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Abstract

Temperature-based weather derivatives are written on an index which is normally defined to
be a nonlinear function of average daily temperatures. Recent empirical work has demon-
strated the usefulness of simple time-series models of temperature for estimating the payoffs
to these instruments. This paper develops analytical distributions of temperature indices on
which temperature derivatives are written. If deviations of daily temperature from its ex-
pected value is modelled as an Ornstein-Uhlenbeck process with time-varying variance, then
the distributions of the temperature index on which the derivative is written is the sum of
truncated, correlated Gaussian deviates. The key result of this paper is to provide an analyt-
ical approximation to the distribution of this sum, thus allowing the accurate computation
of payoffs without the need for any simulation. A data set comprising average daily temper-
ature spanning over a hundred years for four Australian cities is used to demonstrate the
efficacy of this approach for estimating the payoffs to temperature derivatives. It is demon-
strated that expected payoffs computed directly from historical records is a particulary poor
approach to the problem when there are trends in underlying average daily temperature. It
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1 Introduction

There has been growing interest in weather derivatives that permit the financial risk associated

with climatic conditions such as temperature or rainfall to be managed. Similar to the situation

in financial markets where a derivative security takes its value from an underlying financial

asset or index, a weather derivative takes its value from an underlying measure of weather,

such as temperature, rainfall or snowfall over a particular period of time. The first weather

derivative was transacted in the US in 1996 and the size of the market is now in excess of

US$ 8 billion.1 Because temperature and precipitation intrinsically cannot be traded, there is

no arbitrage-free pricing framework available to price these weather derivatives. Consequently

this paper is primarily concerned with the development of accurate estimates of the expected

payoffs of weather derivatives which is the crux of any pricing strategy.

Despite the existence of precipitation-based derivatives, the vast majority of all weather deriva-

tives are based on temperature indices, such as heating degree days and cooling degree days.2

Temperature derivatives are currently written on temperature indices collected from several

US and European cities as well as two Japanese cities. Major participants in this market

include utilities and insurance companies along with other firms with costs or revenues that

are dependent upon temperature. For example, an electricity supplier normally provides its

customers with electricity at a fixed price irrespective of the wholesale price. On the other

hand the wholesale price of electricity can fluctuate wildly with extreme temperatures, and

so temperature-based derivatives can provide a hedging tool for fluctuations in wholesale elec-

tricity prices. Consequently the focus of this paper will be exclusively on temperature-based

derivatives.

The most straightforward of estimating expected payoffs is from historical records (Zeng, 2000;

Platen and West, 2003). A more elaborate method is to fit a model to the time-series of

average temperature so as to capture seasonal variations in both temperature and its volatility

(Platen and West, 2003; Campbell and Diebold, 2004). The model is then used to simulate

temperature outcomes over the period of the contract in order to construct the distribution

of the temperature-based index on which the derivative is written. Note that widely-available

meteorological forecasts are not suitable for this purpose because these forecasts are made over

relatively short horizons, such as 7 days, whereas temperature derivatives are often traded well

before3 contracts generate any payoffs (Wilks, 1995; Jewson and Caballero, 2003; Campbell and
1The first recorded activity was an over-the-counter heating degree day swap option between Entergy-Koch

and Enron for the winter of 1997 in Milwaukee, Wisconsin (Tindall 2006).
2Garmen et al., 2000 posit that 98-99% of all weather derivatives currently traded are based on temperature.
3For example, participants in temperature-based weather derivative may enter into a contract many months

before the arrival of the summer on which the payoff of the contract is to be determined.
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Diebold, 2004).

Relatively few attempts have been made at generating closed-form expressions for the expected

payoffs to temperature-based derivatives (Benth and Šaltynė-Benth, 2005). The fundamental

contribution of this paper is to develop closed-form approximations to the distributions of the

indices on which temperature-based derivatives are written. This is necessarily a complex task

given that the relevant indices are nonlinear functions of average daily temperature in that they

form a sequence of correlated, truncated random variables in which the level and frequency of

truncation is not negligible. The basis of the analysis is the assumption that the deviations of

average daily temperature from its expected value behaves as an Ornstein-Uhlenbeck process

with time-varying variance. One of the primary tools used in establishing the results presented

in the paper is that Riemann-Stieltjes integrals of Gaussian processes are themselves Gaussian

processes and consequently the distributions of the indices on which the temperature derivatives

are written are essentially the sum of correlated, truncated Gaussian distributions.

For the empirical work in this paper a data set comprising average daily temperatures for over a

century in four Australian cities, namely, Brisbane, Melbourne, Perth and Sydney was collected.

These locations were chosen primarily because they are the four major cities of Australia,

and also because accurate temperature records of long-duration are available at single weather

stations, an important institutional requirement for writing temperature-based derivatives. This

is a quality data set which represents a substantial improvement on what appears to be the

current standard used in the literature. The potential downside of using Australian temperature

data is that Australia currently has no organized market for temperature derivatives such as that

organized by the Chicago Mercantile Exchange (CME) or the London International Financial

Futures and Options Exchange (Liffe).4 Consequently, no actually observed derivative prices can

be used in this analysis. Nevertheless, the methodology developed here is generally applicable

and could be used to estimate the payoffs to temperature derivatives in any market.

