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Abstract 

The specification of cross-sectional models is usually solved following a 

traditional procedure, highly supported by practitioners. In the first step, a simple model 

is proposed that will be subsequently improved with different elements if the evidence 

so advises. This procedure expedites the econometric solution and fits well into the 

Lagrange Multiplier approach, which contributes to explain its current popularity. 

However, there are other methods that could also be used, and some of them are 

considered in this paper. Specifically, we turn our attention to the Vuong test, developed 

in the context of the Kullback-Leibler information measure. This test represents an 

intermediate solution between the complexity inherent in the Wald test and the 

simplicity of the Lagrange Multiplier principle. 
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1.- Introduction 

 In a recent paper, Florax, Folmer and Rey (2003, FFR in advance) review the 

strategies of building models employed in the area known as Spatial Econometrics. 

According to them, at present, a classical forward stepwise approach dominates, 

structured in three stages: 

(i)- In the first place, a simple model is estimated, static and specified under ideal 

conditions. 

(ii)- Secondly, a series of tests of spatial dependence are applied to the equation. 

(iii)- If the null is rejected in any test, the corresponding adjustments will be applied: 

reformulating the equation, filtering the variables, incorporating elements of 

spatial dynamics, .... 

 This method could be called Specific to General Modelling in terms of 

Charemza and Deadman (1997), and is very popular among econometricians. Implicitly, 

the reliability of the procedure is tied to the number and scope of the misspecification 

tests solved during the process, which explains the wide-ranging set of such tests 

habitually reported. However, this kind of expanding-through-remedies strategy is not 

the only possibility for building models in a cross-sectional setting. As FFR indicate, we 

could adopt exactly the opposite approach, General to Specific Modelling, or, in their 

own words (p.557), a ‘Hendry-like specification strategy’. Between these two 

alternatives there are a million different possibilities of dealing with the specification 

process. It is unlikely that all of them would finish up with an identical model, which 

poses the question of the method as one of the most important for us. 

 The scope of our paper is more limited. We would like just to pick up on some 

of the questions proposed in the work of FFR, especially those associated with the 

dynamics of the equation. However, it should be stressed that the real background of the 

discussion is that of model specification. In the next section we summarise a series of 

results well established in the literature on econometric methods about the problem of 

how to compare models. The third section focuses on the proposal of Vuong (1989) and 

the special features caused by the spatial framework of our specifications. In the fourth 
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section we solve a small Monte Carlo experiment devoted to the test of Vuong. The last 

section is reserved for the conclusions and final comments. 

2.-Information measures and other techniques for model selection in a spatial setting. 

 Almost every introductory essay to the discipline states that spatial relationships 

are characterised by cross-sectional dependence and heterogeneity and that these 

features should guide our econometric searches. This may explain why the literature on 

spatial econometrics methods is so biased towards problems dealing with testing 

procedures and with the development of powerful estimation techniques in several non-

standard situations. These questions are of greater importance, although we must 

recognise that there remain other areas in which the discussion has been brief. In 

particular, those related to the Methodology merit some further attention. 

Obviously, Spatial Econometrics is not a world apart from mainstream 

Econometrics so that the methodological discussion registered in the field of Economics 

since Robbins (1935) is also of relevance here. There are details, arising from the nature 

of the data (be they spatial or temporal), that result in peculiarities that are necessary to 

acknowledge. For example, the objective of a cross-sectional model will rarely be that 

of prediction, as it commonly is in a temporal context. Furthermore, the structure of the 

relationships that dominate in the first case is multidirectional and accompanied by 

multiple external effects (spillover, contagion, etc.). In these circumstances it is very 

difficult to apply the statement of Judge et al. (1980): ‘... many of the choice procedures 

(between econometric models) (...) recommend splitting the data into two sets; one set 

for model choice and estimation and the other set for assessing the empirical construct’. 

