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This paper analyses differences in the return to education in Portugal across regions. For 

this purpose, we use an extended Mincer-type wage equation. OLS regression results 

indicate that differences in the rewards to education are substantially different across 

regions. In particular, they are much higher in Lisbon than in other regions. Since the 

average level of education in Lisbon is much higher in Lisbon than elsewhere such a 

differential is attributed to the fact that the demand for educated labour is much higher 

in Lisbon, likely due to differences in technology. A quantile regression analysis reveals 

that the return to education is not constant across the whole conditional wage 

distribution. This is valid for the five regions examined, although once again the impact 

of education on wages is higher in Lisbon regardless the quantile we examine.  
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1. Introduction 

 

The role of regions for wage differentials has been put forward in the literature by 

several authors (see e.g. Dumond et al., 1999, Duranton and Monastiriotis, 2002 and 

Bernard et al. (2003). Furthermore it has been widely stated that education contributes 

to wage formation (see Mincer, 1974, Vieira, 1999, Hartog et al.2001, among many 

others). In this context, the rate of return to education constitutes a key a key parameter 

(for a comparison this estimate among countries see Psacharopoulos and Patrinos, 

2002). However, it has been shown that the impact of education on wages varies among 

dimensions such as countries, gender and industries.The main goal of this paper is to 

provide some evidence on the role of regions to wage determination, as well as to 

evaluate the size of regional rates of return to education in a small country as Portugal.  

 

This is country for which a few studies have already addressed the effect of regions on 

wages. For instance, Cardoso (1991) documents the existence of large wage 

differentials among the Portuguese regions. Vieira (1999) indicates that after controlling 

for a large number of individual and job attributes employees working in the area of 

Lisbon and the Tagus Valley earn higher wages than their counterparts in other regions 

(the lowest wages were paid in the central region of the country). Teulings and Vieira 

(2004) compare wages in Lisbon and the Tagus Valley with those paid in the rest of the 

country and argue that higher wages in Lisbon result from differences in the returns to 

human capital between those two regions. In particular, they argue that equally skilled 

workers obtain higher returns on human capital due to differences in technology 

(complexity of the jobs). More recently, Vieira and Madruga (2005) examined low-pay 

employment incidence and mobility in Portugal and conclude that those working in the 

region of Lisbon are less likely to be found in the low pay segment and, once in such a 

situation, are more likely to escape from it.  

 

There is also evidence that the returns to education in Portugal are not constant across 

regions. For instance, Santos and Vieira (2000) and Vieira et al. (2005) provide 

evidence that the ‘average’ impact of education on wages varies across regions. In these 

studies that highest returns are found in the region of Lisbon.  

 



A common feature of most of the aforementioned studies is a high level of aggregation 

of the regions (in some cases only Lisbon and the Tagus Valley versus the rest of the 

country), which may to some extent lead to misleading results. Furthermore, most of 

them use OLS estimators, thus determining the average impact. In this paper, and for 

empirical purposes, we make use of ordinary least squares (OLS) and quantile 

regression (QR) estimators. The latest estimator allows us to assess how the effect of 

education varies across the whole conditional wage distribution. In the OLS perspective, 

the regression coefficients are assumed constant across the entire conditional wage 

distribution. However, there is no specific reason to assume in advance such uniformity. 

The characterisation of the conditional expectation (mean) likely constitutes only a 

limited aspect of the wage distribution. Indeed, some studies suggest that restricting the 

analysis to average effects misses important features of the wage structure (e.g. 

Buchinsky, 1994, Chamberlain, 1994, Machado and Mata, 1997, Fitzenberger and Kurz, 

1997).  

 

The paper is organised as follows. Next section describes the data. Section 3 presents 

the estimation methods. Section 4 includes some theoretical background. Section 5 

includes the estimation results. Finally, section 6 concludes and summarizes.  

 

2. Data  

 

The data used here were drawn from Quadros de Pessoal (Personnel Records) for  

2000.  This is a standardised questionnaire which all firms with wage earners must 

complete every year for the Department of Labour. The data include information on 

individual workers such as age, tenure with the current firm, the highest completed level 

of education, and gender. Information is also available on hours of work, firm size, 

industry affiliation, and regions. Years of education were calculated by attributing the 

nominal number of completed years in order to complete the reported level in the data. 

Potential labour market experience was computed as age minus years of education 

minus six. Hourly wages were calculated as monthly wages divided by the number of 

hours worked. Civil servants and others serving in the armed forces are not included in 

the data source. The final sample contains 342 698 non-agricultural, and non-fishermen 

workers between 16 and 65 years of age. Records with missing values were deleted 



from the original sample, as were the self-employed, unpaid family workers and 

apprentices. The data refers only to the mainland.  