The rest of the paper is structured as follows. Section 2 describes the data used in this inves-

tigation. Section 3 outlines the concept of the ‘tick value’ of a temperature-based derivatives

and the importance of expected payoff in its pricing. Section 5 presents a simple continuous-

time autoregressive model average daily temperature and describes how the parameters of the

model may be estimated. Analytical distributions for the relevant temperature index on which

derivatives are written developed in Section 5 and the use of these distributional results are

demonstrated in practice in Section 6. Section 7 is a brief conclusion.
4Trading of weather derivatives on the CME began in September 1999 and by 2006 approximately 55% of

all weather derivative trading was transacted on the CME. By contrast, in 2004 Liffe started trading weather

derivatives in July 2001 but suspended trading in these instruments in 2004 due to a lack of turnover (Tindall

2006).

3



2 Data

The data set comprises daily maximum and minimum temperature records in degrees Celsius

for Brisbane, Melbourne, Perth and Sydney.5 Following standard practice in pricing weather

derivatives (Zeng, 2000; Platen and West, 2003; and Campbell and Diebold, 2004), the analysis

is conducted on the time series of average daily temperatures computed as the arithmetic mean

of the daily maximum and minimum values. For all the data sets, instances of single missing

values were treated by averaging adjacent records. In a few rare cases where several days were

missing, the long term average for those days was inserted. Finally, following Campbell and

Diebold (2004), all occurrences of the 29 February were removed.

Brisbane, Melbourne, Perth and Sydney were chosen primarily because they are the four major

cities of Australia, and also because accurate temperature records of over 100 years are available

for these cities at comparable weather stations. The construction of the temperature record for

each city is now discussed in more detail.

Brisbane The temperature record contains 44043 observations starting on the 1/1/1887 and

ending on 31/8/2007. The time series is constructed from data collected from three weather

stations: Brisbane Regional Office (Station Number 40214) 1/1/1887 - 31/3/1986; Brisbane

Airport (Station Number 40223) 1/4/1986 - 14/2/2000); and again from Brisbane Airport

(Station Number 40842) 15/2/2000 - 31/8/2007.

Melbourne The temperature record contains 55358 observations starting on 1/1/1856 and

ending on 31/8/2007. The time series is a continuous set of observations made at the Melbourne

Regional Office (Station Number 86071) weather station. The location of the office changed in

the early 1980s although the name of station did not.

Perth The temperature record contains 40393 observations starting on 1/1/1897 and ending

on 31/8/2007. The time series is constructed from data collected at two weather stations:

Perth Regional Office (Station Number 9034) 1/1/1897 - 2/6/1944; and Perth Airport (Station

Number 9021) 3/6/1944 - 31/8/2007.

Sydney The temperature record contains 54263 observations starting on 1/1/1859 and end-

ing on 31/8/2007. The time series is a continuous set of observations made at the Sydney

Observatory Hill (Station Number 66062) weather station.
5All the raw data were supplied by Climate Information Services, National Climate Centre, Australian Bureau

of Meteorology.
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Summary statistics for the average daily temperatures are reported in Table 1. Brisbane is

the hottest city on average and also records the lowest variability in average daily tempera-

ture. Melbourne is the coldest on average and has a relatively high variability in average daily

temperature. Perth has the most variable daily temperatures. There are significant differences

in all the cities between the sample means of temperature pre- and post-1950. This suggests

that a time trend will be an important component of a model of average daily temperatures.6

Interestingly, any trend in daily temperatures seems to be driven by the increasing minimum

value of daily temperatures rather than by an increasing maximum value.

Summary Statistics

Dates N Mean Med. S. Dev. Max. Min

Brisbane 1887 - 2006 43800 20.52 20.85 4.05 34.65 8.30
Brisbane 1887 - 1949 22995 20.39 20.70 4.11 34.65 8.30
Brisbane 1950 - 2006 20805 20.67 21.00 3.97 34.15 8.45

Melbourne 1856 - 2006 55115 14.95 14.40 4.74 34.55 2.25
Melbourne 1856 - 1949 34310 14.64 14.15 4.72 34.20 2.25
Melbourne 1950 - 2006 20805 15.46 14.90 4.72 34.55 3.80

Perth 1897 - 2006 40150 18.07 17.25 4.94 36.95 6.25
Perth 1897 - 1949 19345 17.92 17.20 4.72 36.95 6.25
Perth 1950 - 2006 20805 18.21 17.25 5.15 36.80 6.25

Sydney 1859 - 2006 54020 17.66 17.80 4.28 33.75 6.40
Sydney 1859 - 1949 33215 17.34 17.50 4.32 33.70 6.40
Sydney 1950 - 2006 20805 18.18 18.25 4.15 33.75 7.70

Table 1: Mean, median, standard deviation, maximum and minimum of average daily
temperature in four Australian cities. Note that the sample is curtailed to end on 31
December 2006 to ensure that summary statistics are computed over complete years.

Figure 1 shows the long-term expected values (upper panel) and standard deviations (lower

panel) of daily temperatures for each day of the year. Figure 1 shows that all the cities have

similar seasonal fluctuation and that the estimates of the long-term expected values of tem-

perature on each day in every city is converging. By contrast, Figure 1 demonstrates more

variability in the seasonal pattern of the volatility of temperatures across the cities. It is also

noticeable that, despite the length of the temperature records, the estimates of daily volatility

appear not to have converged to the same extent as the estimates of the mean temperature.
6Given the location of the actual weather stations from which the time-series data are assembled, it is conjec-

tured that this time trend is probably due to urbanisation rather than a manifestation of global warming.
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Figure 1: The expected value of the average daily temperatures (upper panel) and the
expected value of the volatility of average daily temperatures (lower panel) are shown
for Brisbane, Melbourne, Perth and Sydney.

