# The vintage effect in TFP-growth: 

# An analysis of the age structure of capital 

October 21, 2002

Maury Gittleman, Thijs ten Raa, and Edward N. Wolff

| Maury Gittleman | Thijs ten Raa | Edward N. Wolff |
| :--- | :--- | :--- |
| Bureau of Labor Statistics | Department of Economics | Department of Economics <br> Postal Square Building |
| Tilburg University | New York University |  |
| 2 Massachusetts Ave. NE | Box 90153 | 269 Mercer Street |
| Rm 4130 | 5000 LE Tilburg | New York, NY 10003 |
| Washington, DC 20212 | the Netherlands | U.S.A. |
| Gittleman_M@bls.gov | tenRaa@UvT.nl | Edward.Wolff@NYU.edu |


#### Abstract

The age structure of capital plays an important role in the measurement of productivity. It has been argued that the slowdown in the 1970's can be ascribed to the aging of the stock of capital. In this paper we incorporate the age structure in productivity measurement. Our final proposition shows that inclusion of the vintage effect prompts an upward correction of measured productivity growth in times of an aging stock of capital. Here capital ages if the investment/capital ratio falls short of the inverse of the capital age, as a first proposition shows. The analysis rests on a rigorous accounting for vintages. We translate the Bureau of Economic Analysis' age of capital data into a measure of rates of obsolescence. Empirically, the correction of productivity growth for the vintage effect requires an estimate of the obsolescence and depreciation parameters on the basis of age data. The results indicate that the use of capital stock in efficiency units does cause some smoothing of Total Factor Productivity growth over time and does ameliorate somewhat the measured productivity slowdown of the 1970s.


## 1. Introduction

The age structure of capital plays an important role in the measurement of productivity. When investment is low, the stock of capital ages and, therefore, the units not only perish, but also become obsolete from a technological point of view: capital is no longer state of the art. This mechanism has a negative contribution to measured productivity; in the absence of technical change, the Solow residual will be negative. Such an outcome is paradoxical, because the residual has been claimed to account for the shift of the production possibilities frontier (Solow, 1957) and knowledge does not contract, but expands.

At least conceptually, the paradox is resolved when capital is measured not in physical units, but in efficiency units (Hulten, 1992). Then, continuing the low investment example, the higher obsolescence of capital will show up in a negative contribution to the growth of capital in terms of efficiency units. Since the Solow residual measure of productivity is the difference between the output growth rate and a weighted average of the labor and capital growth rates, the lower measure of capital growth (as capital is measured in efficiency units) yields more productivity. In other words, the conventional measure of productivity would understate the role of technical change in times of an aging stock of capital. It has been argued that the productivity slowdown of the 1970's can be ascribed to this vintage effect (Wolff, 1996).

The analysis of the vintage effect in productivity measurement goes back to Nelson (1964). Suppose that this year's capital investment is $s$-percent more productive than last year's, with the obsolescence parameter $s$ constant over time. Denote the capital stock measured in natural units (constant prices) by $K$, and the capital stock in "efficiency units" by $K^{s}$. The greater the obsolescence parameter, the smaller will be the capital stock in efficiency units. In other words, $K^{s}$ will be decreasing in $s$. In fact, Nelson (1964) has postulated
(1) $\quad K^{s}=K \cdot \exp (-s \bar{A})$
where $\bar{A}$ is the average age of the capital stock. This formula simply states that the capital stock existing at time $t$ is, on average, less efficient by a factor of $s \bar{A}$ than the capital goods produced at time $t$. One of the contributions of this paper is that the Nelson (1964) specification is wrong. Since Wolff (1996) employed the formula, we must reinvestigate the ascription of the productivity slowdown to the vintage effect. This paper sets up a rigorous framework of vintage capital that is amenable to estimation.

Although the functional form used in formula (1) will be shown to be untenable, the fact that a higher rate of obsolescence effectively diminishes the volume of capital is true and has a simple implication for the measurement of productivity. The explanation begins with a general definition of the level change in total factor productivity (TFP) by means of a Solow residual that features an arbitrary obsolescence parameter, $s$ :
(2) $\quad d T F P^{s} / d t=p d y / d t-w d L / d t-r d K^{s} / d t$
where $p$ is the commodity price vector, $y$ the net output vector, $w$ the wage rate, $L$ labor employment, and $r$ the rental rate of capital. Division of expression (2) by py yields the customary expression for TFP-growth and the Solow residual, in terms of percent changes and value shares. This will be done in the next section.

When capital obsolescence is ignored, $s=0, K^{s}=K$, and $d T F P^{s} / d t=d T F P / d t$. Otherwise measured productivity growth is corrected. A result of this paper is that the correction must be upward (downward) if capital ages (becomes younger). The measurement of capital in terms of efficiency units and the consequent adjustment of measured productivity require an estimate of the obsolescence parameter, $s$. This will be obtained by an analysis of age data. ${ }^{1}$

## 2. The model

[^0]Consider a unit of investment at time $t$, the vintage of this piece of capital, and the stream of services that it will yield at later times $t^{\prime}>t$. The initial level of the capital service is $\exp (s t)$, where $s$ is the obsolescence parameter; future capital is more progressive. Thereafter, for $t^{\prime}>t$, depreciation takes its toll at a rate $\sigma$ and the level of capital service goes down to $\exp (s t) \cdot \exp \left[-\sigma\left(t^{\prime}-t\right)\right]$, where $\sigma$ is the depreciation parameter. We assume that the obsolescence and depreciation parameters are constant over time, but may vary by type of capital.

The exponential decay of capital is the most common specification and the depreciation parameter admits an easy interpretation in terms of lifetime. For illustration consider a unit of investment at time 0 . It yields a stream of capital services $\exp (-\sigma t)$ at times $t>0$. What is the expected lifetime? Well, at time $t$ the amount of capital that depreciates is $-d / d t \exp (-\sigma t)=\sigma \exp (-\sigma t)$. This density function sums to unity over $t>0$ indeed. The expected lifetime is
(3) $\int t \sigma \exp (-\sigma t) d t=(1 / \sigma) \int t \sigma \exp (-\sigma t) d \sigma t=1 / \sigma$

Here $!$ is the integral from 0 to $\infty$. This notation holds throughout this paper. Expression (3) shows that a rate of depreciation of for example $5 \%$ implies a lifetime of 20 years.

Change the perspective by looking backward from time $t$. Let $I$ denote investment. In natural units (constant prices), the stock of capital at time $t$ is
(4) $K(t)=\int I\left(t-t^{\prime}\right) \exp \left(-\sigma t^{\prime}\right) d t^{\prime}$

Depreciation (at the rate $\sigma$ ) refers to the physical deterioration of capital goods. For example, internal combustion engines lose efficiency over time as fissures develop between the piston and cylinder. ${ }^{2}$ Obsolescence, on the contrary, refers to economic deterioration. For example, a matrix printer may still function well, but now it pales

[^1]in comparison to a laser printer. ${ }^{3}$ In current efficiency units, invoking obsolescence parameter $s$, the stock of capital at time $t$ is
\[

$$
\begin{equation*}
K^{s}(t)=\int I\left(t-t^{\prime}\right) \exp \left(-s t^{\prime}\right) \cdot \exp \left(-\sigma t^{\prime}\right) d t^{\prime} \tag{5}
\end{equation*}
$$

\]