Practical experience in the field of Spatial Econometrics shows a clear 

preference for the use of simple measures, mainly associated with the goodness of fit of 

the model. Anselin (1988) warns against the indiscriminate use of the R-squared 

statistics in models with spatial structure. Instead, it seems preferable to employ 

techniques that make use of an explicit Loss Function (Aznar, 1989). Anselin and 

Griffith (1988) study the properties of Mallows’ Cp under different spatial 

configurations and their conclusions are not very positive for this statistic. The Akaike 

Information Criterion, AIC, (Akaike, 1973) is also widely used in applied econometrics, 
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including those with spatial or regional contents, in spite of being inconsistent1. There 

are other selection statistics whose behaviour is more robust such as, for example, the 

Schwarz (1978) Bayesian Criterion, SBC, or the Hannan-Quinn (1979) Criterion, HQC. 

In any case, the claim of Anselin (1988, p. 297) when he says that: ‘these techniques 

can be related to important bodies of theory and methodology in regional science and 

geography. (...) and have been suggested at various points in time as the new and 

improved research directions to follow’, still seems to be valid. This is shown by the 

work of FFR, which takes up again the question of searching for the best specification 

(or, at least, the more acceptable one). 

The present paper insists along the same lines although our objectives are more 

modest. Our motivation is just to explore the potential of the procedure of model 

selection developed by Vuong (1989). The focus of his proposal is the Kullback-Leibler 

information measure, although with a slightly different point of view. The AIC, as well 

as some other selection criteria, uses this statistic to measure the distance of the model 

under consideration from the DGP, whereas in the case of Voung it is used to determine 

which model, of the two considered, is closest to the true DGP. That is, it is just a 

question of selecting the best model in a set of two (the main aspects of this method are 

described in Appendix A). It could be argued that this scenario is too narrow to be 

useful in applied work. However, there are some common situations in which the 

Voung test fits perfectly, as we will show immediately. 

In the Introduction to their paper, FFR state that, in a spatial context, habitually 

we begin by specifying a simple model under ideal conditions 
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 (2.1) 

The model is estimated by LS and then checked for errors in the equation. 

Spatial dependence, as well as heterogeneity, is a central feature of the specification and 

for this reason we will use the whole set of misspecification tests, most of them of a 

                                                

1 In terms of Aznar (1989, p. 153):’ ....the asymptotic probability of overfitting is non-zero, whilst the 

asymptotic probability of underfitting is zero. So these criteria have an asymptotic probability, which is 

non zero, of selecting a model larger than the true one’. 
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Lagrangian type. These kind of tests are easy to solve because they need just the LS 

estimators, but suffer from a lack of specificity in their alternative hypotheses. It is well-

known, for example, that the LMERR, whose null is independence in the series of 

residuals, also reacts when we forget to include a lag of the dependent variable in the 

right hand side of the equation. The same is true with the LMLAG which reacts to 

errors in the error equation. This is the reason for the Lagrange Multiplier tests 

presented in Anselin et al. (1996), which are robust to local misspecification errors 

although they have some other weaknesses (Mur and Trivez, 2003, or Mur and 

Lauridsen, 2004). In short, it is not an unusual possibility to be faced with a situation 

where all misspecification tests are significant at the same time. FFR indicate that in 

this case the efforts should be directed first towards the problem with the bigger, or 

more significant, statistic. 

A totally different alternative consists of inverting the sequence of the discussion 

using, in a Hendry-like approach, the more general model as the starting point. This 

model may contain dynamic terms both in the residuals and in the main equation2: 
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 Obviously, the main problem with this model is solving its estimation. The ML 

algorithm is computer time-consuming, and the reward is the set of Wald tests (see 

Appendix B for some additional results). However, this framework seems more robust 

because, at least theoretically, the rejection or acceptance of the hypothesis checked will 

not be influenced by omitted factors, avoiding the problem of local misspecifications. 

We are aware that this last statement must be investigated and, eventually, corroborated. 

 Finally, there is a third possibility that occupies an intermediate position 

between the simplicity of Lagrange Multipliers and the complexity inherent to the Wald 

tests. We are referring to the Vuong approach, as it has been presented before. To begin 

with, it is important to stress that we are dealing with a particular decision problem: it 

involves choosing between a model with substantive autocorrelation and one with 

                                                

2 As well as heterogeneity, non-linearity, non-normality and other anomalies that we do not care now. 
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residual autocorrelation, once clear symptoms of misspecification have been obtained 

from the initial static relationship (Equation 2.1). The problem now is that of 

determining which of these two models is preferable. This is an exercise of 

discriminating between non-nested models, given that the static specification of (2.1) 

has been discarded. Both models (substantive and residual dependence) will be 

overlapped only if the static specification of (2.1) were maintained as a third, rival, 

alternative. However, this circumstance has been discarded as wrongly specified. 

