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Abstract

Temperature-based weather derivatives are written on an index which is normally defined to
be a nonlinear function of average daily temperatures. Recent empirical work has demon-
strated the usefulness of simple time-series models of temperature for estimating the payoffs
to these instruments. This paper argues that a more direct and parsimonious approach is
to model the time-series behaviour of the index itself, provided a sufficiently rich supply of
historical data is available. A data set comprising average daily temperature spanning over
a hundred years for four Australian cities is assembled. The data is then used to compare
the actual payoffs of temperature-based European call options with the expected payoffs
computed from historical temperature records and two time-series approaches. It is con-
cluded that expected payoffs computed directly from historical records perform poorly by
comparison with the expected payoffs generated by means of competing time-series models.
It is also found that modeling the relevant temperature index directly is superior to modeling
average daily temperatures.
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1 Introduction

There has been growing interest in weather derivatives that permit the financial risk associated
with climatic conditions such as temperature or rainfall to be managed. Similar to the situation
in financial markets where a derivative security takes its value from an underlying financial
asset or index, a weather derivative takes its value from an underlying measure of weather,
such as temperature, rainfall or snowfall over a particular period of time. The first weather
derivative was transacted in the US in 1996 and the size of the market is now in excess of US$
8 billion.1 Because temperature and precipitation intrinsically cannot be traded, there is no
arbitrage-free pricing framework available to price these weather derivatives. Consequently this
paper is primarily concerned with the development of accurate estimates of the expected payoffs
of weather derivatives which is the crux of any pricing strategy.

Despite the existence of precipitation-based derivatives, the vast majority of all weather deriva-
tives are based on a temperature indices, such as heating degree days and cooling degree days.2

Temperature derivatives are currently written on temperature indices collected from several
US and European cities as well as two Japanese cities. Major participants in this market
include utilities and insurance companies along with other firms with costs or revenues that
are dependent upon temperature. For example, an electricity supplier normally provides its
customers with electricity at a fixed price irrespective of the wholesale price. On the other
hand the wholesale price of electricity can fluctuate wildly with extreme temperatures, and
so temperature-based derivatives can provide a hedging tool for fluctuations in wholesale elec-
tricity prices. Consequently the focus of this paper will be exclusively on temperature-based
derivatives.

Various methods for estimating expected payoffs have been suggested. The most straightforward
of these computes the expected value of payoffs from historical records (Zeng, 2000; Platen and
West, 2003). In isolated cases and for very simple models, closed form solutions for the expected
payoff can be developed (Benth and Šaltynė-Benth, 2005). A more general method is to fit a
model to the time-series of average temperature so as to capture seasonal variations in both
temperature and its volatility (Platen and West, 2003; Campbell and Diebold, 2004). The
model is then used to simulate temperature outcomes over the period of the contract in order
to construct the distribution of the temperature-based index on which the derivative is written.
Note that widely-available meteorological forecasts are not suitable for this purpose because
these forecasts are made over relatively short horizons, such as 7 days, whereas temperature
derivatives are often traded well before3 contracts generate any payoffs (Wilks, 1995; Jewson
and Caballero, 2003; Campbell and Diebold, 2004).

This paper argues that a more direct and parsimonious way of approximating the distribution
of the temperature-based index on which derivatives are written is to build a time-series model
of the index itself, rather than a model of underlying average daily temperature. It is further

1The first recorded activity was an over-the-counter heating degree day swap option between Entergy-Koch
and Enron for the winter of 1997 in Milwaukee, Wisconsin (Tindall 2006).

2Garmen et al., 2000 posit that 98-99% of all weather derivatives currently traded are based on temperature.
3For example, participants in temperature-based weather derivative may enter into a contract many months

before the arrival of the summer on which the payoff of the contract is to be determined.
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shown that this approach gives rise to a simple yet effective model with empirical performance
which is superior to methods based on historical payoffs and models of average temperature.
Of course, this approach requires an rich supply of temperature data on which to build the
time-series of the index.