3 Tick Values of Temperature Options

The most commonly referenced weather indices on which temperature derivatives are written

are cumulative heating degree days (HDDs) and cumulative cooling degree days (CDDs). Let

T max and T min be respectively the maximum and minimum temperatures in degrees Celsius

measured on a particular day at a specific weather station. The HDD and CDD indices at that

station on that day are defined respectively by

HDD = max
(
0, 18− T

)
,

CDD = max
(
0, T − 18

)
,

(1)

where T is the arithmetic mean of the maximum and minimum temperatures achieved on that

day, namely

T =
T max + T min

2
. (2)

The choice of threshold, in this instance 18◦C, is set by market convention and is the standard

used in the US. In the southern (northern) hemisphere the HDD (CDD) season would be from

May to September, while the CDD (HDD) season would be from November to March.

Temperature-based options are based on cumulative heating or cooling degree days constructed

by summing daily HDD/CDD indices over a period of N days to get

HN =
N∑

k=1

max
(
0, 18− Tk

)
,

CN =
N∑

k=1

max
(
0, Tk − 18

)
,

(3)

where Tk is the mean temperature, defined as in equation (2), on the kth day of the life of

the option. Without loss of generality, the analysis of this paper will be limited to considering
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European call options written on cumulative CDDs. The choice of European option is not

limiting in the sense that many more complex derivative strategies are in fact combinations of

simple European options. The choice of CDDs is more pragmatic, driven by the fact that CDDs

are uniformly important to all the major Australian cities in the data set.

Let D be the strike price of a temperature based option defined as a particular value of the

relevant cumulative index. The buyer of a vanilla European call option pays an up-front premium

and receives a payout if the value of the relevant index exceeds the strike price, D, at the maturity

of the option. The tick value of an CDD call option with strike price D and duration N days is

therefore

TN = max
(
CN −D, 0

)
. (4)

The actual monetary payoff from the contract is the product of the tick value and the tick size,

defined as the cash value of a tick. Given the probability density function, fN (x) of the relevant

cumulative index over the period of the contract, a call option for N days with strike price D,

for example, will have expected tick-value

E [ TN ] =
∫ ∞

D
(x−D) fN (x) dx .

Traditionally, the valuation of options under schemes such as that of Black and Scholes (1973)

discounts the expected payoff at the risk-free force of interest. This choice of discount rate is

based on a zero-arbitrage argument involving the formation of a portfolio consisting of a risk-

free combination of an option and the underlying asset. However, in context of a temperature-

based weather derivative, the underlying indices are not tradable, and therefore these derivatives

cannot be priced by means of a zero-arbitrage argument. Therefore the focus turns to estimating

the distribution of payoffs for pricing purposes.

The most common practical approach used to price temperature-based derivatives is the actu-

arial valuation method, discussed, for example, in Zeng (2000) and Platen and West (2003).

Broadly speaking this approach prices the derivative at the mean expected payoff plus a pre-

mium for overhead expenses. The simplest way of implementing this pricing scheme is to review

historical records of CN over the period relevant to the contract and use these values to calculate

its hypothetical payoff. The actuarially fair price for the derivative would then be the mean

historical payoff.

This approach is only sensible if the values of CN are independent and identically distributed

random variables. Figure 2 illustrates the sequence of historical records of CN for the period 1

January to 31 March for each of the four cities. A cursory inspection of Figure 2 suggests that

a time trend is present in the historical record of cumulative cooling degree days in all of the

cities. To test this hypothesis formally, a simple quadratic trend model is proposed. Although
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the quadratic term is not expected to be significant, it is included to account for the possibility

of piecewise trends in cumulative CDDs due to the effect of urbanisation late in the sample

period. Accordingly, cumulative CDDs are described by the general model

Ct = η0 + η1 Trendt + η2 Trend2
t + εt

where εt is now distributed iid(0, σ2
ε ).
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Figure 2: Time series of cumulative CDDs for each city with estimated time trend
superimposed (dashed line).

Estimation of the parameters of this model for each city yields

E[Ct]Brisbane = 564.0290
(14.8071)

+ 0.2617
(0.5603)

Trendt + 0.0008
(0.0044)

Trend2
t

E[Ct]Melbourne = 192.4003
(14.1135)

− 0.5819
(0.4259)

Trendt + 0.0077
(0.0027)

Trend2
t

E[Ct]Perth = 410.2985
(19.7863)

+ 1.2290
(0.8155)

Trendt + 0.0025
(0.0071)

Trend2
t

E[Ct]Sydney = 311.1655
(11.6784)

− 0.1276
(0.3595)

Trendt + 0.0065
(0.0023)

Trend2
t

where the figures in parentheses are standard errors. There is enough evidence in these results

to conclude that the trend in cumulative CDDs is statistically significant which leads inex-

orably to the conclusion that the cumulative CDDs are not identically distributed and as shown

by Clements et al. (2008) this fact leads to simple pricing based on historical records being

unreliable.

8



4 A Continuous-time Autoregressive Model of Temperature

4.1 The model

For all cities, the temperature, Tt, is the average daily temperature defined in equation (2).

Following the general convention (Davis, 2001, Alaton et al., 2002, Benth and Šaltynė-Benth,

2005), the deviations of temperature from its long-term average θt = Tt − T̄t are modeled as a

low-order autoregressive (AR) process7

In this context, the daily average temperature T (t) is expressed in the form T (t)+θ(t) with T (t)

modelling the mean average temperature at that time and θ(t) modelling the deviation of the

average daily temperature from the seasonal mean temperature. The process θ(t) is assumed

to satisfy the stochastic differential equation

dθ = −αθ dt + σ(t) dW , (5)

where dW is the increment in the Wiener process, and the parameter α (assumed constant) and

the function σ(t) are to be determined from observations of average daily temperature.

