estimators.

3 Detection of Weak Instruments

How would we detect weak instruments?. Since the problem arises when ρxz
is close to zero this suggests that we test the hypothesis that ρzx = 0 using
ρ̂xz. But, because ρ̂xz is just a non-zero multiple of π̂, where π̂ is the OLS
estimate of π from the regression of xt on zt, we can test π = 0 instead.
One could either use the t ratio for this or the F test that the regressors zt
contribute nothing to xt.

The latter interpretation becomes important once we depart from the
simple model. One important modification would be if extra regressors, wt,
appear in the equation being estimated and they also end up in the reduced
form.

yt = xtθ + wtα+ ut

xt = ztπ + wtγ + ξ
t

To analyze this we note that, in matrix form, the equation becomes

y = Xθ +Wα + u

X = Zπ +Wγ + ξ

and, if we pre-multiply both equations by MW = I −W (W ′W )−1W, we will
get

MWy = MWXθ + u∗

MWX = MWZπ + ξ∗
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i.e.

y∗ = X∗θ + u∗

X∗ = Z∗π + ξ∗

so the analysis is done with y∗,X∗, Z∗ instead of y,X and Z. The quantities
like y∗ are the residuals from the regression of y on W, and π̂ will now be
the estimate of π from the regression of X∗ on Z∗ which is the same as the
estimate from the regression of X on Z and W. The F test that π is zero
therefore has to allow for the presence of W in the regression i.e. it is the
correlation between xt and zt after wt has been partialled out that is the right
measure of whether there are any weak instrument problems. Since the F
test that π = 0 in the model with no regressors is just 1−R

2

R2 , and the test
when wt is included in the equation has the same form, but with R2 replaced
by a partial R2, it is clear that, even when R2 is high - xt is well explained by
zt and wt− the partial R2 may be very low i.e. most of the explanation of xt
comes from wt and not zt. In this case the zt are effectively weak instruments.
The problem of course is that wt is not available as an instrument for xt as
it has been “used up ” in estimating α i.e. it is needed as an instrument for
itself. In fact, most of the explanation of xt comes from wt and not from zt,
meaning that the R2 is a poor guide to how useful zt are as instruments.

Staiger and Stock (1997) recommended that one should classify instru-
ments as weak if the F test that π = 0 in the regression of xt on zt and wt
is less than 10.1 In R2 terms this means that the partial R2 must be greater
than .1. This seems a reasonable rule of thumb and has been widely used.
Exactly what one should test if dim(X) > 1 is less clear as then one is re-
gressing a vector of variables xt against a set of regressors zt− one suggestion
by Hall et al. (1996) is to use canonical correlations. Stock and Yogo (2005)
have suggested that one use a multivariate analogue of the concentration co-
efficient and take the smallest eigenvalue of that. They tabulate conservative
critical values for such a test as it is difficult to find the exact distribution.

1As discussed in that paper this is an estimator of the concentration parameter, the
index known to be a major determinant of the distribution of the 2SLS estimator in
finite samples. Shea (1995) proposes an extension of this test to the case where X is
multidimensional which has proven useful e.g. in the analysis in Pagan and Robertson
(1996).
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4 Inferences with the IV Estimator

Now let’s consider making inferences with the IV estimator. We are really
interested in two issues. One is the derivation of a test statistic for testing the
hypothesis H0 : θ = θ0 and the other is how we might construct confidence
intervals. The latter problem has been extensively discussed in Zivot et al
(1998) and it is too complex to deal with here. Therefore we look at the issue
of deriving a test statistic that can be used to deliver a p-value for the test
of the null hypothesis. To do this we conventionally compute a t ratio.

Since the moments used for estimation are

E(mt) = E(ztut) = E(zt(yt − xtθ)) = 0,

method of moments theory gives the variance of T 1/2(θ̂ − θ0) as

Vθ̂ = [E(
∂mt

∂θ
)]−2var(mt) = σ−1zx (σ

2

uσ
2

z)σ
−1

xz ,

since
∂mt

∂θ
= −xtzt, var(mt) = σ2uE(z

2

t ).