For the empirical work in this paper a data set comprising average daily temperatures for over a
century for four Australian cities, namely, Brisbane, Melbourne, Perth and Sydney was collected.
These locations were chosen primarily because they are the four major cities of Australia,
and also because accurate temperature records of long-duration are available at single weather
stations, an important institutional requirement for writing temperature-based derivatives. This
is a quality data set which represents a substantial improvement on what appears to be the
current standard used in the literature. The potential downside of using Australian temperature
data is that Australia currently has no organised market for temperature derivatives such as that
organised by the Chicago Mercantile Exchange (CME) or the London International Financial
Futures and Options Exchange (Liffe).4 Consequently, no actually observed derivative prices can
be used in this analysis. Nevertheless, the methodology developed here is generally applicable
and could be used to estimate the payoffs to temperature derivatives in any market.

The rest of the paper is structured as follows. Section 2 outlines the concept of the ‘tick value’
of a temperature-based derivative and the importance of expected payoff in its pricing. Section
3 describes the data used in this investigation. Section 4 presents a seasonal GARCH model of
average daily temperature as developed by Campbell and Diebold (2004) and Section 5 builds
the time-series model of the actual index on which the derivatives are written. Alternative
approaches to modeling the distribution of the payoffs from temperature-based call options, in
the form of expected profit, are evaluated in Section 6. Section 7 is a brief conclusion.

2 Tick Values of Temperature Options

The most commonly referenced weather indices on which temperature derivatives are written
are heating degree days (HDDs) and cooling degree days (CDDs). Let T max and T min be respec-
tively the maximum and minimum temperatures in degrees Celsius measured on a particular
day at a specific weather station. The HDD and CDD indices at that station on that day are
defined respectively by

HDD = max
(
0, 18− T

)
,

CDD = max
(
0, T − 18

)
,

(1)

where T is the arithmetic mean of the maximum and minimum temperatures achieved on that
day, namely

T =
T max + T min

2
. (2)

The choice of threshold, in this instance 18◦C, is set by market convention and is the standard
used in the US. In the southern (northern) hemisphere the HDD (CDD) season would be from

4Trading of weather derivatives on the CME began in September 1999 and by 2006 approximately 55% of
all weather derivative trading was transacted on the CME. By contrast, in 2004 Liffe started trading weather
derivatives in July 2001 but suspended trading in these instruments in 2004 due to a lack of turnover (Tindall
2006).

3



May to September, while the CDD (HDD) season would be from November to March.

Temperature-based call options are based on cumulative heating or cooling degree days con-
structed by summing daily HDD/CDD indices over a period of N days to get

HN =
N∑

k=1

max
(
0, 18− Tk

)
,

CN =
N∑

k=1

max
(
0, Tk − 18

)
,

(3)

where Tk is the mean temperature, defined as in equation (2), on the kth day of the life of
the option. Without loss of generality, the analysis of this paper will be limited to considering
European call options written on CDDs. The choice of European option is not limiting in the
sense that many more complex derivative strategies are in fact combinations of simple European
options. The choice of CDDs is more pragmatic, driven by the fact that CDDs are uniformly
important to all the major Australian cities in the data set.

Let D be the strike price of a temperature based option defined as a particular value of the
relevant cumulative index. The buyer of a vanilla European call option pays an up-front premium
and receives a payout if the value of the relevant index exceeds the strike price, D, at the maturity
of the option. The tick value of an CDD call option with strike price D and duration N days is
therefore

TN = max
(
CN −D, 0

)
. (4)

The actual monetary payoff from the contract is the product of the tick value and the tick size,
defined as the cash value of a tick.

Traditionally, the valuation of options under schemes such as that of Black and Scholes (1973)
discounts the expected payoff at the riskless force of interest. This choice of discount rate is
based on a zero-arbitrage argument involving the formation of a portfolio consisting of a riskless
combination of an option and the underlying asset. However, in context of a temperature-based
weather derivative, the underlying indices are not tradable, and therefore these derivatives
cannot be priced by means of a zero-arbitrage argument.