3.-The spatial dimension in the Vuong approach. 

 The proposal of Vuong is singular because it deals with only two rival models. 

This is clearly a restriction that limits the usefulness of the method for model selection 

in a more general context. However, in some specific cases, the approach may be very 

valuable. This is true when we are sure that a static model is wrongly specified because 

it has no dynamics, but we do not know exactly where to expand the model: including 

lags in the main equation or an autocorrelation structure in the error. 

 Another question is the tightness of the iid clause on which the results of Vuong 

rest explicitly. To circumvent the implication of this clause, it is sufficient to filter the 

variables of the model, using the eigenvectors of W. If this weighting matrix is binary 

and symmetric, it will admit the basic spectral decomposition: 
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where {λr, r=1, 2,..., R} are the eigenvalues of W and the eigenvectors are in the 

columns of matrix Q. 

 Supposing that there is substantive autocorrelation in the model, we can use the 

matrix Q to obtain that: 
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where y*=Q’y, Z*=Q’Z and u*=Q’u are the filtered series. It is important to underline 

that the final model of (3.2) does not have relationships of cross-sectional dependency. 

Furthermore, if there is residual autocorrelation in the original model, the filtering 

process results in: 
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where ε=ε '* Q . The filter leads to a heteroskedastic error term ( ),0(~ 22
2

* ∆σ −Nu ), 

which is independent in a cross-sectional setting. 

 The log-likelihood of model (3.2) is: 
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where [ ]σρβ=ϕ 2
11 ;;  and [ ]'x;....;x;xx *
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*
r = . The log-likelihood of model (3.3) is: 
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with [ ]σρβ=ϕ 2
22 ;; . Combining these results, the likelihood ratio (expression A.3 in 

Appendix A) can be expressed as: 
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whose convergence limit may be established in general terms: 
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That is a well-known result in Statistics that states that the sample average (the 

likelihood ratio) of a series of independent random variables is a consistent estimator of 

the first order moment. Furthermore, the log likelihood functions of (3.4) and of (3.5), 

evaluated in the parameters of the DGP (ϕ1 y ϕ2) or in the pseudo-true convergence 

values (ϕ*
1  and ϕ*

2 ), admit a Central Limit Theorem (Davidson, 2000), which extends to 

the likelihood ratio itself: 
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 To sum up, two rival models have been identified which are non-nested. The 

null and alternative hypotheses can be expressed as: 
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 The test statistic is that of (3.7), which we will use knowing that: 
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4.-The performance of the Vuong approach: A simulation experiment 

 In the previous sections, we have defended the usefulness of the Vuong test to 

help us to resolve the specification of a cross-sectional static econometric model with 

clear symptoms of misspecification. The results seem interesting, although they are 

obtained in an asymptotic context and under the iid clause. To avoid the rigidity of the 

latter, we have proposed to filter the data using the eigenvectors of the weighting matrix 

W. The filter neutralises the relationships of transversal dependence although it will 

maintain a heteroskedastic structure, whose consequences on the performance of the test 

are difficult to determine in advance. In these circumstances we consider it fully 

justified to resolve a Monte Carlo exercise to examine how Vuong's test really works in 

circumstances similar to those of a problem of real modelling. We now describe the 

fundamental outlines of the exercise that has been carried out. 

 We have taken as a point of reference a simple lineal model such as: 

 R,...,2,1r;uxy rrr =+β+α=  (4.1) 

 In our framework, Vuong's test presupposes the presence of spatial effects, 

whether they are due to the presence of dynamic terms in the main equation of the 

model or to the existence of an autocorrelation structure in the error equation. The first 

case, expressed in matrix notation, corresponds to 
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where X is a matrix of order (Rx2) and ϕ the column vector of parameters ϕ=[α,β]’, 

associated with that matrix. The error term is assumed to be a white noise. The 

equations that develop in the second case are the habitual ones: 
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 The idea of the experiment consists of generating samples using the equations of 

(4.2) and of (4.3), and employing different configurations of values in the parameters. 