In standard derivations of a t ratio Vθ̂ is estimated by σ̂−2zx (σ̂
2

uσ̂
2

z) giving

tθ̂ =
T 1/2(θ̂ − θ0)√

Vθ̂
=
T 1/2σ̂−1zx σzu

σ̂−1zx (σ̂uσ̂z)

=
T 1/2σzu
σ̂uσ̂z

= (T 1/2ρzu)
σzσu
σ̂zσ̂u

Now it is generally true that T 1/2ρzu is asymptotically N(0, 1) so that any
problems with the distribution of the t ratio has to come from the term σzσu

σ̂zσ̂u
.

In normal circumstances this term converges to 1, giving the well known
result that asymptotically tθ̂ is distributed as N(0, 1). So how does this
change when there are weak instruments? The answer lies in the fact that

σ̂2u =
1

T

∑
(yt − xtθ̂)

2 =
1

T

∑
(yt − xtθ0 − xt(θ̂ − θ0))

2

= T−1
∑

(yt − xtθ0)
2 + (θ̂ − θ0)

2(T−1
∑

x2t )− 2(θ̂ − θ0)(
1

T

T∑
t=1

utxt)
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Asymptotically the first term is σ2u and normally the other two terms disap-
pear as θ̂ is a consistent estimator of θ0. But with weak instruments (under
the local to zero device) θ̂ is not consistent, so that σ̂u is asymptotically a
random variable, making the distribution of the t ratio non-standard as it
is the product of an N(0, 1) random variable and the inverse of whatever
distribution σ̂u has. Of course, unless one knows what this distribution is
one can’t easily form a confidence interval.

5 Constructing Useful Test Statistics

Various solutions have emerged for the general case when dim(X) = 1 and
dim(Z) ≥ dim(X). The oldest one is to engage in some lateral thought and
perform an hypothesis test that H0 : θ = θ∗ by solving a different problem.2

Specifically, in estimating θ we had to assume that E(ztut) = 0. Now this
condition is E(zt(yt − xtθ0)) = 0, where θ0 is the true value of θ, so that

E(zt(yt − x′
t
θ∗) = E(ztx

′

t
(θ0 − θ∗)). (2)

Provided the instruments are not irrelevant we can test the null hypothesis
that θ0 = θ∗ by testing if E(zt(yt − xtθ

∗)) = 0.
(2) can be formulated as a conditional moment test of the form

E[zt(yt − x′
t
θ∗)− γ] = 0

and γ = 0 can be tested using γ̂ = 1

T

∑
T

t=1
zt(yt − x′

t
θ0). Writing this in

matrix form (and leaving out the T ) we would be looking at Z ′(y−Xθ0). If
the null hypothesis H0 : θ = θ0 is correct and we have that ut is i.i.d.(0, σ

2

0
)

then var(Z ′(y −Xθ0)) = σ2
0
Z ′Z, pointing to the test statistic

AR =
(y −Xθ0)

′Z(Z ′Z)−1Z(y −Xθ0)

σ̃2
0

,

where σ̃2
0
= 1

T

∑
T

t=1
(yt − x′

t
θ0)

2. This is the Anderson-Rubin test statistic
(AR). It is asymptotically a χ2(dim(Z)) and is quite well behaved in finite

2It’s important to note that what we mean by θ are the endogenous variable coefficients.

If there are exogenous variables in the original relation we eliminate them as described in

section 2.1 so that yt ,zt and xt would be residuals after they are regressed out from the

original variables.
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samples. The fact that it is χ2(dim(Z)) and not χ2(dim(θ)) is an unsatisfac-
tory aspect since dim(Z) may be much greater than dim(θ). Provided all the
parameters θ are being tested it readily extends to the general case where
dim(θ) > 1, but that is probably a rarity.