To utilise this model for predicting the predicting the payoff from temperature-based derivatives

an estimate of the parameter α is required. To do so, it is necessary to obtain estimates of T (t)

and σ(t) in the form of flexible functions that can accommodate their anticipated seasonal

behaviour. Fourier series of low order therefore provide an ideal specification for T (t) and σ(t),

which henceforth will be assumed to be represented by the respective generic forms

T (s) = a0 + b0s +
n∑

k=1

ak cos(ωks) + bk sin(ωks) ,

σ2(s) = c0 +
n∑

k=1

ck cos(ωks) + dk sin(ωks) ,




ωk =
2kπ

365
, (6)

where s = 0 is assumed to be the calender date of the first observation of average daily temper-

ature. The contribution b0s in the expression for T (s) is present to take account of any annual

trend in daily average temperature. Otherwise expressions (6) assume that seasonal variations

in daily average temperature follow an annual cycle which is independent of calendar year. We

describe two strategies to determine the value of α and the coefficients in the Fourier series (6).

4.2 Parameter estimation

Suppose that the data consists of observations of daily average temperatures T1, T2, · · · , TN at

the increasing sequence of times t1, t2, · · · , tN . The essence of the regression approach is that
7Alternatively, a fractionally integrated process for deviations could be used (see, for example, Caballero and

Jewson, 2002), but this modeling avenue is not pursued here.
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the Fourier coefficients of T (s) can be constructed in a straightforward way by minimising the

objective function

Ψ(a0, b0, a1, · · · , bn) =
N∑

j=1

(
Tj − T (tj))2

by suitable choice of the coefficients a0, b0, · · · , bn. Once these coefficients are determined and

the expression for T (s) is known, then the residuals θ1, θ2, · · · , θn can be computed directly from

the formula θj = Tj − T (tj), and the problem is now to find the values of α and the coefficients

c0, c1, d1, · · · , dn which best fit the residuals θ1, θ2, · · · , θn. One possible way to achieve this

objective is to note that equation (5) has solution

θ(t) =
∫ t

−∞
e−α(t−s)σ(s) dW (s). (7)

This solution satisfies E [θ(t)] = 0 with autocorrelation function at lag u given by

E [θ(t)θ(t + u)] = e−αuS(t) , S(t) =
∫ t

−∞
e−2α(t−s)σ2(s) ds , (8)

where S(t) denotes the seasonal variance of the deviation of daily average temperature from

its mean value. The function S(t) may be estimated directly from the data, and will of course

inherit the cyclical behaviour of σ2(t). It is a straightforward to demonstrate that σ2(t) and

S(t) are connected by the identity

σ2(t) =
dS(t)

dt
+ 2αS(t) .

Consequently, the expression for S(t) corresponding to the expression (6) for σ2(s) is

S(s) = p0 +
n∑

k=1

pk cos(ωks) + qk sin(ωks) , ωk =
2kπ

365
, (9)

where the parameters c0, c1, · · · , dn are related to the parameters p0, p1, · · · , qn by the formulae

c0 = 2αp0 ,
ck = 2αpk + ωkqk ,

dk = −ωkpk + 2αqk ,


 k = 1, 2. · · · , n . (10)

Equations (9) and (10) supply the first part of the algorithm to determine the value of α and

the Fourier coefficients in the specification of σ2(s).

The second part of the algorithm is based on a result of Bibby and Sorensen (1995) concerning

the properties of the solution of the initial value problem for the stochastic differential equation

dXt = α(θ −Xt) dt + σ(Xt)dWt in which σ(Xt) is a positive real-valued function. They show

that an unbiased estimate of the parameter α is given by the expression

α = − log




( n∑

k=1

Xk−1

σ2(Xk−1)

)( n∑

k=1

Xk

σ2(Xk)

)
−

( n∑

k=1

Xk−1Xk

σ2(Xk−1)

)( n∑

k=1

1
σ2(Xk−1)

)

( n∑

k=1

Xk−1

σ2(Xk−1)

)2
−

( n∑

k=1

X2
k−1

σ2(Xk−1)

)( n∑

k=1

1
σ2(Xk−1)

)




. (11)
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The difficulty, however, in using this expression is that σ2(Xt) is unknown whereas what is

known is the seasonal variance of the residuals. The strategy for finding the values of α and the

coefficients c0, · · · , dn is therefore the following.

First compute the Fourier coefficients of S(t) directly from the deviations θ1, θ2, · · · , θN formed

from Tt− T̄t. Now choose an arbitrary value for α, say α0, and compute the Fourier coefficients

of σ2(s) from formulae (10) with α = α0. Knowing the Fourier coefficients of σ2(s) enables

σ2(tk) to be computed from the formula (6). Expression (11) is now used to estimate α1, but

as might be anticipated, its value will not be α0 simply because α0 was chosen arbitrarily. This

procedure defines the first iteration of an algorithm to find the value of α. The procedure can be

repeated by recomputing σ2(tk) taking account of the new value of α and recalculating another

value of α from expression (11). This procedure is repeated until consecutive values of α are

not deemed to be significantly different, and the coefficients of the Fourier representation of

σ2(s) are finally determined from the Fourier representation of the seasonal variance S(t) via

formulae (10).

The values of α and the coefficients a0, · · · , bn and c0, · · · , dn can either be used as they stand

or can be used as an initial guess for the parameters of the likelihood approach for estimating

the values of these parameters outlined in the next subsection.