The most common practical approach used to price temperature-based derivatives is the actu-
arial valuation method, discussed, for example, in Zeng (2000) and Platen and West (2003).
Broadly speaking this approach prices the derivative at the mean expected payout plus a pre-
mium for overhead expense. The simplest way of implementing this pricing scheme is to review
historical records of CN over the period of a contract in previous years and use these values to
calculate the hypothetical payout of the contract had it been in place. The actuarially fair price
for the derivative would then be the mean historical payoff.

Recent empirical work by Campbell and Diebold (2004) fits a time-series model to daily tem-
perature to capture seasonal climatic patterns. The resulting model is then used to simulate
the probability density function, f(x), and associated cumulative distribution function, F (x),
of the relevant cumulative index over the period of the contract. In the case of a call option for
N days with strike price D, for example, the expected tick value of the payoff is

E [ TN ] =
∫ ∞

D
(x−D) f(x) dx =

∫ ∞

D

(
1− F (x)

)
dx .
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This approach will be the subject matter of Section 4. An alternative approach proposed in this
paper will be to model the CDD index itself, rather than model the underlying temperature
from which the CDDs are subsequently calculated. This direct approach which is likely to be
less prone to error than the dealing with temperature is outlined in Section 5.

3 Data

The data set comprises daily maximum and minimum temperature records in degrees Celsius
for Brisbane, Melbourne, Perth and Sydney.5 Following standard practice in pricing weather
derivatives (Zeng, 2000; Platen and West, 2003; and Campbell and Diebold, 2004), the analysis
is conducted on the time series of average daily temperatures computed as the arithmetic mean
of the daily maximum and minimum values, as in equation (2). For all the data sets, instances
of single missing values were treated by averaging adjacent records. In a few rare cases where
several days were missing, the long term average for those days was inserted. Finally, following
Campbell and Diebold (2004), all occurrences of the 29 February were removed.

Brisbane, Melbourne, Perth and Sydney were chosen primarily because they are the four major
cities of Australia, and also because accurate temperature records of over 100 years are available
for these cities at comparable weather stations. The construction of the temperature record for
each city is now discussed in more detail.

Brisbane The temperature record contains 44043 observations starting on the 1/1/1887 and
ending on 31/8/2007. The time series is constructed from data collected from three weather
stations: Brisbane Regional Office (Station Number 40214) 1/1/1887 - 31/3/1986; Brisbane
Airport (Station Number 40223) 1/4/1986 - 14/2/2000); and again from Brisbane Airport
(Station Number 40842) 15/2/2000 - 31/8/2007.

Melbourne The temperature record contains 55358 observations starting on 1/1/1856 and
ending on 31/8/2007. The time series is a continuous set of observations made at the Melbourne
Regional Office (Station Number 86071) weather station. The location of the office changed in
the early 1980s although the name of station did not.

Perth The temperature record contains 40393 observations starting on 1/1/1897 and ending
on 31/8/2007. The time series is constructed from data collected at two weather stations:
Perth Regional Office (Station Number 9034) 1/1/1897 - 2/6/1944; and Perth Airport (Station
Number 9021) 3/6/1944 - 31/8/2007.

Sydney The temperature record contains 54263 observations starting on 1/1/1859 and end-
ing on 31/8/2007. The time series is a continuous set of observations made at the Sydney
Observatory Hill (Station Number 66062) weather station.

5All the raw data were supplied by Climate Information Services, National Climate Centre, Australian Bureau
of Meteorology.
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Summary statistics for the average daily temperatures are reported in Table 1. Brisbane is
the hottest city on average and also records the lowest variability in average daily tempera-
ture. Melbourne is the coldest on average and has a relatively high variability in average daily
temperature. Perth has the most variable daily temperatures. There are significant differences
in all the cities between the sample means of temperature pre- and post-1950. This suggests
that a time trend will be an important component of a model of average daily temperatures.6

Interestingly, any trend in daily temperatures seems to be driven by the increasing minimum
value of daily temperatures rather than by an increasing maximum value.