Now, there are other ways of performing a test that is more direct than
the AR test. What we have described in the previous section is the Wald
test. How about doing the LM test? The Wald and LM tests are identical
when dim(Z) = 1 except that σ̂2 is replaced by σ̃2

0
in the LM test. It

immediately follows that the distribution of the t ratio version of the LM test
will in fact be asymptotically N(0, 1). This is a neat result (first observed by
Wang and Zivot (1996)). Unfortunately it doesn’t survive extension to more
relevant models. In particular, the case when there are more instruments
than regressors that need to be instrumented for, i.e. dim(zt) > dim(xt). To
see why, we note that the Two Stage Least Squares Estimator of θ would be

θ̂ − θ0 = (π̂′Z ′Zπ̂)−1(π̂′Z ′u)

sd(θ̂) = σ̂u(π̂
′Z ′Zπ̂)−1/2

so that

tθ̂ =
(π̂′Z ′Zπ̂)−1(π̂′Z ′u)

σ̂u(π̂
′Z ′Zπ̂)−1/2

In the case that dim(Z) = dim(X) = 1, π̂ is a scalar and cancels from
numerator and denominator leaving

tθ̂ =
Z ′u

σ̂u(Z ′Z)1/2

and so it is enough to replace σ̂u by σ̃2
0
in order to ensure that tθ̂ is asymptot-

ically N(0, 1). But when dim(Z) > dim(X) we are left with π̂ on the bottom
line and we need to ask what its distribution now looks like in the local to
zero (weak instrument case)

π̂ =
φ√
T

+ (Z ′Z)−1Z ′ξ.

So if we want to stop π̂ from becoming zero we need to recognize that T 1/2π̂
will be asymptotically

N(φ, σ2ξσ
−2
z ).
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To see what the effect of this is note that

tθ̂ =
[(T 1/2π̂′)( 1

T
Z ′Z)(T 1/2π̂)]−1(T 1/2π̂′)(T−1/2Z ′u)

σ̂u[(T 1/2π̂′)(T−1Z ′Z)(T 1/2π̂)]−1/2
,

and, given that π̂ and T−1/2Z ′u have limiting distributions, the t ratio is the
product (and ratio) of many (asymptotically) normally distributed random
variables. Hence, even if θ̂ is replaced by θ0 when estimating σu, we do not
get around the problems raised by weak instruments.

There are other cases in which π̂ disappears from the test statistic e.g. if
dim(θ) = dim(Z), π̂ will be square, and it disappears from the quadratic form
producing the conventional χ2 statistic. Therefore, in that instance, provided
we utilize σ2

0
as the estimate of σ2u the test statistic is indeed a χ2(dim(θ))

random variable. This case is of interest because it occurs in structural VARs
with long-run restrictions, Pagan and Robertson(1998), although there the
weak instruments come from near unit root behaviour of the xt, and the local
to zero assumption made in the weak instruments literature is not really
appropriate, since π would now need to be δ

T
rather than δ√

T
.

Returning to the dim(θ) = 1,dim(Z) > 1 case, suppose that we consider
a different estimator of π. To derive one look at the system

yt = xtθ + ut

xt = z′tπ + ξt

If

[
ut
ξt

]
isN

([
0
0

]
,

[
σuu σuξ
σξu σξξ

])
then we can write ξt =

σuξ
σuu

ut+ηt, where

ηt is independent of ut. Setting θ = θ0 we can estimate ut and also
σuξ
σuu

so that

regressing xt− σ̂uξ
σ̂uu

ût against zt will produce an alternative estimator for π of
π̃. In fact this would be the LIML estimate given that θ = θ0. It’s clear that π̃
is a function of ηt, and so independent of ut, implying that ( conditional upon
Z) Z ′u is independent of π̃. This independence means we can now condition
upon π̃ when evaluating the distribution of a t ratio which uses π̃ in place of
π̂. Thus the t ratio will now be asymptotically normal. Replacing σ̂2 by σ2