Now we will see what happens with these data when they are adjusted to a static model 

like that of (4.1). Concretely, for each estimation we will examine six misspecification 

tests (as are described in Appendix C): two of residual autocorrelation (LM-ERR and 

LM-EL), two of substantive autocorrelation (LM-LAG and LM-LE), as well as the joint 

test SARMA and the inevitable Moran test, already used in many cases as a generic 

specification test. 

 Regardless of the situation described by this set of tests, the Vuong test has been 

resolved (it would really only have been necessary when the above tests produced a 

confusing picture with respect to the type of error that exists in the specification). This 

test requires the ML estimation of the model with substantive dependency of (4.2) and 

of the model with residual dependence of (4.3). After resolving these estimations, the 

corresponding series have been filtered using the eigenvectors of matrix W, as a 

previous step to obtaining the Vuong statistic of (3.6) as well as the variance of (3.11). 

The final test is that of (3.9). 

 Other elements that intervene in the simulation are the following: 

• Three sample sizes have been employed with R=25, R=100 and R=120. 

• In the first two cases we have used regular grids of 5x5 and 10x10, 

respectively. The contacts have been obtained in rook movements giving rise 

to a binary and symmetrical weight matrix, Wb. This matrix has finally been 

multiplied by a scalar, W=k Wb, to assure a wide range of variation (between 

–1 and 1 in most cases) for the parameter of spatial dependence. 
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• The matrix of size 120 comes from the NUTS II European regional system 

for 15 member countries. Firstly, a matrix Wb with typical elements was 

obtained: { }sr;R,...,2,1s,r;dw 1
rs

b
rs ≠== − , where drs is the distance between 

the centroids of regions r and s. Then this matrix was standardised, as in the 

previous case, to obtain the final weighting matrix W. 

• The data of the white noise and of the regressor come from a normal 

distribution, with mean zero and variance one. 

• Three pairs of values in the parameters α and β have been simulated. The 

first, with values α=10 and β=0.5, assures an R2 statistic of around 0.2, given 

that there are no spatial effects in the regression. The values of the second are 

α=10 and β=2 and the R2 statistic is about 0.8. In the third case, the scale has 

again been fixed at 10 while the slope has been raised to 5, for an expected R2 

of approximately 0.95. 

• The parameter of spatial dependence, ρ, oscillates between –1 and 1, in most 

cases, with increments of 0.1. 

• Each configuration has been repeated 1000 times. 

 The most relevant results of this exercise are presented in Figures 4.1 to 4.6. In 

the first two we have samples of 25 observations, of 100 in the next two and of 120 in 

the last two. The weighting matrixes that have intervened in the elaboration of Figures 

4.5 and 4.6 have been based on the geographical distance, while those used in Figures 

4.1 to 4.4 have been constructed under the criteria of contiguity and rook movements in 

a regular grid. Furthermore, in Figures 4.1, 4.3 and 4.5 we have used a DGP with 

residual autocorrelation, while in the others a DGP with a substantive autocorrelation 

structure. 

(Figures 4.1 to 4.6,  Pages 15 to 20) 

 In the graphs are shown, horizontally, the value of the spatial dependence 

coefficient (substantive or residual) while, vertically, are represented the percentage of 

rejections of the null hypothesis achieved with the test indicated in each case. In all the 
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Figures, the series of dots without connecting line indicate the average value obtained 

for the R2 statistic. 

 The graphs on the left of each figure, under the title Risk of Confusion, try to 

describe the potential risk of finding ourselves in a situation of lacking of a clear 

decision because the misspecification tests detect problems in the model but cannot 

agree on their origins. The series of the continuous dotted line, called Traditional, 

shows the number of draws in which the traditional tests of spatial dependence (the I of 

Moran, LM-LAG, LM-ERR and SARMA) reject simultaneously their respective null 

hypothesis. The continuous line, with the heading Robust LM(1,1), indicates the number 

of times the two robust Multipliers, LM-LE and LM-EL, simultaneously reject their 

corresponding null hypothesis. The series in the continuous line with slashes with the 

heading Robust LM(0,0), describes the cases in which both robust tests accept, 

simultaneously, their corresponding null hypothesis. Lastly, the series in the dashed line 

reflects the number of times in which Vuong's test is not capable of discriminating 

between the two processes of spatial dependence contemplated in our analysis 

 The graphs on the right of each Figure try to describe the ability of the two 

available instruments to select the most adequate model of dependence for the data 

simulated. The continuous line with slashes represents the series called Vuong (1,0), 

which corresponds to the number of times in which the Vuong test selects the model of 

substantive dependence. The series called Vuong (0,1), represented in a continuous line, 

indicates the number of times in which this test selects a model of residual dependence. 