Equation (5) shows that in terms of efficiency units only the combined rate of depreciation and obsolescence matters, that is $s+\sigma$. As equation (3) showed that the physical lifetime of capital is $1 / \sigma$, the economic lifetime is only $1 /(s+\sigma)$. Differentiating with respect to $t$ and integrating by parts,

$$
\begin{equation*}
d K^{s} / d t=I-(s+\sigma) K^{s} \tag{6}
\end{equation*}
$$

Substituting (6) into (2),

$$
\begin{equation*}
d T F P^{s} / d t=p d y / d t-w d L / d t-r\left[I-(s+\sigma) K^{s}\right] \tag{7}
\end{equation*}
$$

or, dividing by $p(t) y(t)$, denoting a relative growth rate by ${ }^{\wedge}\left(L^{\wedge}=(d L / d t) / L\right)$, letting
$\hat{Y}=(p d y / d t) / p y), \alpha=w L / p y$ and $\beta=r K^{s} / p y$,

$$
\begin{equation*}
T F P^{\varsigma \wedge}=\hat{Y}-\alpha L^{\wedge}-\beta\left[I / K^{s}-(s+\sigma)\right] \tag{8}
\end{equation*}
$$

where $K^{s}$ is given by (5) and also features $s$ in combination with $\sigma$ only. Formula (8) shows that TFP-growth equals net output growth minus labor growth, minus investment, and minus the sum of obsolescence and depreciation. From an economic point of view, it does not matter if capital deteriorates because of physical or technological aging--that is depreciation ( $\sigma$ ) or obsolescence ( $s$ ). Empirically, the obsolescence parameter is hard to get. For this purpose we will analyze age data.

Suppose we invested one unit of capital last year and one unit this year. The average age of the stock of capital is less than 0.5 , because last year's unit has depreciated. For example, if the rate of depreciation is $10 \%$, we have 0.9 unit of last year and 1 unit of this year, so that the average age is 0.45 . In terms of efficiency units, the

[^2]average age is even less. For example, if the rate of obsolescence is also $10 \%$, the average goes down to 0.40 . Obviously, the average age of the stock depends on the rate of obsolescence we employ. Formally, it is defined by
\[

$$
\begin{equation*}
\bar{A}^{s}(t)=\int I\left(t-t^{\prime}\right) \exp \left[-(s+\sigma) t^{\prime}\right] t^{\prime} d t^{\prime} / \int I\left(t-t^{\prime}\right) \exp \left[-(s+\sigma) t^{\prime}\right] d t^{\prime} \tag{9}
\end{equation*}
$$

\]

The numerator accounts for each unit of capital by its age, $t^{\prime}$, and the denominator is the total number of units, or $K^{s}(t)$ of (4). When capital obsolescence is ignored, $s=0$ and $\bar{A}^{s}(t)=\bar{A}(t)$. An important question is whether the average age of capital has risen or lessened over time. The answer depends on the time derivative of (9), which is presented in the next section.

## 3. The relationship between the age of capital and investment

Investment adds young units to the stock of capital. It contributes to the age reduction of capital. On the other hand, there is the autonomous aging of capital. To beat this, investment must be strong enough to lower the average age of capital. The change in the age of capital is given by the following Proposition.

Proposition 1. $d \bar{A}^{s} / d t=1-\left(I / K^{s}\right) \bar{A}^{s}$.

Proof. The derivative of the numerator of (8) becomes, integrating by parts,
$\int I\left(t-t^{\prime}\right)\left\{\exp \left[-(s+\sigma) t^{\prime}\right]-(s+\sigma) \exp \left[-(s+\sigma) t^{\prime}\right] t^{\prime}\right\} d t^{\prime}=K^{s}(t)\left[1-(s+\sigma) \tilde{A}^{s}(t)\right]$.
The derivative of the denominator of (8) is given by (5). It follows, by the quotient rule and the fact that the numerator can be written as $\bar{A}^{s}(t) K^{s}(t)$ in view of (8) and (4), that $d \bar{A}^{s}(t) / d t=\left\{K^{s}(t) \cdot K^{s}(t)\left[1-(s+\sigma) \bar{A}^{s}(t)\right]-\bar{A}^{s}(t) K^{s}(t)\left[I(t)-(s+\sigma) K^{s}(t)\right]\right\} / K^{s}(t)^{2}$. This simplifies into $1-\left[I(t) / K^{s}(t)\right] \bar{A}^{s}(t)$. Q.E.D.

Proposition 1 is quite intuitive. It states that if the investment ratio is the inverse of the age of capital, then the age will be preserved. If the investment ratio is higher (lower) than the inverse of the age of capital, then capital will become younger (older). Though intuitive, Proposition 1 has an important ramification.

Proposition 2. Formula (1) is wrong.

Proof. Suppose (1) is right. Differentiation with respect to time yields, $d K^{s} / d t=d K / d t \cdot \exp (-s \bar{A})-K \cdot s \exp (-s \bar{A}) \cdot d \bar{A} / d t$. By (5) and (1), the left hand side is $I-(s+\sigma) K^{s}=I-(s+\sigma) K \cdot \exp (-s \bar{A})$. Multiplying through by $\exp (s \bar{A})$ we obtain $\exp (s \bar{A}) \cdot I-(s+\sigma) K=d K / d t-K \cdot s \cdot d \bar{A} / d t$. On the right hand side, using (5) with $s=0$, the first term is $I-\sigma K$ and, using Proposition 1 with $s=0$, the second term is $-K \cdot s \cdot(1-I / K) \bar{A}$. The terms $s K$ and $\sigma K$ cancel, respectively. Dividing by $I$ we obtain $\exp (s \bar{A})=1+s \bar{A}$. This nonlinear equation has one and only one solution: $s \bar{A}=0$. This curiosum establishes a contradiction. Q.E.D.

The upshot of this negative result is that modifying TFP-growth for obsolescence ( $s$ ) by expressing capital in efficiency units cannot be implemented by a simple replacement of $K(t)$ by $K^{s}(t)$ on a yearly basis. Instead, we must take into account past investment and reconstruct $K^{s}(t)$. In particular, we can no longer use Nelson's formula (1) to estimate obsolescence parameter $s$.

## 4. Estimation of obsolescence and of the growth in the capital stock

Instead of using Nelson's formula (1) in a regression analysis (Wolff, 1996), we will go back to basics--namely equation (9), the definition of capital age. Since we assume that the obsolescence and depreciation parameters are constant over time, the equation cannot exactly meet the data and, therefore, we must attach an error term:

$$
\begin{equation*}
\bar{A}^{s}(t)=\int I\left(t-t^{\prime}\right) \exp \left[-(s+\sigma) t^{\prime}\right] t^{\prime} d t^{\prime} / \int I\left(t-t^{\prime}\right) \exp \left[-(s+\sigma) t^{\prime}\right] d t^{\prime}+\varepsilon_{t}(s+\sigma) \tag{10}
\end{equation*}
$$

On the left hand side we enter the Bureau of Economic Analysis' age of capital (by type of capital) and implicitly assume that the weights of vintages are in terms of efficiency units. ${ }^{4}$ There are 57 types of capital goods (see Table 1 for a listing) and the series runs from 1947 to $1997 .{ }^{5}$

[^3]On the right hand side we enter investment data. These are also obtained from the Bureau of Economic Analysis fixed reproducible capital series. There are also 57 types of investment goods (corresponding to the 57 capital types) and the series runs from 1901 to 1997. Since the right hand side features the expression $s+\sigma$, the error term will depend on the sum, as indicated in equation (10). Now let $\varepsilon_{t}(s+\sigma)$ have density function $f$ with mean zero and unknown variance. The likelihood of our observations is the product $\ldots \cdot f\left[\varepsilon_{t}(s+\sigma)\right] \cdot \ldots \cdot f\left[\varepsilon_{0}(s+\sigma)\right]$. Maximization of the $\log$ likelihood, which is a series, yields an estimate of $s+\sigma$. If the error term is normally distributed, estimation via nonlinear least squares estimator (NLLS) is equivalent to maximum likelihood estimation, so in that case NLLS will provide consistent and asymptotically efficient estimates (Amemiya, 1985).