0

and π̂ by π̃ means that one is performing an LM test that θ = θ0, and this
was Kleibergen’s (2002) suggestion. This statistic clearly extends to handle
dim(θ) > 1. As with much of this literature a crucial requirement is that Z
is exogenous ( or can be conditioned upon), which is not the case if the weak
instruments stem from unit root type behaviour.
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The problems caused by the behaviour of π̂ can be solved in other ways.
One suggestion is that we should condition upon some function of π̂, in
particular the the concentration parameter φ = σ−1ξξ π

′Z ′Zπ.An estimate of

this, φ̂, is the F statistic that tests if π is zero. Hillier and Forchini (2004)
discuss the logic of such conditioning, arguing that it is natural to condition
the distribution of θ̂ upon the outcome of a test that π = 0, since that
summarizes the information in a sample about θ. They derive the moments of
this conditional distribution and compare them to OLS. If the concentration
parameter is very small the results suggest that OLS might be the preferred
estimator. Hillier and Forchini also provide distributions for the dim(θ) > 1
case, conditioning upon the minimum eigenvalue of the multivariate analogue
of the concentration parameter. They observe however that these expressions
are so complex and hard to evaluate that some other function of π might be
a better conditioning choice.

Moreira (2003) considered the likelihood ratio ( LR) test that θ = θ0.
If we let the F statistic that the coefficients of zt are zero in the regression
of xt − σ̂uξ

σ̂uu
ût against zt be r̃, which estimates a modified "concentration

parameter", r = σ−1ηη π
′Z ′Zπ, then Kleibergen (2005) gives

LR =
1

2
[AR− r̃ +

√
(AR+ r̃)2 − 4r̃(AR− LM)].

As mentioned before AR and r̃ must be independent and this suggests we
condition upon r̃ in this case. The distribution of this conditional LR test
(CLR) can be found numerically, a recent algorithm being given in Andrews,
Moreira and Stock (2005b).

Most of the attention in the literature above has been paid to getting a test
statistic that is in some ways independent of π. But one also wants a test that
is powerful, and this has recently been studied by Poskitt and Skeels (2005)
(using small concentration parameter asymptotics) and Andrews, Moreira
and Stock (2005a). The latter consider the construction of point optimal
invariant tests. They also note that the power function of the LM test is not
monotonic and that the CLR test seems best of the trio discussed above.

A related issue that is only now being dealt with is the testing of sub-sets
of θ i.e. if θ′ =

[
θ

′

1
θ′
2

]
we wish to test H0 : θ1 = θ10. If the parameters θ2

have no weak instrument issues relating to them, then the results established
above continue to hold, since the IV estimator of θ2 is well behaved. If
however they are also subject to weak instrument bias some adjustments
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will need to be made. Recent papers by Dufour and Taamouti (2005) and
(Kleibergen (2007)) consider the question of how to do this; the former use
projection methods to get conservative tests while the latter establishes some
bounds on the distributions for θ̂1.

There are a lot of other issues raised by this literature One involves the
implications of it for GMM estimators. Basically the GMM estimator can be
thought of as

θ̂ − θ0 = (−
∑ ∂mt

∂θ
)−1(

∑
mt(θ0))

and we normally assume that 1

T

∑
∂mt

∂θ
converges to a constant. But it might

also be that E(∂mt

∂θ
) is either zero or very small in such a case and the same

issues arise as were raised above with weak instruments (of course in the
simple IV case −∂mt

∂θ
= ztxt). So it may be that the asymptotic theory for

the GMM estimator can fail. Using the Generalized Information Equality we
know that E(− ∂mt

∂θ
) = E(mtLθt), where Lθ,t are the scores for θ, and so there

are very real problems for the GMM estimator if the moments chosen,mt, are
not correlated with the scores, so one should experiment a little to determine
what would be good moments (it helps to have a theoretical model here that
one can estimate since one can then simulate it for chosen parameter values
and then study the issue of moment selection numerically). The failure of
GMM estimators to have a distribution as predicted by asymptotic theory
has been well documented e.g. Kocherlakota (1990).