Summary Statistics

Dates N Mean Med. S. Dev. Max. Min

Brisbane 1887 - 2006 43800 20.52 20.85 4.05 34.65 8.30
Brisbane 1887 - 1949 22995 20.39 20.70 4.11 34.65 8.30
Brisbane 1950 - 2006 20805 20.67 21.00 3.97 34.15 8.45

Melbourne 1856 - 2006 55115 14.95 14.40 4.74 34.55 2.25
Melbourne 1856 - 1949 34310 14.64 14.15 4.72 34.20 2.25
Melbourne 1950 - 2006 20805 15.46 14.90 4.72 34.55 3.80

Perth 1897 - 2006 40150 18.07 17.25 4.94 36.95 6.25
Perth 1897 - 1949 19345 17.92 17.20 4.72 36.95 6.25
Perth 1950 - 2006 20805 18.21 17.25 5.15 36.80 6.25

Sydney 1859 - 2006 54020 17.66 17.80 4.28 33.75 6.40
Sydney 1859 - 1949 33215 17.34 17.50 4.32 33.70 6.40
Sydney 1950 - 2006 20805 18.18 18.25 4.15 33.75 7.70

Table 1: Mean, median, standard deviation, maximum and minimum of average daily
temperature in four Australian cities. Note that the sample is curtailed to end on 31
December 2006 to ensure that summary statistics are computed over complete years.

Figures 1 and 2 show the long-term expected values and standard deviations of daily tempera-
tures for each day of the year. Figure 1 shows that all the cities have similar seasonal fluctuation
and that the estimates of the long-term expected values of temperature on each day in every
city is converging. By contrast, Figure 2 demonstrates more variability in the seasonal pattern
of the volatility of temperatures across the cities. It is also noticeable that, despite the length
of the temperature records, the estimates of daily volatility appear not to have converged to the
same extent as the estimates of the mean temperature.

6Given the location of the actual weather stations from which the time-series data are assembled, it is conjec-
tured that this time trend is probably due to urbanisation rather than a manifestation of global warming.
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Figure 1: Plots of the expected value of the average daily temperatures
for the four Australian cities.
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Figure 2: Plots of the expected value of the volatility of average daily
temperatures for the four Australian cities.
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4 Modeling Temperature

The model of this section will follow in spirit the analysis of Campbell and Diebold (2004),
namely, to see if simple time-series models, similar in structure for each city, can provide an
adequate model of temperature. If so, then repeated simulation of the model will allow accurate
pricing of temperature-based weather derivatives. The details of the implementation differ from
those in Campbell and Diebold (2004) and are now described.

For all cities, the temperature, Tt, is the average daily temperature defined in equation (2).
Following the general convention (Davis, 2001, Alaton et al., 2002, Benth and Šaltynė-Benth,
2005), the deviations of temperature from its long-term average θt = Tt − T̄t are modeled as a
low-order autoregressive (AR) process7

Tt = T̄t +
m∑

j=1

αj θt−j + σt εt , (5)

where m is the order of the AR process, εt is an iid(0 , 1) process and T̄t is modelled as the sum
of a trend and a periodic component by the expression

T̄t = γ0 + γ1 Trendt +
k∑

j=1

φj cos
(2πjt

365

)
+

k∑

j=1

ϕj sin
(2πjt

365

)
. (6)

In order to capture both the observed seasonal pattern (see Figure 2) of the volatility of tem-
perature and any persistence in volatility, a conventional GARCH(1,1) model (Bollerslev, 1986)
is augmented by adding a constant seasonal component as a forcing variable in the conditional
variance equation, as in Campbell and Diebold (2004). The SGARCH(1,1) model8 for condi-
tional variance is then given by

σ2
t = β0 + β1 σ2

t−1 + β2 ε2
t−1 + β3 St (7)

where

St = ξ0 +
m∑

j=1

ξj cos
(2πjt

365

)
+

m∑

j=1

δj sin
(2πjt

365

)
. (8)

Table 2 reports the estimation results for the SGARCH(1,1) model of temperature for the entire
sample period. To reduce the dimension of the optimisation problem, the parameters of equation
(6) and equation (8) are pre-computed by ordinary least squares using temperature and squared
deviations of temperature from T̄t as the dependent variables respectively.