Equation (10) was estimated using NLLS, with a separate regression performed for each capital type to arrive at type-specific rates of obsolescence and depreciation. The results are shown in Table 1. In light of the rapid rate of technological innovation in the computer industry, it is no surprise that the rates of obsolescence and depreciation are highest for computer-related equipment. The estimates suggest that, on average, more than half ( 0.521 ) of the efficiency units of mainframe computers and computer tape drives was lost each year during the period to obsolescence and depreciation, with the rates for computer storage devices (0.457) and computer printers ( 0.452 ) only somewhat slower. To put these rates in perspective, an annual rate of obsolescence and depreciation of 0.067 is obtained if one restricts this parameter to be the same for all capital types combined. On the other end of the spectrum are buildings and other structures, which tend to have longer lives than other types of capital. For example, the combined rate of depreciation and obsolescence for commercial warehouses is 0.023 , that for amusement and recreational buildings is 0.025 , and that for hospitals and other institutional buildings is only 0.019 . In the middle is a variety of industrial, transportation and miscellaneous equipment, such as aircraft (0.103), agricultural machinery (0.115), and construction machinery (0.051).

We next compare rates of growth of our newly estimated net stocks of capital with those of the Bureau of Economic Analysis (BEA) both by type of capital and by industry. It should be noted that while the BEA does adjust capital stock each year for
depreciation, it does not generally adjust the capital stock figures for technological obsolescence. The major exception is computer equipment, which is adjusted each year on the basis of a hedonic regression that captures such features of computers as speed and memory. The comparisons are shown in Tables 2 and 3.

Table 2 shows the annualized growth rates of net capital stock by capital type. We have aggregated the types from the original 57 to 28 because many of the series have zeroes in the early years of the period (for example, computer equipment and nuclear fuel rods.) If the vintage parameter $s$ is positive, then a rising ratio of investment to net capital stock over a period will cause the vintage-adjusted capital growth rate to exceed the BEA capital growth rate. Conversely, if the investment to net capital stock ratio is declining over a period (and $s$ is positive), then the vintage-adjusted capital growth rate will be less than the BEA capital growth rate.

Over the full 1947-97 period, there was very little difference between the BEA and the vintage-adjusted growth rate of the total capital stock--only 0.09 percentage points. Differences are quite small for most of the capital types. There are a few exceptions. The vintage-adjusted annual growth rate of other office equipment exceeded the BEA growth rate by 0.36 percentage points, as did the vintage-adjusted growth rate of petroleum and natural gas exploration equipment. In contrast, the annual growth rate of the BEA net stock of automobiles exceeded the vintageadjusted growth rate by 1.04 percentage points. The last line of the table shows the correlation coefficient between the two sets of growth rates across the 28 capital types. Over the full 1947-97 period, the correlation is extremely high (0.99).

Results also vary by ten-year period. The vintage-adjusted annual growth rate for total capital exceeded the BEA growth rate by 0.39 percentage points in the 1947-57 period and by 0.10 percentage points in the 1957-67 period but fell short of it by 0.10 percentage points in the 1987-97 period. The biggest differences are recorded for computer equipment. In the 1967-77 period, the difference between the BEA and the vintage-adjusted growth rate ( 2.70 percentage points) was a reflection of the rapid acceleration in computer equipment investment over the period. The difference was 1.99 percentage points in the 1977-87 period, but virtually zero in the 1987-97 period. Other large differences in the two growth rates are observed for autos as well as
railroad structures and track. However, by and large, the correlation in the two sets of capital growth rates is very high by ten-year period--ranging from 0.983 to 0.998 .

The BEA capital stock data are also available for 62 individual industries (see Appendix Table 1 for a listing). In Table 3, we show the results for 11 major sectors. Differences in the annual growth rates of the two capital stock series over the full 1947-97 period are relatively small for the total capital stock and for most sectors, with the notable exception of transportation, with a difference of 0.56 percentage points between the vintage-adjusted and the BEA series. The correlation in capital growth rates over the 1947-97 period across the 62 individual industries is 0.95 , somewhat lower than the correlation coefficient across capital types.

Differences in capital growth rates between the two series are more marked for the individual 10 -year periods than for the full 50 -year period. In the 1947-57 period, large differences are found for durables manufacturing, transportation, and the combined sector, fire, insurance, and real estate; in the 1957-67 period, for transportation; in the 1967-77 period, for both agriculture and transportation; in the 1977-87 period, for agriculture, mining, transportation, and finance, insurance, and real estate; and in the 1987-97 period, for mining. The correlation coefficients in capital growth rates across the 62 industries by ten-year period range from a low of 0.89 in the 1957-67 period to a high of 0.99 in the 1987-97 period.

## 5. Estimation of implied TFP-growth

Substitution of our estimate of the total obsolescence and depreciation rate in formula (8) yields TFP-growth corrected for vintage effects. Estimates of TFP-growth based on BEA capital and on efficiency units (that is, vintage-adjusted capital stock) are shown in Table 4 for the major sectors and the total non-governmental economy. The output measure is real gross domestic product in chained 1992\$; the labor input is persons engaged in production (PEP); the capital input is nonresidential net stocks, real-cost valuation (1992\$); and the labor share is the ratio of employee compensation
to net national product. ${ }^{6}$ Due to differences in industry classification between the two sources, we use 58 industries instead of 62 (see Table 5).

Over the full 1947-97 period, overall TFP grew slightly faster ( 0.04 percent per year) on the basis of the BEA capital stock data than on the basis of the vintage-adjusted capital stock in efficiency units. This is a reflection of the slightly slower growth in BEA capital stock than capital stock in efficiency units. Differences are also quite small for the 11 major sectors. The largest difference in annual TFP growth is recorded for the finance, insurance, and real estate sector--a 0.18 percentage points difference between the BEA and the vintage-adjusted measures. The correlation in TFP-growth rates over the 1947-97 period across the 58 individual industries is 0.90 .

Differences in TFP-growth rates between the two series are somewhat more marked for the individual 10 -year periods than for the full 50 -year period. In the 1947-57 period, large differences in annual TFP-growth are found for finance, insurance, and real estate ( 0.39 percentage points), transportation ( 0.21 ), construction ( 0.20 ), and for the overall economy ( 0.16 ); in the 1957-67 period, for agriculture ( -0.21 ) transportation (0.17), and finance, insurance, and real estate ( 0.20 percentage points); in the 1967-77 period, for agriculture ( -0.49 ); in the 1977-87 period, for agriculture (0.30), mining (0.22), and finance, insurance, and real estate (0.28); and in the 198797 period, for agriculture ( 0.21 ) and mining ( 0.31 ). ${ }^{7}$

## 6. Aging capital and the vintage effect on TFP

The effect of the incorporation of the rate of obsolescence on TFP-growth is shown to depend on the aging of the stock of capital. In fact, there is a straight proportionality between aging and the vintage effect:

Proposition 3. $d T F P^{\wedge \wedge} / d s=\beta d \bar{A}^{s} / d t$.