6 Examples of Weak Instruments

6.1 Estimating the Phillips Curve in a New Keynesian

Model

The New Keynesian model that has become increasingly popular in macro-
economic research has the form.

πt = δ1Et(πt+1) + δ2πt−1 + λxt + εAS,t

xt = µEt(xt+1) + (1− µ)xt−1 − φ(rt −Etπt+1) + εIS,t

rt = ρrt−1 + (1− ρ)[βEtπt+1 + γxt] + εMP,t,

where πt is the inflation rate, yt is the output gap and rt is an interest rate
determined by policy. Three shocks appear in the model - an aggregate
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supply shock (εAS,t), an IS (demand) shock (εIS,t), and a monetary policy
shock (εMP,t). Suppose we try to estimate the Phillips curve in the standard
way i.e. to assume rational expectations and thereby replace Etπt+1 with
πt+1. Then we need an instrument for πt+1. But we will also need one for
xt as that is an endogenous variable. What instruments are available? We
know that the solution to this system (if there is no serial correlation in
the shocks) expresses πt, xt and rt as functions of their first lagged values
only. Therefore the only instruments available are xt−1, rt−1 and πt−1. But
πt−1 already appears in the Phillips curve so we are effectively left with xt−1
and rt−1 as instruments for πt+1. As you would discover from any regression
these are very poor instruments and so it is virtually impossible to estimate
δ1 and δ2. Of course in practice it is often the case that the restriction that
δ2 = 1 − δ1 is applied ( producing a "hybrid model") and this changes the
Phillips curve to

∆πt = δ1Et(πt+1 − πt−1) + λxt + εAS,t,

and often πt−1 will be a good instrument for πt+1 − πt−1. Hence sometimes
the weak instrument problem can be overcome via adopting a model design
that is compatible with some theoretical reasoning.

6.2 Euler Equations for Inventory Problems

Weak instruments can arise in many ways. Sometimes not enough care has
been put into their selection e.g. as seen in the debate over the returns to
schooling where it has been shown that the answers are very sensitive to the
choice of instrument. In other cases difficulties may arise either from the
nature of the model being used or the interaction of model features and the
data. A possible example of the latter would be the “common factors” test of
Vahid and Engle (1993) where one needs instruments for the growth rates of
variables in output and consumption, and it is rare to find much correlation
in these growth rates.3 In some cases one can locate the source of the weak
instrument and we turn to two of these now.

3Their test is essentially one of serial correlation after instrumental variables and there-

fore the distribution of the statistic depends upon another estimated quantity. Since the

latter is the IV estimator of the parameters of a linear relation it is affected by weak

instruments, and may therefore may impact upon the distribution of the statistic of in-

terest. This issue has not been examined much in the literature but we have found that

serial correlation tests can be affected in strange ways when one is basing them on weak

instruments.
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The parameters appearing in the set of first order conditions associated
with Euler equations defining the optimal choices for decision variables are
frequently estimated by GMM and potentially involve weak instruments.
Many situations arise when the potential becomes reality. Gregory et al
(1993) showed that, if one used the Euler equations from a linear quadratic
optimization model, instruments are irrelevant when used to identify the dis-
count parameter whenever the forcing variables are I(1) variables. A related
example is the influential paper of Fuhrer et al (1995). They reported ex-
tremely poor performance of the GMM estimator in certain circumstances,
even with thousands of observations.