7Alternatively, a fractionally integrated process for deviations could be used (see, for example, Caballero and
Jewson, 2002), but this modeling avenue is not pursued here.

8Experimentation with other models of conditional variance, for example, where volatility is given by a persis-
tent and transitory component in the spirit of the component-GARCH, model of Engle and Lee (1993), suggested
that the SGARCH(1,1) model was a satisfactory way to model the seasonal level in conditional variance.
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Cities

Brisbane Melbourne Perth Sydney

α0 −0.0066 −0.0835 −0.0561 0.0175
(0.0063) (0.0091) (0.0097) (0.0074)

α1 0.6857 0.6487 0.7715 0.6264
(0.0053) (0.0047) (0.0054) (0.0049)

α2 −0.0695 −0.1332 −0.1646 −0.0753
(0.0064) (0.0058) (0.0069) (0.0055)

α3 0.0180 −0.0045 −0.0164 0.0263
(0.0060) (0.0055) (0.0065) (0.0050)

α4 −0.0022 0.0050 −0.0035 −0.0178
(0.0057) (0.0052) (0.0063) (0.0047)

α5 0.0184 0.0113 0.0158 0.0094
(0.0057) (0.0051) (0.0062) (0.0046)

α6 0.0187 0.0049 0.0028 0.0148
(0.0055) (0.0050) (0.0061) (0.0046)

α7 0.0000 −0.0062 0.0136 0.0097
(0.0045) (0.0041) (0.0049) (0.0039)

β0 0.3544 0.7329 1.4262 0.7722
(0.0201) (0.0452) (0.0979) (0.0259)

β1 0.1545 0.1126 0.0980 0.1842
(0.0057) (0.0051) (0.0063) (0.0056)

β2 0.4209 0.5160 0.2290 0.2137
(0.0186) (0.0242) (0.0469) (0.0167)

β3 0.0419 0.0159 0.0191 0.0497
(0.0021) (0.0010) (0.0014) (0.0015)

Table 2: Parameter estimates for AR(7) - SGARCH(1,1) models
for average daily temperature data.

The results conform largely with expectations although there are a few features worthy of
comment. The AR(1) parameter is particularly strong while the coefficients of the other lagged
deviations of temperature are smaller, but mostly statistically significant. Experimentation
with a longer lag structure, as used by Campbell and Diebold (2004), did not significantly alter
the main thrust of the results.9 The coefficients of the variance equation are all significant
including, β3, the coefficient on the exogenous seasonal pattern in the conditional variance
equation. Interestingly enough, the inclusion of this term seems to dampen the estimate of
persistence in volatility by comparison with the kinds of estimates usually obtained in GARCH
models of financial asset returns, where the sum β1 + β2 is typically very close to 1.

The emphasis in this paper is on the use of a generic model which takes a common structure
across all cities. Despite this simple modeling strategy, plots of the standardised residuals from
the AR(7)-SGARCH(1,1) model, illustrated in Figure 3, suggest that these residuals are approx-
imately standard normal. In Brisbane and Sydney the residuals appear slightly more peaked
than the standard normal and Melbourne exhibits a marginal skew. On the whole, however, it

9While this procedure certainly kills any autocorrelation in the residuals for the lag lengths used, the real
problem in modeling temperature is that limited structure remains out to very long lag lengths.
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may be argued that the model does an adequate job in capturing the main characteristics of
the dynamics of average temperatures in the major cities.
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Figure 3: Histograms of standardised residuals from the SGARCH(1, 1) models with a
standard normal curve superimposed.