[^4]Proof. Differentiate (8) with respect to $s$, using (5) and (9): $d T F P^{s^{\wedge}} / d s$
$=-\beta d\left[I / K^{s}-(s+\sigma)\right] / d s=-\beta\left[-I / K^{s 2}(d / d s) \int I\left(t-t^{\prime}\right) \exp \left(-s t^{\prime}\right) \exp \left(-\sigma t^{\prime}\right) d t^{\prime}-1\right]$
$=-\beta\left[-I / K^{s 2} \int I\left(t-t^{\prime}\right) \exp \left(-s t^{\prime}\right)\left(-t^{\prime}\right) \exp \left(-\sigma t^{\prime}\right) d t^{\prime}-1\right]=-\beta\left[\left(I / K^{s}\right) \bar{A}^{s}-1\right]=\beta d \bar{A}^{s} / d t$
by Proposition 1. Q.E.D.

The message of this proposition is clear. In times when capital becomes older, measured TFP-growth increases as obsolescence, $s$, is taken into account. Conversely, in times when capital becomes younger, measured TFP-growth decreases as obsolescence, $s$, is taken into account. Thus, the incorporation of obsolescence may well remove some of the cyclicallity of TFP-growth. Let us explain.

In an upswing of the business cycle the investment/capital ratio tends to be high. This means, by Proposition 1, that capital becomes younger, and, therefore, by Proposition 3, that the incorporation of the vintage effect in TFP measurement amounts to a downward correction. By the same token, in a downswing of the business cycle capital grows older and the incorporation of the vintage effect amounts to an upward correction. In short, the vintage effect is expected to be counter-cyclical.

TFP-growth itself, however, is known to be pro-cyclical, which is considered an awkward finding, as it is supposed to measure the shift of technology rather than the business cycle (see, for example, Gordon, 1979). As the vintage effect is expected to be counter-cyclical, it may have a smoothing impact. In short, the vintage effect may throw light on productivity puzzles such as the pro-cyclical behavior of TFP-growth and the slowdown of productivity in the 1970's.

The results displayed in Table 5 are interesting. The left panel displays standard TFPgrowth figures, based on BEA capital stock estimates. The right panel displays our vintage-adjusted TFP-growth rates. In each panel, the first three columns show the annual rate of TFP-growth during the high productivity growth period of 1947-1967, the slow productivity growth period of 1967-1987, and then the recovery period 19871997. ${ }^{8}$ The differences between the figures in the first two columns indicate the 1967

[^5]slowdown and are listed in the fourth columns. Similarly, the differences between the figures in the second and third columns indicate the 1987 recovery and are listed in the fifth columns. The sixth and final column in either panel shows the standard deviations of the TFP-growth rates over the five ten-year periods (1947-57, 1957-67, 1967-77, 1977,87, and 1987-97).

There are three questions of interest. First, does the use of capital measured in efficiency units reduce the measured slowdown between the 1947-67 and the 1967-87 periods? Second, does the use of capital in efficiency units increase the measured recovery after 1987 (that is to say, does it cause TFP growth in the 1987-1997 period to return more closely to its long-term average performance)? Third, does the use of capital in efficiency units reduce disparities in measured TFP growth across the five ten-year periods? The answer to the three questions is generally "yes."

First, for the overall economy, the slowdown in annual TFP growth after 1967 is 1.46 percentage points on the basis of BEA capital stock but only 1.37 percentage points on the basis of vintage-adjusted capital stock. The measured slowdown is also reduced in 31 of the 58 detailed industries. Second, for the overall economy, the recovery in annual TFP growth is 0.52 on the basis of BEA capital stock and 0.58 on the basis of capital stock in efficiency units. The measured recovery is also increased in 40 of the 58 detailed industries. Third, the standard deviation of TFP growth for the overall economy over the five ten-year periods is 0.66 on the basis of BEA capital stock and 0.62 on the basis of capital measured in efficiency units. The standard deviation is also lower on the basis of the vintage-adjusted capital stock in 33 of the 58 industries.

## 7. Conclusion

TFP-growth is known to be pro-cyclical, an awkward finding, as it is supposed to measure the shift of technology rather than the business cycle. If the age of capital is counter-cyclical, then the vintage effect is also counter-cyclical by Proposition 3, a

Recovery' should be understood as representing differences between the two surrounding ten-year's periods in each case rather than single-year events.
neutralizing effect. In short, the vintage effect throws light on productivity puzzles such as the slowdown in the 1970's and the pro-cyclicality.

The results indicate that the use of capital stock in efficiency units does cause some smoothing of TFP growth over time. It is also noteworthy that the productivity growth slowdown of the 1970's--known from studies that do not take into account the age structure of capital--is reduced on the basis of these new capital stock data. The reason is that capital became older over this period. The relationship between the aging of capital and the sign of the vintage effect has a theoretical foundation.

## 8. References

Abramovitz, Moses (1994), "Catch-Up and Convergence in the Postwar Growth Boom and After," in William J. Baumol, Richard R. Nelson, and Edward N. Wolff eds., Convergence of Productivity: Cross-National Studies and Historical Evidence, New York: Oxford University Press, 86-125.

Amemiya, Takeshi (1985), Advanced Econometrics, Cambridge, MA: Harvard University Press.

Böhm-Bawerk [Thijs]
Gordon, Robert J. (1979), "The End of Expansion Phenomenon in Short-Run Productivity Behavior," Brookings Papers on Economic Activity, 2, 447-61.

Hulten, Charles R. (1992), "Growth Accounting When Technical Change is Embodied in Capital," American Economic Review, September, 82, 964-80.

Nelson, Richard R. (1964), "Aggregate Production Functions and MediumRange Growth Projections," American Economic Review, September, 54, 575-605.

Solow, Robert M. (1956), "Contribution to the Theory of Economic Growth," Quarterly Journal of Economics, February, 70, 65-94.
----- (1957), "Technical Change and the Aggregate Production Function," Review of Economics and Statistics, 39, 3, 312-20.
----- (1988), "Growth Theory and After," American Economic Review, June, 78, 307-17.

Tatom, John A. (1979), "The Productivity Problem," Federal Reserve Bank of St. Louis Monthly Review, September, 3-16.

Wolff, Edward N (1991), "Capital Formation and Productivity Convergence over the Long-Term," American Economic Review, June, 81, 565-79.
----- (1996), "The Productivity Slowdown: The Culprit at Last?" American Economic Review, December, 86, 1239-1252.