Fuhrer et al’s paper derived the first order conditions defining optimal
inventory choice in a linear quadratic context with agents minimizing

∞∑
j=0

βjEt[CY (Yt+j) + CN(tt+j, St+j)],

subject to the constraint Nt+j = Nt+j−1+Yt+j −St+j, where Yt is output, St
is sales, Nt is the level of inventories and

CY (Yt+j) = (δ/2)Y 2

t+j + (α/2)(∆Yt+j)
2

CN(Nt+j, St+j) = (φ/2)(Nt+j − ωSt+j)
2.

The performance of the GMM estimator is so poor as to lead them to rec-
ommend that it might be preferable to use a maximum likelihood estimator,
even if an incorrect likelihood is used (the latter qualification arising from the
need to specify a form for the driving process for sales in order to determine
a likelihood). It is worth looking at the origins of the poor performance of
the GMM estimator in the model investigated by Fuhrer et al., as an under-
standing of the causes is important when assessing recommendations such as
that just mentioned.

The Euler equation coming from the optimization above is

Et [δ (Yt − βYt+1) + α(∆Yt − 2β∆Yt+1 + β∆Yt+2) + φ (Nt − ωSt)] = 0, (3)

and this provides a set of moment conditions

E [zt{δ (Yt − βYt+1) + α(∆Yt − 2β∆Yt+1 + β∆Yt+2) + φ (Nt − ωSt)}] = 0,
(4)
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where zt are instruments drawn from the information set used in the condi-
tional expectation. Now it is clear from (4) that one cannot identify all of the
parameters entering into it and researchers have chosen particular normaliza-
tions. Fuhrer et al work with five normalizations. Two of these, designated
A and B, are A : δ = 1, B : φ = 1. To aid the analysis of these different nor-
malizations we employ two simplifying assumptions. First we assume that
St = St−1+ et, where et is i.i.d.(0, σ

2), i.e. sales are a pure unit root process.
Second we put β = 1. 4. With St being I(1) it can be shown that Nt is I(1)
and ω is the cointegrating parameter. With these assumptions, normalization
A involves a linear model in which ∆Yt+1 is the dependent variable while
Nt−ωSt and∆2Yt+2 are regressors, and instruments are needed for the latter.
When the normalization is B, Nt −ωSt is the dependent variable and ∆Yt+1

and ∆2Yt+2 are regressors, and instruments are required for both of these.
The instruments used are effectively the changes in Yt and St as the levels
will not be useful as an instrument for ∆Yt+1 as one would be using an I(1)
variable as an instrument for I(0) variables. Now ∆Yt+1 = ∆St+1 +∆2Nt+1

and therefore, for lags of ∆Yt to be effective as instruments, it would be nec-
essary for ∆2Nt to have serial correlation. If one solves for the Nt process
under the specification used for St above, it can be established that there is
very little serial correlation in ∆2Nt. This means that normalizations such
as B will result in very weak instruments. Thus one can see the origin of
their conclusion that (p. 143)

“in the case of the smoothing model, normalization I requires
30,000 observations to converge to the true value”.5

This example shows why it is hard to come up with general propositions
regarding the possibility of weak instruments. If St was not close to a pure
unit root process then the instruments could be very effective so that the
outcome is very dependent on the nature of the underlying forcing processes.6

4In their data analyses and simulations β = .995 and the univariate process used for
sales effectively features a unit root with some weak autocorrelation. Fuhrer et al comment
that when the sales process is mis-specified by fitting an AR(1) rather than an AR(3) that
“the estimated lag coefficient in the AR(1) model tends to approximate the sum of the
AR(3) coefficients, the dominant root” (p. 143). This would give a root of .956.

5What I have called normalization B they term I.
6The same conclusion holds for the example in Gregory et al (1993)

16



7 References

Andrews, D.W.K., M.J. Moreira and J.H. Stock (2005a), "Optimal Invar-
ianat Similar Tests for Instrumental Variables Regression", Econometrica,
(forthcoming)

Andrews, D.W.K., M.J. Moreira and J.H. Stock (2005b), " Performance
of the Conditional Wald Tests in IV Regression with Weak Instruments",
Journal of Econometrics ( forthcoming)

Dufour, J-M and M. Taamouti (2005), "Projection-Based Statistical In-
ference in Linear Statistical Models with PossiblyWeak Instruments", Econo-
metrica, 73, 1351-1365.