Given the parameter estimates for the AR(7)-SGARCH(1,1) model, equations (5) and (7) may
be used to simulate realisations of average daily temperatures. From a series of k simulations,
realisations Ĉ1, Ĉ2, · · · , Ĉk of cumulative CDDs for the appropriate period may be obtained.
These are to be regarded as k independent drawings from the distribution of cumulative CDDs
for the period under consideration. Given a strike price D, the j-th tick value for the realised
cumulative CDD Ĉj is

TN =

[
0 Ĉj ≤ D ,

Ĉj −D Ĉj > D

The expected tick value is then given by the Monte Carlo estimate

E [ TN ] =
∫ ∞

D
(x−D)f(x) dx ≈ 1

k

k∑

j=1

(Ĉj −D)H(Ĉj −D) , (9)

where H(·) is the Heaviside function defined by

H(x) =

[
1 x > 0 ,

0 x ≤ 0 .
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5 Modeling Cumulative Degree Days

An alternative and more straightforward approach to evaluating the expected tick value of a
temperature derivative contract is to model cumulative CDDs directly, on the assumption that
a sufficiently long temperature record exists to make this feasible. Let C1, C2, · · · , Cn be time
series of n historical observations of cumulative CDDs. Intuitively, in the absence of a trend in
the temperature data from which the cumulative CDDs are derived, these observations will be
independently and identically distributed realisations from the distribution of cumulative CDDs.
A simple quadratic trend model is proposed for cumulative CDDs. Although the quadratic term
is not expected to be significant, it is included to account for the possibility of piecewise trends
in cumulative CDDs due to the effect of urbanisation late in the sample period. Accordingly,
cumulative CDDs are described by the general model

Ct = η0 + η1 Trendt + η2 Trend2
t + εt

where εt is now distributed iid(0, σ2
ε ).

Estimation of the parameters of this model for each city yields

E[Ct]Brisbane = 564.0290
(14.8071)

+ 0.2617
(0.5603)

Trendt + 0.0008
(0.0044)

Trend2
t

E[Ct]Melbourne = 192.4003
(14.1135)

− 0.5819
(0.4259)

Trendt + 0.0077
(0.0027)

Trend2
t

E[Ct]Perth = 410.2985
(19.7863)

+ 1.2290
(0.8155)

Trendt + 0.0025
(0.0071)

Trend2
t

E[Ct]Sydney = 311.1655
(11.6784)

− 0.1276
(0.3595)

Trendt + 0.0065
(0.0023)

Trend2
t

where the figures in parentheses are standard errors. The quadratic terms are significant in
Melbourne and Sydney, while Perth contains a linear trend. The effect is less marked in Brisbane,
although there does seem to be a small linear trend effect. These results are reinforced by the
time-series plots of cumulative CDDs in Figure 4.

The actual cumulative CDD at time t = n + 1 is

E[Cn+1] = η̂0 + η̂1 Trendn+1 + η̂2 Trend2
n+1

and the actual cumulative CDD at time t = n + 1 may be regarded as E[Cn+1] + ε̂ where ε̂ is a
draw from the distribution of ε. On the assumption that εt is iid, a nonparametric kernel may
be used to estimate the probability density function of the disturbances from

f̂(ε) =
1

nh

n∑

k=1

K
(ε− ε̂k

h

)

based on the observed regression residuals, ε̂1, ε̂2, · · · , ε̂n, given that K(·) is the Gaussian kernel
function and h is the kernel bandwidth.
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Figure 4: Time series of cumulative CDDs for each city with estimated trend component
superimposed (dashed line).