With respect to the robust tests, the representations are similar. The series called Robust 

(1,0), in dashed line with slashes, reflects the number of draws in which the LM-LE test 

has been significant but the LM-EL test has not; that is, the model with substantive 

dependence has been selected. Finally, the series called Robust (0,1) describes the 

number of times in which the configuration of these tests advises us to select the model 

with residual dependence. 

 The comments on the results obtained can be grouped around two fundamental 

questions: 

• How important is the risk of confusion? 

• How trustworthy are the available discrimination instruments? 
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 On the first aspect it can be said that the risk of facing a battery of non-

conclusive specification tests is higher when the simulated process incorporates a 

structure of substantive dependence. In Figures 4.2, 4.4 and 4.6 it can be observed that 

the probability of all the tests being significant increases rapidly with the value of the 

parameter of spatial dependence. At the extremes of the parametric space considered, 

the probability of the four traditional statistics being significant is practically one. 

The robust tests present strong anomalies that seem to be related to the sample 

size. For example, in Figure 4.2 with 25 observations, the series Robust (1,1) hardly 

surpasses the threshold of 10% in the whole sample space. However, when a sample 

size of 100 observations is used in Figure 4.4, unexpected ‘bubbles’ appear in 

intermediate zones of the sample space. This anomaly is more noticeable for positive 

values of the coefficient of spatial dependence3, and it is also present in the range of 

negative values. This situation occurs only when we have simulated a process with 

substantive dependence because, in the case of residual dependence of Figures 4.1, 4.3 

and 4.5, all the series show a regular shape. As said before, this strange behaviour of the 

robust Multipliers had already been detected in other circumstances (Mur and Trivez, 

2003, or Mur and Lauridsen, 2004). 

It is clear that the discriminatory capacity of these instruments, Vuong's test and 

the robust tests, is not sufficiently consistent. Vuong's test seems to work quite well 

when the process that has intervened includes only residual-type dependence. Its 

sensitivity is very appreciable so that, for samples of size 100 or higher, it obtains 

excellent results even for reduced levels of spatial dependence. In any case, it improves 

the power of the robust Multipliers by between 10 and 30 points. 

The problems arise when the structure of dependence is substantive. Vuong's test 

tends to produce better results than the robust tests although diverse incidences must be 

noted. In the first place, when the size of the sample is small and the parameter of 

spatial dependence takes positive values, the relationship is produced in the opposite 

sense: the robust Multipliers work better than Vuong's test, as can be seen in Figure 4.2. 

Secondly, the size of the sample accentuates the discriminatory capacity of both 

                                                

3 Between 0.4 and 0.5 and with a low R2, the percentage of inconclusive cases is nearly 90%. 
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instruments although it also provokes certain distortions. The ‘bubbles’ of the robust 

tests to which we referred with reference to the Risk of Confusion are again produced in 

this case, but in the opposite sense: as unexpected cuts in the discriminatory behaviour 

of the Multipliers. What is happening now is that the LM-EL test tends to be significant, 

erroneously, in this specific zone of the parametric space damaging the correct working 

of its complementary test, the LM-LE. 

Lastly, a positive aspect that should be underlined with respect to the 

performance of these instruments is that the probability of them causing us to take an 

erroneous decision is very reduced. In all the cases, both Vuong's test and the robust 

Lagrange Multipliers, oscillate between the indefinition and the correct identification of 

the process. The estimated probability of taking an erroneous decision (selecting, for 

example, a model with substantive dependence when effectively a model with residual 

dependence has intervened) is very reduced. When the parameter of spatial dependence 

takes low values, close to zero, the incorrect decisions are close to 50% in the case of 

Vuong and between 5% and 10% with the robust tests. However, as the parameter takes 

higher values, this probability becomes negligible. 

5.- Conclusions 

 This paper has been undertaken as an exercise of reflection on a problem we 

consider of importance, the selection of the most adequate model for our data. 