4.3 Maximum-likelihood estimation

The feasibility of parameter estimation by maximum likelihood (ML) in this instance relies on

the fact that the transitional probability density function of average daily temperature can be

computed under the assumption that the deviations of average daily temperature from its mean

value satisfies the stochastic differential equation (5). Ito’s lemma applied to the stochastic

differential equation (5) may be shown to lead to the formal solution

θ(t) = θj e−α(t−tj) +
∫ t

tj

e−α(t−s)σ(s) dWs , t > tj . (12)

with θj = θ(tj). The important observation from this solution is that θ(t) is a Gaussian random

variable with mean value E [θ(t)] = θj e−α(t−tj) and variance

χ(t, tj) =
∫ t

tj

e−2α(t−s)σ2(s) ds = S(t)− e−2α(t−tj)S(tj) , (13)

where the latter expression for χ(t, tj)t is derived directly from the definition of S(t) given

in equation (8). Because T = T (t) + θ(t), then the average daily temperature T is itself

Gaussian distributed with mean value T (t) +
(
Tj − T j

)
e−α(t−tj) and variance χ(t, tj) = S(t)−

e−2α(t−tj)S(tj) where

T (t) = a0 + b0t +
n∑

k=1

ak cos(ωkt) + bk sin(ωkt) , ωk =
2kπ

365
. (14)
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Thus the average daily temperature T (t) has transitional probability density function

f(T, t |Tj , tj) =
1√

2πχ(t, tj)
exp

[
−

(
T − T (t)− (Tj − T j) e−α(t−tj)

)2

2χ(t, tj)

]
. (15)

The likelihood of observing the sequence T1, T2, · · · , TN of average daily temperatures at calen-

dar times t1, t2, · · · , tN is therefore

L(α; a0, · · · , bn; c0, · · · , dn) =
N−1∏

j=1

f(Tj+1, tj+1 |Tj , tj) . (16)

In practice this likelihood is maximised with respect to the set of parameters α; a0, · · · , bn; c0, · · · , dn

by minimising the negative log-likelihood function − logL(α; a0, · · · , bn; c0, · · · , dn) which in this

instance takes the convenient form

− logL =
N − 1

2
log 2π +

1
2

N−1∑

j=1

log
(
Sj+1 − e−2α(tj+1−tj)Sj

)

+
1
2

N−1∑

j=1

(
Tj+1 − T j+1 − (Tj − T j) e−α(tj+1−tj)

)2

Sj+1 − e−2α(tj+1−tj)Sj
,

(17)

where the notation Sj = S(tj) has been used. The optimal values for the parameters of this

model are taken to be those which minimise expression (16). Although model (5) is specified

in terms of the intrinsic function σ(t), from a purely technical point of view it is easier to

treat the Fourier coefficients of S(t) as the parameters to be determined by the ML procedure.

Furthermore, the numerical effort required to minimise − logL can be significantly reduced by

taking as starting values the optimal values identified by the regression procedure described in

above.

5 Analytical Results and Distributions

There are two distinct factors contributing to the value of temperature-based indices. The first

is the stochastic behaviour of the time series of average daily temperatures, and the second is

the choice of cut-off temperature above which accumulation of the relevant temperature-based

index takes place. To appreciate how the time course of average daily temperature is driven by

the transitional probability density function of average daily temperature consider the following

argument.

The average daily temperature on the first day of an option, say T1, is simply a random draw from

the marginal density of average daily temperatures at that time of year, namely T1 ∼ N(T 1, S1)

where T 1 and S1 denote respectively the mean average daily temperature and the variance

of average daily temperature at that calendar date. Thereafter, average daily temperatures

on consecutive days of the option are correlated through the transitional probability density
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function (15). For example, the conditional probability density function of T2, the average daily

temperature on the second day of the option, is

f2(T, t2) =
∫ ∞

−∞
f1(T1, t1)f(T, t2 |T1, t1) dT1 =

1√
2πS1

1√
2π(S2 − e−2(t2−t1)S1)

×
∫ ∞

−∞
exp

[
−

(
T1 − T 1

)2

2S1

]
exp

[
−

(
T − T (t)− (T1 − T 1) e−α(t2−t1)

)2

2(S2 − e−2(t2−t1)S1)

]
dT1 .

(18)

Computation of the integral on the right hand side of equation (18) leads to the result that

T2 ∼ N(T 2, S2) where T 2 and S2 denote respectively the mean average daily temperature and

the variance of average daily temperature on the second day of the option. In other words,

the value of T2 is a draw from the marginal distribution of average daily temperature on the

calendar date corresponding to the second day of the option. This argument may be continued

to each day in the life of the option. The conclusion is that the average daily temperature on

any day of the option is a random draw from the marginal density of average daily temperature

for the calendar date corresponding to that day.

Although this result has been demonstrated explicitly in this instance for the nonhomogeneous

Ornstein Uhlenbeck process, logically this is a generic result. In the absence of explicit values of

average daily temperature during the lifetime of an option written on a temperature index, the

best estimate of average daily temperature on a day in the lifetime of the option is the marginal

density of average daily temperature on the calender date corresponding to that day. Because

temperature-based weather derivatives are traded well before any temperature information be-

comes available for the period of the option, the first step in pricing any temperature-based

option is therefore to recognise that the expected value of the temperature index on which that

option is written will be determined by the marginal density of average daily temperature on

the calendar dates corresponding to each day in the lifetime of the option. The second step in

the pricing strategy is to realise that the daily contributions made to the temperature index

on which a temperature-based option is written inherit a correlation structure since the aver-

age daily temperature is itself correlated in time. The successful pricing of temperature-based

options relies crucially on the extent to which the effect of this correlation in the temperature

index can be quantified.