Although the time series model of cumulative CDDs is simpler than the AR(7)-SGARCH(1,1)
model of daily temperature, the construction of the expected tick value of the generic call option
is slightly more difficult in this instance. At time t = n + 1, the tick value of the call option,
with strike price D, is

TN =

[
0 E[Cn+1] + ε ≤ D

E[Cn+1] + ε−D E[Cn+1] + ε > D

The expected tick value is then given by
∫ ∞

D
(x−D)f(x) dx =

∫ ∞

D−E[Cn+1]
(E[Cn+1] + ε−D)f̂(ε)dε

=
1

nh

n∑

k=1

∫ ∞

D−E[Cn+1]

(
E[Cn+1] + ε−D

)
K

(ε− ε̂k

h

)
dε

where x = E[Cn+1] + ε and the density function of x is identical to that of ε. The change of
variable from ε to y = (ε− ε̂k)/h yields

E[TN ] =
1
n

n∑

k=1

∫ ∞
E[Cn+1]+ε̂k−D

h

(E[Cn+1] + ε̂k + hy −D)K (y) dy .
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It is convenient to write zk = (D − E[Cn+1]− ε̂k)/h so that

E[TN ] =
h

n

n∑

k=1

∫ ∞

zk

(y − zk)K (y) dy

When K(·) is taken to be the Gaussian kernel, then
∫ ∞

zk

yK (y) dy = φ(zk)
∫ ∞

zk

zkK (y) dy = zk(1− Φ(zk))

where φ(·) and Φ(·) are the standard normal PDF and CDF respectively. It follows immediately
that the expected tick value takes the simple form

E[TN ] =
h

n

n∑

k=1

[φ(zk)− zk(1− Φ(zk))] . (10)

6 Computing Expected Payoffs

Before presenting the comparison of expected payoffs associated with the methods suggested in
Sections 4 and 5 it is instructive to look at the distributions of cumulative CDDs. Descriptive
statistics for cumulative CDDs are reported in Table 3 and their distributions, in terms of
histograms, are plotted in Figure 5.

Summary Statistics

N Mean Med. S. Dev. Max. Min

Brisbane 121 584.2 584.6 54.49 463.3 705.9

Melbourne 152 207.9 195.6 64.09 93.5 391.4

Perth 111 489.6 492.2 83.30 298.3 688.3

Sydney 149 350.0 350.2 60.07 225.5 533.3

Table 3: Mean, median, standard deviation, maximum and minimum
cumulative CDDs in four Australian cities.

The descriptive statistics for cumulative CDDs are very much as expected given the geographical
location of the cities. There are, however, two observations of note arising out of Table 3. It
is apparent that the distribution of cumulative CDDs for Melbourne is skewed to the right as
evidenced by a mean which is significantly larger than the median. This is to be expected given
both the instances of extreme heat in Melbourne and the strength of the trend in the Melbourne
CDD data identified in Section 5. Perth, on the other hand, is notable for the diffuse nature of
the distribution of cumulative CDDs, recording a standard deviation significantly larger than
those of all of the other cities. These features of the distributions are also apparent from the
histograms in Figure 5. The histograms for Brisbane and Perth appear to be symmetrical
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differing only in the range of CDDs. The histogram for Sydney, however, suggests that there
may be a slight skew in favour of higher CDDs, but not as pronounced as that of Melbourne.
At first sight, therefore, these distributions look well behaved and could be taken as reasonable
evidence in favour of using historical records to price temperature-based derivatives. As will
become apparent, however, these marginal distributions mask the fact that CDDs are strongly
correlated over time.
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Figure 5: Histograms of cumulative CDDs for each city.

The task is now to provide a means of comparing each method of establishing the expected tick
value of a temperature call option, namely, historical temperature records, the AR(7)-SGARCH
model and the simple time-series model of CDDs. In this paper, the metric for comparison is
taken to be the mean ‘profit’ of the call option contracts over a period of years, where profit
is defined to be the difference between the actual tick value of the contract and the expected
tick value or ‘price’ of the option. Of course, this is not meant to represent a true price for the
option as this notional pricing strategy takes no account of discounting or overhead expenses.
But of course any pricing scheme will stand or fall by its ability to estimate the expected tick
value accurately.