Table 1. Rates of Obsolescence and Depreciation by Capital Type

| Capital Type | Parameter | Standard error | t-statistic |
| :--- | :---: | :---: | :---: |
| Mainframe computers | 0.521 | 0.005 | 99.1 |
| Personal computers | 0.256 | 0.005 | 54.5 |
| Direct access storage devices | 0.176 | 0.024 | 7.5 |
| Computer printers | 0.452 | 0.007 | 63.7 |
| Computer terminals | 0.355 | 0.007 | 53.0 |
| Computer tape drives | 0.521 | 0.147 | 3.6 |
| Computer storage devices | 0.457 | 0.005 | 87.4 |
| Other office equipment | 0.340 | 0.003 | 124.5 |
| Communication equipment | 0.116 | 0.001 | 101.5 |
| Instruments | 0.140 | 0.001 | 106.1 |
| Photocopy and related equipment | 0.195 | 0.001 | 144.0 |
| Nuclear fuel rods | 0.413 | 0.000 | a |
| Other fabricated metal products | 0.091 | 0.001 | 123.6 |
| Steam engines | 0.050 | 0.001 | 71.3 |
| Internal combustion engines | 0.222 | 0.007 | 30.5 |
| Metalworking machinery | 0.119 | 0.003 | 37.6 |
| Special industry machinery, n.e.c. | 0.100 | 0.003 | 33.8 |
| General industrial, including materials | 0.107 | 0.003 | 42.9 |
| handling, equipment |  |  |  |
| Electrical transmission, distribution, and | 0.049 | 0.000 | 126.6 |
| industrial apparatus |  |  |  |
| Trucks, buses, and truck trailers | 0.205 | 0.003 | 68.7 |
| Autos | 0.192 | 0.006 | 32.5 |
| Aircraft | 0.103 | 0.002 | 47.8 |
| Ships and boats | 0.059 | 0.002 | 32.1 |
| Railroad equipment | 0.060 | 0.002 | 25.5 |
| Household furniture | 0.145 | 0.002 | 64.7 |
| Other furniture | 0.127 | 0.001 | 182.1 |
| Farm tractors | 0.155 | 0.002 | 78.0 |
| Construction tractors | 0.180 | 0.002 | 112.2 |
| Agricultural machinery, except tractors | 0.115 | 0.003 | 37.9 |
| Construction machinery, except tractors | 0.151 | 0.003 | 43.3 |
| Mining and oilfield machinery | 0.159 | 0.001 | 161.8 |
| Service industry machinery | 0.166 | 0.001 | 115.2 |
| Household appliances | 0.175 | 0.003 | 62.6 |
| Other electrical equipment, n.e.c. | 0.195 | 0.002 | 128.6 |
| Other nonresidential equipment | 0.156 | 0.001 | 122.3 |
| Industrial buildings | 0.031 | 0.001 | 49.2 |
| Office buildings | 0.023 | 0.002 | 13.5 |
| Mobile structures | 0.060 | 0.004 | 16.2 |
| Commercial warehouses | 0.023 | 0.002 | 15.5 |
| Other commercial buildings, n.e.c. | 0.026 | 0.001 | 18.7 |
| Religious buildings | b | b |  |
| Educational buildings | 0.216 | 0.9 |  |
| Hospital and institutional buildings | 0.007 | 13.6 |  |
| Hotels and motels | 0.0 |  |  |


| Amusement and recreational buildings | 0.025 | 0.004 | 5.7 |
| :--- | :---: | :---: | :---: |
| Other nonfarm buildings | 0.024 | 0.001 | 22.7 |
| Local transit buildings | b | b | b |
| Railroad structures | -0.004 | 0.000 | a |
| Railroad track replacement | 0.021 | 0.000 | a |
| Telecommunications | b | b | b |
| Electric light and power | 0.022 | 0.000 | a |
| Gas | 0.023 | 0.000 | a |
| Petroleum pipelines | 0.020 | 0.000 | a |
| Farm related buildings and structures | 0.016 | 0.003 | 6.2 |
| Petroleum and natural gas exploration | 0.057 | 0.000 | a |
| Other mining exploration | 0.044 | 0.001 | 76.4 |
| Other nonfarm structures | 0.016 | 0.002 | 6.9 |

Notes:
a. Standard error is zero (capital type has only one observation), so t-statistic cannot be computed.
b. Estimation did not converge. We do not adjust the BEA stocks.

| apital Type | 1947-1997 |  |  | 1947-1957 |  |  | 1957-1967 |  |  | 1967-1977 |  |  | 1977-1987 |  |  | 1987-1997 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BEA | $\begin{aligned} & \text { Vin- } \\ & \text { tage } \end{aligned}$ | Diff. | BEA | $\begin{aligned} & \text { Vin- } \\ & \text { tage } \end{aligned}$ | Diff. | BEA | $\begin{aligned} & \hline \text { Vin- } \\ & \text { tage } \end{aligned}$ | Diff. | BEA | $\begin{aligned} & \text { Vin- } \\ & \text { tage } \end{aligned}$ | Diff. | BEA | $\begin{aligned} & \text { Vin- } \\ & \text { tage } \\ & \hline \end{aligned}$ | Diff. | BEA | $\begin{aligned} & \hline \text { Vin- } \\ & \text { tage } \end{aligned}$ | Diff. |
| omputer Equipment | -- | -- | -- | -- | -- | -- | -- | -- | -- | 26.39 | 29.08 | -2.70 | 30.69 | 32.68 | -1.99 | 21.22 | 21.18 | 0.05 |
| ther office equipment | 7.01 | 7.37 | -0.36 | 7.87 | 8.96 | -1.09 | 7.02 | 7.52 | -0.50 | 10.03 | 10.30 | -0.27 | 8.20 | 8.10 | 0.10 | 1.94 | 1.98 | -0.04 |
| ommunication equipment | 8.08 | 8.11 | -0.03 | 10.15 | 10.13 | 0.02 | 9.62 | 9.63 | 0.00 | 7.32 | 7.33 | -0.02 | 8.69 | 8.70 | -0.01 | 4.64 | 4.76 | -0.13 |
| struments | 6.24 | 6.28 | -0.04 | 10.43 | 10.48 | -0.04 | 2.50 | 2.55 | -0.05 | 7.96 | 7.92 | 0.04 | 5.82 | 5.84 | -0.02 | 4.48 | 4.60 | -0.13 |
| abricated metal products | 3.60 | 3.68 | -0.08 | 7.12 | 7.17 | -0.05 | 2.58 | 2.65 | -0.08 | 7.17 | 7.15 | 0.01 | 1.08 | 1.25 | -0.16 | 0.07 | 0.18 | -0.11 |
| ngines and industrial machinery | 3.32 | 3.43 | -0.11 | 5.18 | 5.40 | -0.22 | 3.70 | 3.80 | -0.10 | 3.37 | 3.45 | -0.08 | 2.35 | 2.36 | -0.01 | 2.01 | 2.15 | -0.14 |
| rucks, buses, and truck trailers | 4.48 | 4.42 | 0.05 | 4.98 | 4.66 | 0.32 | 4.84 | 4.89 | -0.05 | 5.92 | 6.12 | -0.20 | 2.27 | 2.08 | 0.19 | 4.37 | 4.36 | 0.01 |
| utos | 5.12 | 4.08 | 1.04 | 9.61 | 7.42 | 2.19 | 2.66 | 0.40 | 2.26 | 5.65 | 7.49 | -1.84 | 4.49 | 4.09 | 0.40 | 3.18 | 1.00 | 2.18 |
| ircraft | 6.68 | 6.36 | 0.32 | 7.70 | 7.51 | 0.18 | 13.66 | 13.17 | 0.48 | 6.63 | 5.96 | 0.67 | 3.53 | 3.35 | 0.18 | 1.89 | 1.83 | 0.06 |
| hips and boats | 1.10 | 1.02 | 0.08 | 1.14 | 0.84 | 0.30 | 1.29 | 1.03 | 0.26 | 5.01 | 4.88 | 0.13 | 0.58 | 0.65 | -0.07 | -2.54 | -2.31 | -0.22 |
| ailroad equipment | 0.46 | 0.38 | 0.07 | 2.49 | 2.59 | -0.10 | 0.31 | 0.33 | -0.02 | 1.00 | 1.04 | -0.04 | -1.39 | -1.34 | -0.05 | -0.13 | -0.72 | 0.58 |
| urniture | 4.37 | 4.38 | -0.01 | 4.69 | 4.85 | -0.16 | 4.10 | 4.08 | 0.02 | 3.27 | 3.21 | 0.06 | 5.84 | 5.84 | 0.00 | 3.96 | 3.94 | 0.02 |
| gricultural, construction, mining and service industry machinery | 2.55 | 2.67 | -0.12 | 5.61 | 6.03 | -0.42 | 2.61 | 2.65 | -0.05 | 4.63 | 4.55 | 0.08 | -0.30 | -0.23 | -0.07 | 0.22 | 0.37 | -0.14 |
| ppliances and other equipment | 5.77 | 5.86 | -0.09 | 5.39 | 5.77 | -0.38 | 7.34 | 7.38 | -0.04 | 6.76 | 6.77 | -0.01 | 5.70 | 5.72 | -0.02 | 3.67 | 3.69 | -0.02 |
| dustrial \& commercial buildings | 3.46 | 3.67 | -0.21 | 2.78 | 3.23 | -0.45 | 4.37 | 4.65 | -0.28 | 3.80 | 3.95 | -0.15 | 4.07 | 4.15 | -0.09 | 2.29 | 2.39 | -0.10 |
| duc. \& institutional buildings | 4.06 | 4.29 | -0.24 | 5.45 | 6.00 | -0.55 | 5.95 | 6.19 | -0.24 | 3.56 | 3.56 | 0.00 | 2.65 | 3.02 | -0.37 | 2.67 | 2.70 | -0.03 |
| otels and motels | 4.37 | 4.43 | -0.07 | 2.11 | 2.14 | -0.04 | 7.63 | 8.02 | -0.39 | 3.80 | 3.71 | 0.09 | 5.10 | 5.19 | -0.09 | 3.19 | 3.10 | 0.09 |
| ecreational buildings | 1.91 | 2.01 | -0.10 | 0.79 | 1.06 | -0.27 | 3.84 | 3.81 | 0.03 | 1.01 | 1.20 | -0.20 | 1.22 | 1.35 | -0.13 | 2.67 | 2.63 | 0.04 |
| ther nonfarm buildings | 2.39 | 2.73 | -0.34 | 3.24 | 4.05 | -0.81 | 6.74 | 7.30 | -0.55 | -0.25 | -0.31 | 0.06 | 1.58 | 1.76 | -0.18 | 0.65 | 0.87 | -0.22 |
| ocal transit buildings | -2.47 | -2.47 | 0.00 | -1.89 | -1.89 | 0.00 | -3.16 | -3.16 | 0.00 | -2.46 | -2.46 | 0.00 | -2.43 | -2.43 | 0.00 | -2.43 | -2.43 | 0.00 |
| ailroad structures and track | -0.87 | 0.34 | -1.20 | -0.69 | 0.68 | -1.36 | -1.19 | 0.13 | -1.32 | -0.91 | 0.29 | -1.20 | -0.67 | 0.39 | -1.06 | -0.89 | 0.20 | -1.08 |
| elecommunications | 4.08 | 4.08 | 0.00 | 4.94 | 4.94 | 0.00 | 4.27 | 4.27 | 0.00 | 5.07 | 5.07 | 0.00 | 3.93 | 3.93 | 0.00 | 2.19 | 2.19 | 0.00 |
| lectric light and power and gas | 2.68 | 2.67 | 0.01 | 4.78 | 4.82 | -0.04 | 2.99 | 2.97 | 0.02 | 3.11 | 3.12 | -0.01 | 1.76 | 1.72 | 0.04 | 0.74 | 0.71 | 0.03 |
| etroleum pipelines | 0.78 | 1.23 | -0.45 | 1.29 | 2.01 | -0.72 | 0.11 | 0.63 | -0.53 | 3.76 | 4.13 | -0.37 | -0.83 | -0.47 | -0.36 | -0.45 | -0.17 | -0.28 |