An unwelcome complication is this challenge is the issue that it cannot be assumed a priori

that each day in the lifetime of a temperature-based option will make a non-zero contribution

to the temperature index on which that option is written. A special case and the general case

are now considered in detail.
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5.1 Special case

Consider the special situation in which every day of the option delivers a non-zero contribution

to the temperature index with very high probability, assumed in this analysis to be unity. The

cumulative tick value of a CDD option starting at calendar date tj and of duration m days is

therefore

Tj, m =
∫ tj+m

tj

(
T (t)− 18

)
dt =

∫ tj+m

tn

(
T (t) + θ(t)− 18

)
dt . (19)

Because E [θ(t)] = 0, the expected value of the payoff from such an option is

E [Tj, m] =
∫ tj+m

tj

(
T (t)− 18

)
dt , (20)

and the variance of this payoff is

E
[(Tj, m − E [Tj, m]

)2] = E
[( ∫ tj+m

tj

θ(u) du
)( ∫ tj+m

tj

θ(v) dv
) ]

=
∫ tj+m

tj

∫ tj+m

tj

E [θ(v)θ(u)] du dv .

(21)

The computation of this integral begins by dividing the region of integration into the regions

above and below the line u = v and noting that

E [θ(u)θ(v)] =


 e−α(u−v) S(v) u ≥ v ,

e−α(v−u) S(u) v ≥ u ,

it follows directly that

E
[(Tj, m − E [Tj, m]

)2(t)
]

= 2
∫ tj+m

tj

(∫ tj+m

u
e−α(v−u) S(u) dv

)
du

=
2
α

∫ tj+m

tj

S(u)
[
1− e−α(tj+m−u)

]
du .

(22)

Direct calculation based on the ansatz (6) for T (t) and expression (20) leads to the formula

E [Tj, m] = m(a0 − 18) + mb0tj+m/2 + 2
n∑

k=1

sinφk
ak cos(ωktj + φk) + bk sin(ωktj + φk)

ωk
(23)

for the mean of the cumulative tick value for average daily temperature. Furthermore, the

variance of this cumulative tick value is given by expression (22) and leads to the formula

E
[(Tj, m − E [Tj, m]

)2] =
n∑

k=1

pk

[sinωktj+m − sinωktj
ωk

− Ij, m, k

]

+
n∑

k=1

qk

[cosωktj − cosωktj+m

ωk
− Jj, m, k

]
+

2p0

α2

(
mα− 1 + e−mα

) (24)

where Ij, m, k and Jj, m, k denote the values of the integrals

Ij, m, k =
∫ tj+m

tj

[
1− e−α(tj+m−u)

]
cos(ωku) du ,

Jj, m, k =
∫ tj+m

tj

[
1− e−α(tj+m−u)

]
sin(ωku) du .

14



5.2 General case

Consider now a CDD call option of duration m days starting at calendar date tj . The k-th day

in the lifetime of this option will contribute to the temperature index driving the value of the

option with probability

pk = Φ(zk) , zk =
T j+k − 18√

Sj+k

, (25)

where Φ(z) is the cumulative distribution function of the standard normal. The cumulative tick

value of a CDD option of duration m days starting at calendar date tj is

Cj, m =
m∑

k=1

Tj+k , Tj+k = max[Tj+k − 18, 0] . (26)

The expected value and variance of Cj, m are respectively

E [Cj, m] =
m∑

k=1

E [Tj+k]

Var [Cj, m] =
m∑

k=1

E [(Tj+k − T j+k)2] + 2
m−1∑

k=1

m∑

r=k+1

E [(Tj+k − T j+k)(Tj+r − T j+r)] .
(27)

Each of these expressions is considered in turn.

5.2.1 Mean value of the temperature index of CDDs

Because Tj+k is a Gaussian random variable with mean value T j+k and variance Sj+k, then the

expected value of the temperature index for a CDD call option of duration m days starting at

calendar date tj is

E [Tj+k] =
1√

2πSj+k

∫ ∞

18
(T − 18) exp

[
− (T − T j+k)2

2Sj+k

]
dT

The use of the change of variable T = T j+k + z
√

Sj+k in this integral gives

E [Tj+k] =

√
Sj+k√
2π

∫ ∞

zj+k

(z − zj+k) e−z2/2 dz , zj+k =
18− T j+k√

Sj+k

which in turn can be expressed in terms of φ(z), the probability density function of the standard

normal, and Φ(z), the cumulative distribution function of the standard normal. The result of

this straightforward calculation is that

E [Tj+k] =
√

Sj+k

[
φ(zj+k) + zj+kΦ(zj+k)

]
, zj+k =

18− T j+k√
Sj+k

, (28)

which in turn leads to the general result

E [Cj, m] =
m∑

k=1

√
Sj+k

[
φ(zj+k) + zj+kΦ(zj+k)

]
. (29)
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5.2.2 Variance of the temperature index of CDDs

The primary difficulty in computing the variance of the temperature index lies in the fact that

the daily contributions to this index are correlated random variables thereby making Cj, m a

sum of correlated random variable with point density at zero. The analysis considered here

treats separately the contributions from the first and second terms on the right hand side of

equation (27).

The key idea in constructing this variance is to imagine the sample space of realisations of

average daily temperature over the interval [tj , tj+m], and consider the behaviour of a particular

day during this period. If calendar day tj+k always makes a nonzero contribution to the value

of temperature index then the variance of this contribution is Sj+k, the variance of θj+k on that

day. On the other extreme, if this day never contributes to the value of the temperature index

then the variance of its contribution is zero. Therefore if calendar day tj+k contributes to the

value of the temperature index on fraction pj+k of days then an interpolation argument suggests

that pj+kSj+k is a reasonable estimate for the value of E [(Tj+k − T j+k)2]. Based on this idea,

the first summation on the right hand side of equation (27) has approximate values

m∑

k=1

E [(Tj+k − T j+k)2] ≈
m∑

k=1

pj+kSj+k . (30)

The second summation on the right hand side of equation (27) is a correction to expression (30)

reflecting the fact that contributions to the value of the temperature index from different days

are not independent. The contribution made by the quantity E [(Tj+k−T j+k)(Tj+r−T j+r)] to

the variance of the temperature index is argued in a similar way. In the absence of clipping, the

variance of this product is equal to E [θj+kθj+r] with value Sj+k e−α(r−k) assuming that r > k.