The profits of two separate call option contracts written on the period 1 January to 31 March are
reported in Tables 4 and 5 respectively. The experiments begin by pricing these options for the
year 1950 using data up to and including 1949. The actual payoff for 1950 is recorded, the profit
or loss stored and the data set is updated to include all the temperature records for the next year.
These steps are repeated up to and including 2007 giving a total of 58 separate profits for each
option. The call options used in the experiment have respective strike prices D = µ + 0.5σ and
D = µ+0.75σ where µ is the unconditional mean and σ is the unconditional standard deviation
of CDDs up to the current year under consideration. The means and standard deviations of the
profits are regarded as measures of the performance of each method for determining expected
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tick values.

Brisbane Melbourne Perth Sydney

Historical
Mean Payoff −12.9194 −9.2412 −18.5485 15.9323
SDev Payoff 30.1388 49.2567 48.2584 51.2786

SGARCH(1,1)
Mean Payoff 1.8261 17.5827 8.3870 32.6240
SDev Payoff 30.1484 48.4349 47.0758 51.5130

CumCDD
Mean Payoff 2.0639 0.2028 −5.6663 0.4997
SDev Payoff 30.2010 47.5819 48.3131 50.2641

Table 4: Means and standard deviations of payoffs to temperature 90-day call
option defined on CDDs with strike price D = µ + 0.5σ, where µ and σ are the
unconditional mean and standard deviation of available historical CDDs. The
option is priced for each year from 1950 to 2007 inclusive.

Brisbane Melbourne Perth Sydney

Historical
Mean Profit −17.1256 −20.7096 −26.0408 7.0359
SDev Profit 24.9354 42.9552 40.0616 47.9302

SGARCH(1,1)
Mean Profit −1.9947 11.7679 0.0267 23.7435
SDev Profit 24.6708 42.7484 39.9373 48.1691

CumCDD
Mean Profit 1.6206 1.4344 −5.5060 0.6781
SDev Profit 24.8074 41.8817 41.1706 47.1369

Table 5: Means and standard deviations of profits to 90-day call options defined
on CDDs with strike price D = µ + 0.75σ, where µ and σ are the unconditional
mean and standard deviation of available historical CDDs. The option is priced
for each year from 1950 to 2007 inclusive.

A number of conclusions emerge from the results reported in Tables 4 and 5. The most important
conclusion is that historical pricing is the least robust of all the procedures for estimating
payoffs, particularly for call options with higher strike prices. The historical method seems to
underprice significantly in 3 of the 4 cities. It is conjectured that this failure is due to ignoring
the trend in cumulative CDDs in combination with the fact that the resolution of the empirical
distribution will be particularly grainy when the data are relatively sparse. The SGARCH(1,1)
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model performs with credit relative to the historical method, but nevertheless there appears
to be a general tendency to overprice the European call option particularly for Melbourne and
Sydney. Furthermore, the estimated payoffs based on the SGARCH(1,1) model appears not to
be degraded when call options with higher strike prices are considered. It is clear, however,
that the method of estimating payoffs based on modeling the time-series of cumulative CDDs
directly offers superior performance relative to the other two methods. The mean of estimated
payoffs from this approach is estimated relatively accurately, with the standard deviation of the
distribution being data dependent and therefore almost identical for each method.

7 Conclusion

This paper has compared three methods for estimating the tick value of European call options
written on cooling degree days, a temperature-based index constructed as a nonlinear function of
average daily temperature. Although the cooling degree day index is the focus of this research,
the methods used are equally applicable to derivatives based on heating degree days. The
conclusions reached in this investigation may be succinctly summarised as follows. Historical
methods for estimating the tick value of these options appear to be unreliable and are to be
treated with some scepticism. If too long a run of data is used to estimate payoffs, any trends in
the index are likely to be under-emphasised. On the other hand, looking at only recent data is
likely to cause problems in terms of the poor resolution of the distribution of the relevant index.
Consequently, model-based estimation of tick values is to be preferred. Moreover, attempts to
model the relevant index directly are likely to be simpler, more parsimonious and ultimately
more successful at estimating payoffs than more complex models that are built on average daily
temperatures.
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