Excepting the seminal work of Anselin (1988) and the more recent of Florax, Folmer 

and Rey (2003), there are not many specific references in the specialised literature in the 

field of Spatial Econometrics. 

 The content of the present paper has focused on the usefulness of Vuong's test. 

The requirements of this test are quite peculiar, given that only two rival alternatives are 

contemplated and it requires the iid clause. However, the proposal adapts well to a quite 

common situation in applied research, namely that of facing ourselves with a battery of 

misspecification tests that show symptoms of error in the model, but are unclear with 

respect to their motive. If, as habitually occurs, the analyst only contemplates a model 

with residual dependence or with substantive dependence as alternatives, the ideal 

circumstances for using Vuong's test have arisen. 
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 The evidence obtained from the simulation exercise carried out in this paper 

points to the necessity of going deeper into the question. Vuong's test works reasonably 

well when the process that has intervened in the DGP includes a structure of residual 

dependence. In this case, it greatly improves the results of the robust Multipliers. 

Nevertheless, anomalies abound when the process that has intervened includes a 

mechanism of substantive dependence. It is not easy to find convincing arguments to 

explain these results, something that will form part of a future programme of research. 
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FIGURE 4.1: Residual Autocorrelation. R=25. Binary Normalised Matrix. 
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FIGURE 4.2: Substantive Autocorrelation. R=25. Binary Normalised Matrix. 
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FIGURE 4.3: Residual Autocorrelation. R=100. Binary Normalised Matrix. 
 
 4.3a- Risk of Confusion LOW R2 4.3b- Discriminating Performance 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Traditional Robust LM(1,1) Robust LM(0,0) Vuong(0,0) R2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Vuong(1,0) Vuong(0,1) Robust LM(1,0) Robust LM(0,1) R2  
 
 4.3c- Risk of Confusion MEDIUM R2 4.3d- Discriminating Performance 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Traditional Robust LM(1,1) Robust LM(0,0) Vuong(0,0) R2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Vuong(1,0) Vuong(0,1) Robust LM(1,0) Robust LM(0,1) R2  
 
 4.3e- Risk of Confusion HIGH R2 4.3f- Discriminating Performance 
 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Traditional Robust LM(1,1) Robust LM(0,0) Vuong(0,0) R2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.90 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Vuong(1,0) Vuong(0,1) Robust LM(1,0) Robust LM(0,1) R2  



 

 

18 

FIGURE 4.4: Substantive Autocorrelation. R=100. Binary Normalised Matrix. 
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FIGURE 4.5: Residual Autocorrelation. R=120. Normalised Distance-based Matrix. 
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FIGURE 4.6: Substantive Autocorrelation. R=120. Normalised Distance-based Matrix. 
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 4.6c- Risk of Confusion MEDIUM R2 4.6d- Discriminating Performance 
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Appendix A: Basic aspects of Voung’s approach 

 The strategy proposed by Vuong (1989) entails some complexity and it is not 

widely spread, so let us introduce its key elements. On one hand there is a random 

vector Xt of order (mx1), partitioned in Xt=[Yt, Zt] of orders n and k respectively 

(n+k=m). The true distribution function of vector Xt is H X
0 , although we are interested 

in the conditional of Yt (endogenous) with respect to Zt (explicative), H ZY
0

| . Vectors Xt 

satisfy the iid clause and the distribution and density functions ( h ZY
0

|  and h ZY
0

| ), both 

conditional and unconditional, are well behaved. 

 The details of the true distribution function are unknown, so two possible rival 

families are contemplated: { }ℜ⊂Θ∈θθ=θ
p

ZYFF );(|  and { }ℜ⊂Γ∈γγ=γ
q

ZYGG );(| , 

which can be nested, overlapped or strictly independent. Again, the associated 

distribution and density functions are well behaved, so the matrices of second order 

moments exist: 
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where E0 means ‘expected value according to the true distribution function’ of Xt.  