However, the product Tj+kTj+r is nonzero with probability pj+kpj+r and therefore the same

interpolation argument indicates that E [(Tj+k − T j+k)(Tj+r − T j+r)] is reasonably estimated

by pj+kpj+rSj+k e−α(r−k). Based on this idea, the second summation on the right hand side of

equation (27) has approximate values

2
m−1∑

k=1

m∑

r=k+1

E [(Tj+k − T j+k)(Tj+r − T j+r)] ≈ 2
m−1∑

k=1

pj+kSj+k

m∑

r=k+1

pj+r e−α(r−k) . (31)

In conclusion, the variance of Cj, m is well approximated by the formula

Var [Cj, m] =
m∑

k=1

pj+kSj+k + 2
m−1∑

k=1

pj+kSj+k

m∑

r=k+1

pj+r e−α(r−k) . (32)
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5.2.3 Evaluation of variance

The variance of Cj, m can be computed efficiently by means of the auxiliary function

ψj, k =




m∑

r=k+1

pj+r e−α(r−k) k < m

0 k = m

(33)

using the formula

Var [Cj, m] =
m∑

k=1

pj+kSj+k

(
1 + 2ψk

)
. (34)

However, rather than computing ψj, k by evaluating each individual sum, it is convenient to

evaluate each function using the iterative property

ψj, m = 0 ,

ψj, k−1 = e−α(ψj, k + pj+k) , k ≤ m.
(35)

To appreciate the equivalence of definition (33) and property (35), note that for k < m the

function ψk satisfies

ψj, k−1 − e−αψj, k =
m∑

r=k

pj+re
−α(r−k+1) − e−α

m∑

r=k+1

pj+re
−α(r−k)

= pj+ke
−α +

m∑

r=k+1

pj+re
−α(r−k+1) −

m∑

r=k+1

pj+re
−α(r−k+1) = pj+ke

−α .

6 Computing Expected Payoffs

The task is now to provide a means of gauging the performance of the method suggested in

Section 5 for computing the expected payoffs of contracts. In doing so, the performance of the

proposed method is compared to the historical approach of Zeng (2000) and Platen and West

(2003). In this paper, the metric for comparison is taken to be the mean ‘profit’ of a 90-day

call option contract taken over a period of years. Profit is defined from the point of view of

the buyer of the call option as the difference between the actual tick value of the contract and

the expected tick value or ‘price’ of the option. Of course, this is not meant to represent a

true price for the option, as this notional pricing strategy takes no account of discounting or

overhead expenses. But of course, any pricing scheme will stand or fall by its ability to estimate

the expected tick value accurately.

The descriptive statistics of the cumulative CDDs upon which historical pricing is based are

reported in Table 2. These are very much as expected given the geographical locations of the

cities, but there are, however, two observations of note arising out of Table 2. It is apparent

that the distribution of cumulative CDDs for Melbourne is skewed to the right as evidenced by
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a mean which is significantly larger than the median. This is to be expected given both the

instances of extreme heat in Melbourne and the strength of the trend in the Melbourne CDD

data identified in Section 3. Perth, on the other hand, is notable for the diffuse nature of the

distribution of cumulative CDDs, recording a standard deviation significantly larger than those

of the other cities.

Summary Statistics

N Mean Med. S. Dev. Min. Max.

Brisbane 121 584.2 584.6 54.49 463.3 705.9

Melbourne 152 207.9 195.6 64.09 93.5 391.4

Perth 111 489.6 492.2 83.30 298.3 688.3

Sydney 149 350.0 350.2 60.07 225.5 533.3

Table 2: Mean, median, standard deviation, minimum and maximum
cumulative CDDs in four Australian cities.

It is also instructive to examine the distributions of cumulative CDDs in each of the cities

considered. Figure 3 plots both the distribution of historical cumulative CDDs (shaded region)

and the predicted distributions for 1950 (dashed line) and 2007 (solid line) generated by closed-

form approximations to the distributions of CDDs derived here. To the uniformed eye, the

distribution of historical cumulative CDDs may appear well behaved and taken as reasonable

evidence in favour of using historical records to price temperature-based derivatives. When

compared to the distributions for 1950 and 2007 generated by the analytical approach, the

potential for error inherent in the historical approach becomes evident. Not only does the

mean of the predicted distribution change noticeably over time, as would be expected given the

discussion in Section 3, but the distribution also has lower volatility.

The profits generated by two call-option contracts with different strike prices, written on the

period 1 January to 31 March are now reported in Tables 3 and 4 respectively. The experiments

begin by pricing these options for the year 1950 using data up to and including 1949. The actual

payoff for 1950 is recorded, the profit or loss stored and the data set is updated to include all

the temperature records for the next year. These steps are repeated up to and including 2007

giving a total of 58 separate profits for each option. The call options used in the experiment

have respective strike prices set to be approximately D = µ + 0.5σ and D = µ + 0.75σ where

µ is the unconditional mean and σ is the unconditional standard deviation of CDDs up to the

current year under consideration. The means and standard deviations of the profits are regarded
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as measures of the performance of each of the methods used to determine expected tick values.
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Figure 3: Density of historical cumulative CDDs based on data up to and including
1949 (shaded area), predicted density of cumulative CDD for 1950 (dashed line) and
predicted density of cumulative CDD for 2007 (solid line).