 

Some descriptive statistics of the data are included in Table A1 in Appendix. As we can 

observe, 36% of the individuals in the sample worked in the North, 14% in the Centre, 

44% in Lisbon, 3% in Alentejo and 3% in Algarve. Moreover, the highest average level 

of education is found in Lisbon (8.4 years) and the lowest in the North (6.7 years). The 

same Table also includes descriptive statistics by region concerning years of labour 

market experience, years of tenure with the current employer, firm size and the 

distribution of the workers by gender and industry.  

 

3.   Estimation methods 

 

Ordinary least squares is one of the methods used in this analysis. This method allows 

us to estimate the effect of education on the mean of the conditional wage distribution. 

However, the impact of education on the mean of that distribution likely describes a 

partial aspect of the statistical relationship among variables. In such a case, it may be 

important to examine that relationship at different points of the conditional distribution 

function. Quantile regression (QR) warrants such an analysis. The QR method was 

introduced by Koenker and Basset (1978). They define the θth regression quantile as the 

solution to the problem: 
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This is normally written as: 
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The model specifies the θth-quantile of the conditional distribution of the log-wages, 

given the covariates x as:  

 

)1,0(,x)x|(Q '
y ∈= θβθ θ         (2) 

 

By variation of θ, different quantiles can be obtained. The least absolute deviation 

(LAD) estimator of β is a particular case within this framework. This is obtained by 

setting θ=0.5 (the median regression). The first quartile is obtained by setting θ=0.25, 

and so on. As we increase θ from 0 to 1, we trace the entire distribution of y, conditional 

on x. This problem does not have an explicit form, but it can be solved by linear 

programming methods. In this study it is solved by linear programming techniques 

suggested in Amstrong et al. (1979). In practice, obtaining standard errors for the 

coefficients in quantile regression is a difficult problem and one for which the literature 

provides only a sketchy guidance. In the present study we used a bootstrap method with 

20 repetitions. 

 

4. Some theoretical background  

 

In order to clarify the importance of the QR technique in a specific context, we present a 

modified version of the model of optimal schooling choice developed in Card (1994). 

Assume that an individual chooses education and maximises a utility function of the 

type: 

 

U w E w rE( , ) ln= −          (3) 

 

subject to the individual’s opportunity set summarised by w=g(E), representing the 

level of wages (w) available at each level of education (E). This type of utility function 

derives naturally by assuming that the individual maximises the discounted present 

value of wages, discounts the future at a rate r, and earns nothing while in school (see 

Willis, 1986, Card, 1994). The first order condition for optimal education requires that: 
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In the optimum the marginal rate of return equals the marginal cost of the investment in 

education. 

 

To make the model empirically operational, we must choose functional forms for the 

marginal (proportional) benefits and costs of education. For the sake of simplicity, it is 

assumed that the marginal costs are increasing functions of the amount invested in 

education, and that the marginal returns do not vary with education (the latter 

assumption is only a matter of simplicity and can be discarded without changing the 

main implication). Specifically, 
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Since the individual invests in education until the point where marginal costs equal 

marginal benefits, his optimal amount of education is given by: 
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Integration of the marginal benefits in (5) leads to a log-linear wage equation for 

individual i of the type: 

 

lnw a Ei i i i= + β         (7) 

 

Traditionally, variation in ability concerns variation in the intercept of the wage 

equation. One appealing feature of the model is that variation in ability also concerns 

the slope. In other words, ability influences the wage-effect of education. If it only 

influenced the intercept, individuals with higher ability might well invest less in 

education, since they have a higher opportunity cost of school attendance.  



 

The model identifies two sources of heterogeneity in the population: variation in 

marginal rates of return to education at each level of schooling (loosely known as 

differences in ability) and variation in the marginal costs of investment in schooling 

(loosely known as differences in access to funds or tastes for education). Except under 

very restricted assumptions, equilibrium in this model implies a non-degenerate 

distribution of marginal returns to education across the population (Card, 1994). Such a 

distribution introduces ambiguity into the interpretation of the causal effect of 

education: in essence, each person has his own causal effect. 

 

This simple model raises an important conceptual question on empirical work. If 

individuals have different returns to education at the same level of schooling there is no 

unique causal effect of schooling on wages. The quantile regression technique allows us 

to shed light onto the issue. The estimation of the effect of education on conditional 

quantiles permits us to uncover individual heterogeneity in the effect of education on 

wages. Two examples based on Koenker and Basset (1982), Manski (1988) and Mata 

and Machado (1995) may help to clarify this point. 