Forchini, G. and G.Hillier (2003), "Conditional Inference for Possibly
Unidentified Structural Equations", Econometric Theory, 19, 707-743.

Fuhrer, J., G. Moore, and S. Schuh (1995), "Estimating the Linear-
Quadratic InventoryModel: MaximumLikelihood Versus GeneralizedMethod
of Moments", Journal of Monetary Economics, 35, 115-158

Hall, A.R., G.D. Rudebusch, and D.W. Wilcox (1996), "Judging Instru-
ment Relevance in Instrumental Variables Estimation,” International Eco-
nomic Review, 37, 283-298.

Gregory, A.W., A.R. Pagan and G.W. Smith (1993), ”Estimating Lin-
ear Quadratic Models with Integrated Processes” im P.C.B. Phillips (ed.)
Models, Methods and Applications of Econometrics (Blackwell).

Kleibergen, F. (2002), "Pivotal Statistics for Testing Parameters in In-
strumental Variables Regression", Econometrica, 70, 1781-1803.

Kleibergen, F. (2006), "Testing" in S. Durlauf and L. Blume, The New
Palgrave Dictionary of Economics, 2nd edition. The New Palgrave (forth-
coming)

Kleibergen, F. (2007), "Subset Statistics in the Linear IV Regression
Model", (mimeo, Brown University)

Kocherlakota, N.R. (1990), "On Tests of Representative Consumer Asset
Pricing Models", Journal of Monetary Economics, 26, 285-304.

Moreira, M.J. (2003), "A Conditional Likelihood Ratio Test for Structural
Models", Econometrica, 71, 1027-1-48.

Nelson, C. R., and R. Startz (1990), "The Distribution of the Instrumen-
tal Variables Estimator and its t-Ratio When the Instrument is a Poor One",
Journal of Business, 63, S125-140.

Pagan, A.R., and J.C. Robertson (1998), "Structural Models of the Liq-
uidity Effect", Review of Economics and Statistics, 80, 202-217.

17



Poskitt and Skeels (2005), "Small Concentration Asymptotics and Instru-
mental Variables Inference", Research Paper no 948, Department of Eco-
nomics, University of Melbourne

Shea, J. (1997), "Instrument Relevance in Multivariate Linear Models: A
Simple Measure”, Review of Economics and Statistics, 79,348-352.

Staiger, D., and J.H. Stock (1995), "Instrumental Variables Regression
with Weak Instruments”, Econometrica, 65, 557-586..

Stock, J.H. and J. Wright (2000), "GMM with Weak Identification",
Econometrica, 68, 1055-1096.

Stock, J.H. and M. Yogo (2005). "Testing for Weak Instruments in Lin-
ear IV Regression", in J.H. Stock and D.W.K. Andrews (ed) Identification
and Inference for Econometric Models: A Festshrift in Honor of Thomas
Rothenberg, Cambridge University Press

Stock, J.H., J.H. Wright and M. Yogo (2002), "A Survey of Weak Instru-
ments and Weak Identification in GMM”, Journal of Business and Economic
Statistics

Vahid, F. and R. Engle (1993), “Common Trends and Common Cycles”,
Journal of Applied Econometrics, 8, 341-360.

Wang, J., and E. Zivot (1996), "Inference on a Structural Parameter
in Instrumental Variables Regression with Weakly Correlated Instruments",
Econometrica, 66, 1389-1404.

West, K.D., and D.W. Wilcox (1996), "A Comparison of Alternative In-
strumental Variable Estimators of a Dynamic Linear Model", Journal of
Business and Economic Statistics, 14, 281-293.

18