 The maximum likelihood estimators of θ and γ will be consistent in the sense of 

White (1982). If the model is misspecified, these estimators will converge towards the 

pseudo-true values of Sawa (1978). Whatever the case, their asymptotic distribution 

will be standard: 
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with θ* and γ* being the convergence points, and n the sample size. This result allows 

us to estimate consistently the matrices of second order moments of (A.1) and the 

covariance matrices of (A.2). The difference between the log-likelihoods: 
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is a sum of n independent terms, so that, after standardising, we get results of almost 

sure convergence: 
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and in distribution: 
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 The result of (A.5a) is obtained when the models are not equivalent, 

( ) ( )γ≠θ ** ;|;| ZYgZYf tttt . In this expression, ω 2*  is the variance of the quotient 

between the log-likelihoods, evaluated in the parameters of convergence: 
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 On the other hand, the result of (A.5b) corresponds to the case that both models 

are observationally equivalent, ( ) ( )γ=θ ** ;|;| ZYgZYf tttt . The final statistic M(m, λ) 

is the sum of the squares of m normal variables, each of them weighted by the 

corresponding element of vector λ: ; M(m, 1
2� λ= )λ =

m
j jj u  )1iidN(0,~u j . In particular, 

in (A.5b), λ* is the vector of (p+q) eigenvalues of matrix V: 
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 The second order moment of (A.6) can also be used to measure the distance 

between both families. If the models are equivalent, the variance will be zero, so: 
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 The test statistic is the sampling variance of the series of contributions to the log-

likelihoods of (A.3): 
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or in its centred version: 
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 Under the null hypothesis, both statistics have well-defined probability limits: 

 ω=ω 2*2~
nplim  (A.11a) 
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and their asymptotic distribution turns out to be that of (A.5b): 
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 These results allow us to built a model selection strategy in which three cases are 

distinguished. 
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Non-nested models 

 This will happen when ∅=∩ γθ GF , which implies that the density functions 

will, necessarily, be different: );();( ** γ−≠θ− gf . In this case, the likelihood ratio will 

lead to a simple test of the null hypothesis against a bilateral alternative: 
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 Theorem 5.1 of Vuong (1989, p. 318) establishes that: ‘.... if Fθ and Gγ are 

strictly non-nested, then: 

(i) under [ ] )1;0(~/~;~: 2/1
0 NLRnH

D

nnnn →ωγθ−  

(ii) under [ ] ∞+→ωγθ−
as

nnnnf LRnH ~/~;~: 2/1  

(iii) under [ ] ∞−→ωγθ−
as

nnnng LRnH ~/~;~: 2/1  

(iv) properties (i) to (iii) hold if ω~n  is replaced by ω̂n ‘. 

 Given that the two models are different, the acceptance of the null should be 

interpreted in the sense that the available evidence does not permit us to discriminate 

between both alternatives. 

Overlapped models 

 In this case, both families will share some common distribution functions 

( ∅≠∩ γθ GF ), but they are not nested ( GF γθ ⊄  y FG θγ ⊄ ). In these circumstances, 

both specifications may be equivalent so that this possibility should be contemplated at 
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first. Once the equivalence has been discarded, we should proceed to discriminate 

between them. The test of the first stage (equivalence) is: 
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for which the variance of (A.9) can be used. Theorem 6.1 of Vuong (1989, p. 321) 

indicates that: 

‘(i) under H ω
0 , for any  x ≥ 0, [ ] 0)~;(~Pr 22

as

nqpn xMxn →λ−≤ω +  

(ii) under ∞+→ωω
as

nA nH ~; 2  

(iii) properties (i) and (ii) hold for ω̂2
nn ‘. 

 If the null hypothesis were rejected, we can conclude that both models are not 

observationally equivalent. Then, the LR test could be used to discriminate between 

them as in (A.13). 

Nested models 

 In this case, one of the families is a particular case of the other ( FG θγ ⊂ ). 

When the ample model is well specified, the strategy based on the LR test of (A.3) leads 

to the usual case with a standard χ2  distribution. 

Appendix B: The Wald test in a general specification 

The log-likelihood of model (2.2) is as usual: 
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where λr is the r-th eigenvalue of the weighting matrix W and ϕ the vector ϕ = 

[δ,ρ,β,σ2
]’. The score is non-linear in parameters and its solution requires numerical 

methods: 
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 The ML estimation of β and σ2 could be obtained conditionally on those of the 

parameters of spatial dependence, ρ and θ: 
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with WID θ−=
~~

 and WIB ρ−= ~~
. Then the procedure of Ord (1975) could be used. 