 

Aside from other covariates, consider the following simple wage equation: 

 

ln w a Ei i i= + +β ε        (8) 

 

In this equation one can define ai=a + εi where εi are i.i.d random terms. Given that 

specification (8) is correct, heterogeneity among individuals only affects wage levels 

and therefore concerns the intercept of the wage equation. In such a case, 

 

Q E a Q Ewln ( | ) [ ( )]θ θ βε= + + ,  θ∈(0, 1)  (9) 

 

Only the intercept differs for different conditional quantiles. The slope - i.e. the 

marginal effect of E - is invariant to the quantile being estimated. The (theoretical) 

conditional quantile functions form a family of parallel lines. They are parallel to the 

mean regression line: only the conditional location of the dependent variable changes 

for different values of θ. In such a case, is no substantial loss of information, with 



respect to the slope when estimating solely a measure of conditional central tendency 

such as the mean (estimated by OLS). 

 

However, Koenker and Basset (1982) have warned that when errors are not 

identically distributed the situation is different. In many applications the conditional 

quantile function Q xy ( | )θ  probably does not depend on x only in location, because the 

exogenous variables may also influence the scale, tail behaviour, or other characteristics 

of the conditional distribution of y (see Koenker and Basset, 1982, p.49). In such cases, 

the slope coefficients depend in a non-trivial way on θ and one might expect to find 

discrepancies in the estimated slope parameters at different quantiles. To clarify the 

importance of this point consider the (random coefficient) model 

 

lnw a b Ei i i i= +         (10) 

 

where ai=a + εi and bi=b + εi and εi is a random variable reflecting individual 

heterogeneity.  

 

In this case the intercept and the slope coefficient of the theoretical conditional quantile 

line will vary with the quantile being estimated. If the ‘ability’ effect concerns only the 

slope of the wage function (i.e. ai=a for all individuals), as in most of Card’s (1994) set-

up, then Q E a b Q Ewln ( | ) [ ( )] .θ θε= + +  In any case, bi= b + εi, captures the idea that 

wages are heterogeneously determined and that the slope coefficient differs in 

observations with the same observed education. Therefore, there may be information 

gains from estimating and comparing several conditional location measures for the 

dependent variable, even after controlling for a large set of observed individual and job 

characteristics. We will do that for our Portuguese data set, both overall and for several 

decompositions. 

 

5.   Estimation results 

 

This section includes the results of a Mincer-type wage-equation, where the 

individual’s years of education are used as an explanatory variable. Other covariates are 

a vector of ones, years of tenure with the current firm, a experience and experience 



squared, firm size, firm age, gender and industries. The dependent variable is the 

logarithm of hourly wages. The main goal is to estimate the parameter associated with 

years of education (i.e. the return to education, see Mincer, 1974). 

 

The interpretation of the quantile regression coefficients is conceptually quite 

analogous to OLS regressions. In OLS case, the regression coefficients measure the 

influence of the regressor variables on the conditional mean of the dependent variable, 

whereas in the quantile regression case the coefficients βθ represent the influence of the 

regressors on the conditional θ-quantile of the dependent variable.  

 

The marginal effect of a variable on a specific conditional quantile of the dependent 

variable can be obtained by the corresponding partial derivative. Therefore, ‘quantile 

rates of return to education’ are given by: 
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The value is multiplied by one hundred to give a percent interpretation.  

 

Nine quantile regressions were computed for each of the three years being examined. 

Furthermore, the regressions were performed for the full sample, and for two sub-

samples of men and women separately. Quantile rates of return to education for the 

present specification of the wage equation are in Table A2 in the appendix. These are 

plotted against the quantile numbers in Figure 1.  

 

The effect of education on wages is positive and statistically different from zero at 

each of the quantiles analysed. This suggests that wages increase throughout the 

conditional distribution range with education and is valid for the five regions under 

examination. However, education affects wages differently at different parts of the 

distribution. It has a larger effect at higher quantiles. his suggests that there is, in all 

regions, heterogeneity in the returns to education which are larger for individuals at 

higher (with better-unobserved earning capacity) quantiles of the conditional wage 

distribution. This indicates that modeling on average (i.e. OLS) misses important 

features of the wage structure, regardless of the region under examination. Finally, the 



returns to education are always higher in Lisbon than in the other regions, on average 

and throughout the conditional wage distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Quantile rates of return to education by region 
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6. Conclusions 

 

This paper was an attempt to provide a comprehensive picture of the returns to 

education by region in Portugal. For this purpose, we used two estimation methods. The 

results indicate that there is much heterogeneity in the returns to education. The results 

also indicate that the effect of education on wages is not equal across the conditional 

wage distribution, regardless of the region. Returns are higher for individuals with 

higher positions in the conditional distribution. Apparently, the labour force is not 

reasonably described in any region by a constant (average) effect of education on 

wages. These results indicate that modelling on average (i.e. OLS) misses important 

features of the wage structure.  