| arm related buildings \&structures | 2.08 | 1.90 | 0.18 | 3.32 | 3.31 | 0.00 | 3.47 | 2.91 | 0.56 | 3.68 | 2.56 | 1.12 | 0.50 | 0.99 | -0.50 | -0.59 | -0.29 | -0.30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| etroleum \& gas exploration | 2.62 | 2.98 | -0.36 | 6.26 | 6.27 | -0.01 | 2.42 | 2.45 | -0.03 | 1.41 | 1.57 | -0.16 | 4.20 | 4.92 | -0.73 | -1.21 | -0.34 | -0.87 |
| ther mining exploration | 3.14 | 3.15 | -0.01 | 1.61 | 1.65 | -0.04 | 3.27 | 3.25 | 0.02 | 6.55 | 6.47 | 0.08 | 4.12 | 4.16 | -0.03 | 0.15 | 0.23 | -0.08 |
| ther nonfarm structures | 2.66 | 2.93 | -0.28 | -0.53 | 0.11 | -0.64 | 1.71 | 2.13 | -0.42 | 3.63 | 3.75 | -0.12 | 4.67 | 4.75 | -0.08 | 3.80 | 3.92 | -0.12 |
| otal | 3.05 | 3.13 | -0.09 | 3.13 | 3.51 | -0.39 | 3.21 | 3.30 | -0.10 | 3.44 | 3.45 | -0.01 | 2.99 | 3.02 | -0.04 | 2.48 | 2.38 | 0.10 |
| orrelation between BEA and vintage growth tes ${ }^{\text {a }}$ |  |  | 0.989 |  |  | 0.983 |  |  | 0.985 |  |  | 0.994 |  |  | 0.998 |  |  | 0.992 |

ote: BEA figures are for nonresidential net stocks, real-cost valuation (1992 Dollars). Governmental capital stock is excluded.
Computer equipment is excluded because of zero values for the computation of correlation coefficients for 1947-1997, 1947-1957, and 1957-1997.