The historical pricing reported in Tables 3 and 4 is self-explanatory, but the implementation of

the closed-form approximations needs further elucidation. Two variations of this method are

implemented, namely an annual version and a quarterly version. The annual approach fits the

mean and seasonal variance of average daily temperature using data for the entire year and

the best estimates of the parameters are used in the estimation of the relevant distributions.

By contrast, the quarterly version focusses on the period from 1 January to the 31 March in

each year and fits the mean and seasonal variance of average daily temperature for this period

only. In general, the fitting procedure in this interpretation will be implemented only on the

period over which the contract is written. The main reason for adopting this approach is that

the behaviour of temperature in parts of the year unrelated to the period of the option are not

being allowed to influence parameter estimates for the mean and variance processes. Another

benefit of this approach is that better resolution of the mean and variance processes with the

same number of parameters.
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Brisbane Melbourne Perth Sydney

D = 600 D = 240 D = 530 D = 380

Historical

Mean Payoff −8.10 −14.31 −23.79 7.84
SDev Payoff 33.11 45.79 43.23 48.88

Quarterly Model

Mean Payoff 7.17 13.22 2.16 11.66
SDev Payoff 29.64 41.46 41.83 35.54

Annual Model

Mean Payoff 5.78 15.42 18.30 4.02
SDev Payoff 29.11 41.36 40.04 34.59

Table 3: Means and standard deviations of profits to a 90-day call option defined
on CDDs with strike price D approximately equal to µ + 0.5σ, where µ and σ are
the unconditional mean and standard deviation of available historical CDDs. The
option is priced for each year from 1950 to 2007 inclusive.

Brisbane Melbourne Perth Sydney

D = 620 D = 260 D = 550 D = 400

Historical Model

Mean Payoff −17.71 −24.68 −35.11 −4.15
SDev Payoff 25.33 38.32 36.09 42.70

Quarterly Model

Mean Payoff 6.20 11.88 1.29 9.78
SDev Payoff 22.67 34.16 34.22 30.12

Annual Model

Mean Payoff 5.49 13.32 13.38 4.56
SDev Payoff 22.40 34.15 36.64 29.22

Table 4: Means and standard deviations of profits to a 90-day call option defined
on CDDs with strike price D approximately equal to µ + 0.75σ, where µ and σ

are the unconditional mean and standard deviation of available historical CDDs.
The option is priced for each year from 1950 to 2007 inclusive.
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The first striking conclusion to be drawn from these results is just how bad historical pricing

performs for the Australian temperature data. Interestingly enough, it appears that historical

pricing in three of the cities has substantially over-priced the call options. This result is counter-

intuitive as it is be expected that the presence of a significant trend in the cumulative CDDs

identified in Section 3 would cause the options to be under-priced. The resolution of this

conundrum is to be found in the behaviour of temperature between the years 1890 and 1920.

In Brisbane, Melbourne and Perth substantial outliers in cumulative CDDs were recorded the

likes of which were not seen again until late in the sample period. These outliers would have

a disproportionate affect on the pricing of temperature derivatives in the 1960s, 1970s and

1980s. The existence of these outliers would also explain the deterioration in the profit when

moving from the from the lower to the higher exercise price when using historical pricing. The

weather station in Sydney where the temperature data were recorded did not show these extreme

temperature events and consequently historical pricing for Sydney performs significantly better

than for the other cities.

Taken as a whole, the closed-approximations used to price the call options generate mean

profits closer to zero and with lower standard deviations than historical pricing. Nevertheless,

this method appears to underprice somewhat, even though these pricing errors are smaller

in magnitude than those generated by the historical method. This underpricing is again a

manifestation of the outliers in cumulative CDDs but in this case, not enough weight is given

to them. There is little difference in terms of performance of quarterly and annual models, with

the exception of Perth where the quarterly model performs better. It is conjectured that this is

due to the ability of the quarterly model to better resolve the extreme temperature variations

that are prone to take place in Perth. Unlike the case documented for historical pricing, there

seems little difference in performance when moving from the lower to the higher exercise price

for the the closed-form approach. Overall, it seems as though the analytical method is superior,

with these differences being due to differences in the distributions upon which pricing is based,

recall earlier discussion of Figure 3.

7 Conclusion

This paper has derived closed-form expressions for approximating the distribution of tempera-

ture indices. The major practical use for these approximations is in estimating the payoffs to

temperature-based weather derivatives. Although the cumulative cooling degree day index is

the focus of this research, the methods used are equally applicable to derivatives based on cumu-

lative heating degree days. Common practice when modelling average daily temperature is to

regard the deviations of temperature from its expected value as an Ornstein-Uhlenbeck process.
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The key result derived in this paper, is that if this model of temperature is adopted, then the

distribution of cumulative cooling degree days may be constructed as the sum of truncated, cor-

related Gaussian deviates. The mean and variance of the resultant Gaussian distribution depend

on the parameters of the underlying temperature process and its autocorrelation structure.

The efficacy of these approximate distributions is tested by estimating the payoffs to temperature-

based derivatives. Time series data spanning over a hundred years of average daily temperatures

in four major Australian cities are used to estimate the payoffs to European call options writ-

ten on cooling degree days. The robust conclusion to emerge from this line of research is that

the closed-form distributions perform more reliably than the historical pricing method that is

commonly advocated in the literature.
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