 

Finally, the returns to education are higher in Lisbon than in the other regions. Since the 

(average) supply of educated labour is higher in Lisbon, we may argue such as Teulings 

and Vieira (2004) that higher returns in this region are eventually due a higher demand 

associated to differences in technology (complexity of the jobs).   
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Appendix 

 

 



Table A1 – Sample descriptive statistics 

 

 North Centre Lisbon Alentejo Algarve 

 mean std. dev. mean std. dev. mean std. dev. mean std. dev. mean std. dev. 

log hourly wage  6.480 0.480 6.494 0.455 6.853 0.621 6.525 0.468 6.553 0.455 

years of education 6.680 3.401 6.840 3.443 8.374 3.981 7.015 3.490 7.244 3.544 

years of tenure with the current employer  7.304 8.395 6.667 7.874 8.034 9.291 6.052 7.677 4.714 6.624 

Years o labour market experience 22.69 12.02 23.40 12.57 23.50 13.00 23.633 13.133 23.61 13.37 

log of firm size 3.883 1.957 3.549 1.671 4.826 2.521 3.105 1.735 2.995 1.528 

male 0.579 0.494 0.582 0.493 0.594 0.491 0.599 0.490 0.535 0.499 

manufacturing 0.311 0.463 0.170 0.376 0.052 0.222 0.139 0.346 0.044 0.205 

wood, cork, paper and chemistry     0.139 0.346 0.254 0.435 0.114 0.318 0.146 0.353 0.052 0.222 

electronics and transp. equipments    0.074 0.262 0.072 0.258 0.044 0.205 0.039 0.193 0.005 0.072 

electricity, gas, water and construction 0.123 0.328 0.123 0.329 0.108 0.310 0.135 0.342 0.129 0.335 

retail and wholesale, hotels and restaurants 0.209 0.407 0.228 0.420 0.293 0.455 0.341 0.474 0.532 0.499 

Banking, financing and transportation 0.053 0.224 0.035 0.185 0.180 0.384 0.022 0.145 0.048 0.213 

Real state and services provided to firms  0.035 0.183 0.032 0.177 0.118 0.323 0.050 0.218 0.091 0.288 

Health, education and social services  0.039 0.194 0.070 0.254 0.059 0.236 0.107 0.309 0.064 0.245 

Social, personal and domestic services  0.017 0.183 0.015 0.171 0.033 0.164 0.021 0.287 0.035 0.271 

# of observations 124023  47721  150856  9658  10440  



 

 

 

Table A2 - Rates of returns to education: OLS and quantile regression estimators 

 

 North Centre Lisbon Alentejo Algarve 
 coeff. std. error coeff. std. error coeff. std. error coeff. std. error coeff. std. error
   
OLS 0.0764 0.0004 0.0666 0.0006 0.0981 0.0004 0.0627 0.0013 0.0532 0.0014
Quantile:           

.10 0.0307 0.0003 0.0268 0.0005 0.0511 0.0003 0.0272 0.0014 0.0212 0.0011
   

.20 0.0406 0.0003 0.0364 0.0005 0.0667 0.0003 0.0334 0.0011 0.0273 0.0011
   

.30 0.0486 0.0003 0.0429 0.0004 0.0773 0.0003 0.0404 0.0015 0.0320 0.0011
   

.40 0.0558 0.0003 0.0507 0.0006 0.0861 0.0003 0.0453 0.0013 0.0372 0.0011
   

.50 0.0637 0.0003 0.0578 0.0006 0.0937 0.0004 0.0503 0.0012 0.0439 0.0015
   

.60 0.0717 0.0003 0.0654 0.0007 0.1009 0.0004 0.0564 0.0016 0.0526 0.0016
   

.70 0.0804 0.0005 0.0737 0.0008 0.1087 0.0005 0.0628 0.0019 0.0615 0.0020
   

.80 0.0909 0.0006 0.0811 0.0011 0.1167 0.0007 0.0715 0.0023 0.0702 0.0028
   

.90 0.1034 0.0010 0.0933 0.0016 0.1258 0.0009 0.0831 0.0032 0.0811 0.0042
  