| Table 3. Annual Rate of Growth of Net Capital Stock by Major Sector and Period, 1947-1997 (Figures are in percentage points) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sector | 1947-1997 |  |  | 1947-1957 |  |  | 1957-1967 |  |  | 1967-1977 |  |  | 1977-1987 |  |  | 1987-1997 |  |  |
|  | BEA | Vintage | Diff. |
| Agriculture | 2.15 | 2.08 | 0.08 | 4.23 | 4.11 | 0.12 | 2.87 | 2.59 | 0.28 | 4.01 | 3.37 | 0.64 | -0.44 | -0.04 | -0.40 | 0.09 | 0.35 | -0.27 |
| Mining | 2.63 | 2.88 | -0.25 | 4.82 | 4.92 | -0.09 | 3.03 | 3.07 | -0.04 | 2.14 | 2.26 | -0.12 | 4.22 | 4.63 | -0.41 | -1.07 | -0.47 | -0.60 |
| Construction | 2.33 | 2.53 | -0.19 | 4.10 | 4.85 | -0.74 | 3.52 | 3.53 | -0.01 | 4.30 | 4.21 | 0.09 | -0.41 | -0.40 | -0.02 | 0.16 | 0.44 | -0.28 |
| Manufacturing Non-Durables | 2.56 | 2.62 | -0.06 | 2.58 | 2.75 | -0.17 | 2.97 | 3.07 | -0.10 | 3.61 | 3.70 | -0.10 | 1.66 | 1.67 | -0.01 | 1.96 | 1.91 | 0.05 |
| Manufacturing Durables | 3.02 | 3.25 | -0.24 | 4.37 | 5.00 | -0.63 | 3.59 | 3.85 | -0.26 | 3.37 | 3.56 | -0.19 | 2.14 | 2.19 | -0.04 | 1.61 | 1.67 | -0.06 |
| Transportation | 0.23 | 0.79 | -0.56 | 0.05 | 0.99 | -0.93 | -0.24 | 0.53 | -0.77 | 0.71 | 1.15 | -0.44 | 0.25 | 0.65 | -0.40 | 0.36 | 0.64 | -0.28 |
| Communications | 5.56 | 5.55 | 0.01 | 7.07 | 7.02 | 0.05 | 6.07 | 6.04 | 0.02 | 5.96 | 6.01 | -0.05 | 5.10 | 5.11 | 0.00 | 3.60 | 3.55 | 0.04 |
| Utilities | 3.18 | 3.27 | -0.09 | 5.24 | 5.51 | -0.28 | 3.16 | 3.24 | -0.08 | 3.61 | 3.69 | -0.09 | 2.68 | 2.69 | 0.00 | 1.22 | 1.23 | -0.01 |
| Trade | 4.51 | 4.44 | 0.06 | 3.44 | 3.32 | 0.12 | 5.15 | 5.10 | 0.04 | 4.47 | 4.62 | -0.15 | 4.87 | 4.79 | 0.08 | 4.60 | 4.38 | 0.22 |
| Finance, Insur. \& Real Estate | 4.55 | 4.78 | -0.23 | 4.16 | 4.68 | -0.52 | 5.50 | 5.76 | -0.26 | 4.00 | 4.09 | -0.10 | 5.25 | 5.62 | -0.37 | 3.82 | 3.73 | 0.09 |
| Other Services ${ }^{\text {a }}$ | 5.21 | 5.08 | 0.13 | 5.82 | 5.81 | 0.00 | 6.50 | 6.43 | 0.07 | 5.20 | 5.12 | 0.09 | 3.56 | 3.41 | 0.15 | 4.96 | 4.64 | 0.32 |
| Total | 3.05 | 3.13 | -0.09 | 3.13 | 3.51 | -0.39 | 3.21 | 3.30 | -0.10 | 3.44 | 3.45 | -0.01 | 2.99 | 3.02 | -0.04 | 2.48 | 2.38 | 0.10 |
| Correlation of growth rates across 62 industries (scalar) | 0.952 |  |  | 0.973 |  |  | 0.887 |  |  | 0.941 |  |  | 0.987 |  |  | 0.989 |  |  |
| Note: BEA figures are for nonresidential net stocks, real-cost valuation (1992 Dollars). <br> a. Non-governmental services only. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Sector | 1947-1997 |  |  | 1947-1957 |  |  | 1957-1967 |  |  | 1967-1977 |  |  | 1977-1987 |  |  | 1987-1997 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BEA | Vintage | Diff. |
| Agriculture | 0.71 | 0.77 | -0.06 | -1.70 | -1.61 | 0.09 | -1.24 | -1.03 | -0.21 | -1.73 | -1.24 | -0.49 | 4.89 | 4.59 | 0.30 | 3.35 | 3.15 | 0.20 |
| Mining | 1.08 | 0.95 | 0.13 | 1.17 | 1.12 | 0.05 | 2.21 | 2.19 | 0.02 | -0.58 | -0.65 | 0.06 | -1.26 | -1.47 | 0.22 | 3.86 | 3.55 | 0.31 |
| Construction | -0.20 | -0.25 | 0.05 | 2.84 | 2.64 | 0.20 | 1.12 | 1.12 | 0.00 | -4.39 | -4.36 | -0.02 | -0.78 | -0.78 | 0.00 | 0.21 | 0.14 | 0.07 |
| Manufacturing Non-Durables | 1.84 | 1.82 | 0.02 | 2.13 | 2.08 | 0.05 | 2.43 | 2.40 | 0.03 | 2.28 | 2.25 | 0.03 | 1.76 | 1.75 | 0.00 | 0.59 | 0.60 | -0.02 |
| Manufacturing Durables | 2.55 | 2.51 | 0.05 | 1.86 | 1.74 | 0.12 | 2.15 | 2.10 | 0.05 | 1.82 | 1.78 | 0.04 | 2.19 | 2.18 | 0.01 | 4.75 | 4.74 | 0.01 |
| Transportation | 1.17 | 1.05 | 0.13 | 0.17 | -0.04 | 0.21 | 2.90 | 2.73 | 0.17 | 1.00 | 0.90 | 0.10 | 0.52 | 0.43 | 0.09 | 1.26 | 1.20 | 0.06 |
| Communications | 2.54 | 2.54 | -0.01 | 2.19 | 2.21 | -0.02 | 3.45 | 3.46 | -0.01 | 2.85 | 2.83 | 0.02 | 2.45 | 2.45 | 0.00 | 1.73 | 1.75 | -0.02 |
| Utilities | 2.74 | 2.68 | 0.06 | 4.60 | 4.43 | 0.17 | 3.57 | 3.53 | 0.05 | 4.08 | 4.02 | 0.05 | -1.25 | -1.25 | 0.00 | 2.69 | 2.69 | 0.01 |
| Trade | 0.74 | 0.77 | -0.03 | 1.67 | 1.72 | -0.05 | 1.17 | 1.19 | -0.02 | -0.75 | -0.81 | 0.06 | 0.38 | 0.41 | -0.03 | 1.24 | 1.33 | -0.09 |
| Finance, Insur. \& Real Estate | -0.29 | -0.47 | 0.18 | 1.65 | 1.26 | 0.39 | -0.18 | -0.38 | 0.20 | 0.06 | -0.02 | 0.07 | -1.94 | -2.22 | 0.28 | -1.05 | -0.99 | -0.07 |
| Other Services ${ }^{\text {a }}$ | -0.24 | -0.20 | -0.04 | -0.09 | -0.09 | 0.00 | 0.26 | 0.28 | -0.02 | 0.33 | 0.35 | -0.03 | -0.56 | -0.51 | -0.05 | -1.14 | -1.04 | -0.10 |
| Total | 1.12 | 1.08 | 0.04 | 1.90 | 1.74 | 0.16 | 1.87 | 1.83 | 0.04 | 0.53 | 0.52 | 0.01 | 0.33 | 0.31 | 0.02 | 0.95 | 0.99 | -0.04 |
| Correlation of growth rates across 58 industries (scalar) |  | 0.898 |  |  | 0.992 |  |  | 0.961 |  |  | 0.992 |  |  | 0.998 |  |  | 0.999 |  |

Note: The output measure is real gross domestic product in chained 1992\$; the labor input is persons engaged in production (PEP); the capital input is nonresidential net stocks, real-cost valuation (1992\$); and the labor share is the ratio of employee compensation to net national product.
a. Non-governmental services only.
Table 5. Annual Rate of Growth of Total Factor Productivity by Industry and Period, 1947-1997
(Figures are in percentage points)