The information matrix is of a general type: 

�
�
�
�
�
�
�
�
�
�

	




�
�
�
�
�
�
�
�
�
�

�




σσσ

σ
θ

σ
ρ

σ
β

σ
β

σ

=�
	



�
�




ϕ∂ϕ∂
∂−=ϕ

−−

−
−−

−
−−

−

−

2

RDtrWBtrW
0

DtrW
)(tDBWtr20

BtrW
DBWtr2)(t

DX'WDB'X'

00
XBDW'D'XDX'D'X

'
l

E)(I

42

1

2

1

2

1
112

2

1
112

2

1

2

1

2

2
 

 (B.4) 

where: 
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 The inverse of this matrix is the asymptotic covariance matrix of ML estimators. 

We will employ the following notation: 
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being α = [ρ,θ,σ2
]’. The main results could be expressed as follows (the details are in 

Mur and Angulo, 2003): 
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with: 

 �
	



�
�



−+

σ
=ρ θρρ

−

)),(1)(var(2)( 2
2

1

mmcorrmR
e

V  (B.10a) 

 �	



��


 ρ+=θ θρρ
θ

),()var()(
2
1

)var(
1

)( 2 mmcorrmV
Rm

V  (B.10b) 

 [ ] [ ]),()()()var()(4)(1
2

)( 2 242
4

2 mmcorrmmmVm
R

V θρθρ µ−µρσ+µ+σ=σ ρθ  (B.10c) 



 

 

28 

 ),(
)var(

)var(
)(),(

2

mmcorr
m

m
VCov θρ�

�
�

�
�
�
�

�
ρ−=θρ

θ

ρ  (B.10d) 

 [ ]),()()()var()(2),( 22 mmcorrmmmVCov θρθρρ µ−µρσ−=σρ  (B.10e) 

[ ]
�
�
�

�
�
� µ

−µ−µρσ=σθ θ
θρθρθρρ

θ R
m

mmcorrmmmmcorrmV
m

Cov
)(

),()()(),()var()(2
)var(

),(
2

2  

 (B.10f) 

being ββ= −− XBDWM'WDB'X'e 1
XD

1  and ( ) 'D'XDX'D'XDXIM 1
XD

−−= . In the 

above expressions, we have introduced the following auxiliary variables in order to 

facilitate these rather awkward results: 
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 Using these results, it is straightforward to obtain the Wald tests for the simple 

null hypothesis relative to each one of the parameters of spatial dependence: 
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 At the same time, it may be of interest to obtain also a global test of spatial 

effects in the model, which implies a composite null: 
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where r )
~

;~( θρ  stands for the correlation coefficient between the ML estimator of ρ and 

θ4. If these estimators were orthogonal ( 0r )~;~( =θρ ), the join statistic of (B.13) would 

turn into the sum of the two single statistics of (B.12). On the other hand, when the 

parameters of spatial dependence take on similar values, the correlation between their 

corresponding ML estimators will tend to the unit ( 1)
~

;~( →θρr ). In this case, the statistic 

of (B.13) moves towards the difference between the unidirectional statistics of (B.12): 

 
2

2
( ; )

1
W( ; ) t( ) t( )

1 rρ→θ ρ θ


 
ρ θ → ρ − θ� 	−
��

� �� �  (B.14) 

with )~()~( ρ=ρ Wt  and )
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( θ=θ Wt . 

Appendix C: Misspecification tests employed. 

The tests described here always refer to a static model, such as: y = Xβ + u. This 

model has been estimated by LS, where 2σ̂  and β̂  correspond to the LS estimations 

and û  to the residual series. These tests are the following (see Florax and de Graaff, 

2004, for the details): 
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LM-EL Test: 
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SARMA Test: 
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Moreover, 2
1

ˆ ˆˆR (�'X'WMWX�) / ˆTJρ−β = + σ  and M=[I-X(X’X)-1X’]. As is well-

known, the asymptotic distribution of the standardised Moran’s I is an N(0,1); the four 

Lagrange Multipliers that follow, LM-ERR, LM-EL, LM-LAG and LM-LE have an 

asymptotic )(12χ . The final SARMA statistic has a chi-square distribution with two 

degrees of freedom under the null of no spatial effects. 
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