| Industry | BEA Capital Stock Estimates |  |  |  |  |  | Vintage Capital Stock in Efficiency Units |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 1947- \\ & 1967 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1967- \\ & 1987 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1987- \\ & 1997 \\ & \hline \end{aligned}$ | 1967 <br> Slow- <br> down | $\begin{aligned} & \hline 1987 \\ & \text { Reco- } \\ & \text { very } \\ & \hline \end{aligned}$ | Five <br> Period <br> Std.Dev | $\begin{aligned} & 1947- \\ & 1967 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1967- \\ & 1987 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1987 \\ & 1997 \\ & \hline \end{aligned}$ | 1967 <br> Slow- <br> down | 1987 <br> Reco- <br> very | Five <br> Period <br> Std.Dev |
| Farms | 1.06 | 2.59 | 3.83 | 1.54 | 1.24 | 1.97 | 1.14 | 2.64 | 3.69 | 1.50 | 1.05 | 1.85 |
| 2 Agricult. services, forestry \& fishing | -1.55 | 1.06 | 0.84 | 2.61 | -0.22 | 1.95 | -1.54 | 1.12 | 0.83 | 2.66 | -0.29 | 1.94 |
| 3 Metal mining | 2.07 | 1.80 | 7.26 | -0.27 | 5.46 | 4.59 | 2.01 | 1.78 | 7.21 | -0.23 | 5.43 | 4.58 |
| 4 Coal mining | 3.30 | 0.76 | 9.85 | -2.53 | 9.08 | 4.59 | 3.24 | 0.81 | 9.78 | -2.43 | 8.97 | 4.56 |
| 5 Oil and gas extraction | 0.22 | -1.94 | 2.83 | -2.16 | 4.77 | 2.25 | 0.21 | -2.15 | 2.39 | -2.36 | 4.54 | 2.36 |
| 6 Nonmetallic minerals, except fuels | 2.59 | 3.17 | 2.48 | 0.58 | -0.69 | 0.42 | 2.48 | 3.15 | 2.37 | 0.67 | -0.78 | 0.46 |
| 7 Construction | 1.98 | -2.58 | 0.21 | -4.56 | 2.80 | 2.41 | 1.88 | -2.57 | 0.14 | -4.45 | 2.71 | 2.36 |
| Lumber and wood products | 1.22 | 2.29 | -2.49 | 1.07 | -4.78 | 2.92 | 1.15 | 2.27 | -2.49 | 1.12 | -4.76 | 2.93 |
| 9 Furniture and fixtures | 3.51 | 1.89 | 1.06 | -1.62 | -0.82 | 1.74 | 3.50 | 1.89 | 1.06 | -1.62 | -0.83 | 1.73 |
| 10 Stone, clay, and glass products | 1.44 | 1.45 | 2.20 | 0.01 | 0.76 | 0.56 | 1.46 | 1.46 | 2.14 | 0.00 | 0.68 | 0.57 |
| 11 Primary metal industries | 2.79 | 0.25 | 2.63 | -2.54 | 2.38 | 1.81 | 2.56 | 0.24 | 2.62 | -2.32 | 2.39 | 1.74 |
| 12 Fabricated metal products | -1.48 | 1.71 | 1.84 | 3.19 | 0.13 | 2.83 | -1.45 | 1.72 | 1.87 | 3.17 | 0.14 | 2.83 |
| 13 Industrial machinery and equip. | 1.71 | 4.10 | 7.80 | 2.39 | 3.70 | 2.58 | 1.73 | 4.09 | 7.81 | 2.37 | 3.72 | 2.58 |
| 14 Electronic and other electric equip. | 3.70 | 2.80 | 9.90 | -0.91 | 7.10 | 2.75 | 3.71 | 2.79 | 9.90 | -0.92 | 7.11 | 2.75 |
| 15 Motor vehicles and equipment | 3.26 | 1.96 | -0.51 | -1.30 | -2.47 | 2.32 | 3.26 | 1.94 | -0.44 | -1.32 | -2.38 | 2.31 |
| 16 Other transportation equipment | 3.39 | 0.34 | -2.90 | -3.04 | -3.25 | 2.51 | 3.39 | 0.34 | -2.89 | -3.05 | -3.23 | 2.52 |
| 17 Instruments and related products | 2.54 | 2.63 | 4.68 | 0.09 | 2.05 | 0.87 | 2.56 | 2.64 | 4.69 | 0.08 | 2.05 | 0.86 |
| 18 Miscellaneous manuf. industries | 2.72 | 2.87 | 1.03 | 0.15 | -1.84 | 0.88 | 2.72 | 2.86 | 0.98 | 0.15 | -1.88 | 0.90 |
| 19 Food and kindred products | 2.01 | 2.58 | 0.17 | 0.57 | -2.41 | 1.04 | 1.98 | 2.56 | 0.16 | 0.58 | -2.40 | 1.06 |
| 20 Tobacco products | 0.57 | -5.64 | -2.91 | -6.21 | 2.72 | 4.05 | 0.71 | -5.65 | -3.00 | -6.36 | 2.65 | 4.20 |
| 21 Textile mill products | 4.18 | 4.81 | 2.94 | 0.63 | -1.87 | 1.22 | 4.17 | 4.80 | 2.93 | 0.63 | -1.87 | 1.23 |
| 22 Apparel and other textile products | 1.63 | 3.20 | 3.19 | 1.56 | -0.01 | 0.78 | 1.63 | 3.19 | 3.22 | 1.55 | 0.04 | 0.79 |


+


## Appendix Table 1: Listing of Detailed Industries For BEA Capital Stock Data

Farms
Agricultural services, forestry, and fishing
Metal mining
Coal mining
Oil and gas extraction
Nonmetallic minerals, except fuels
Construction
Lumber and wood products
Furniture and fixtures
Stone, clay, and glass products
Primary metal industries
Fabricated metal products
Industrial machinery and equipment
Electronic and other electric equipment
Motor vehicles and equipment
Other transportation equipment
Instruments and related products
Miscellaneous manufacturing industries
Food and kindred products
Tobacco products
Textile mill products
Apparel and other textile products
Paper and allied products
Printing and publishing
Chemicals and allied products
Petroleum and coal products
Rubber and miscellaneous plastics products Leather and leather products
Railroad transportation
Local and interurban passenger transit Trucking and warehousing

Water transportation
Transportation by air
Pipelines, except natural gas
Transportation services
Telephone and telegraph
Radio and television
Electric services
Gas services
Sanitary services
Wholesale trade
Retail trade
Federal reserve banks
Other depository institutions
Nondepository institutions
Security and commodity brokers
Insurance carriers
Insurance agents, brokers, and service
Real estate
Nonfinancial holding and investment offices
Financial holding and investment offices
Hotels and other lodging places
Personal services
Business services
Auto repair, services, and parking
Miscellaneous repair services
Motion pictures
Amusement and recreation services
Health services
Legal services
Educational services
Other services, n.e.c.


[^0]:    ${ }^{1}$ For other vintage models, see Böhm-Bawerk (Thijs), Tatom (1979), Wolff (1991) or Abramovitz (1994).

[^1]:    ${ }^{2}$ Another example is a baseball pitcher, whose throwing speed will generally decline as he ages.

[^2]:    ${ }^{3}$ An obsolescence rate may be negative. First class train service is not what it used to be.

[^3]:    ${ }^{4}$ The Bureau of Economic Analysis does not disentangle annual rings of capital and, therefore, we cannot test this implicit assumption.
    ${ }^{5}$ The source is: U.S. Bureau of Economic Analysis, CD-ROM NCN-0229, "Fixed Reproducible Tangible Wealth of the United States, 1925-97."

[^4]:    ${ }^{6}$ The source for all data except the capital stock data is: http://www.bea.doc.gov/bea/dn2.htm.
    ${ }^{7}$ The correlation coefficients in capital growth rates across the 58 industries by ten-year period range from a low of 0.96 in the 1957-67 period to a high of 1.00 in the 1987-97 period.

[^5]:    ${ }^{8}$ We have decided to use 1967 as the demarcation of the beginning of the slowdown period instead of the more standard 1973 because of peculiarities associated with the year 1973 (such as the beginning of the oil crisis in the U.S. and the end of Bretton Woods). In Table 5, '1967 Slowdown' and also '1987

