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Summary 
 
This paper aims at analyzing variations in road mortality between and within 24 European 
countries and seeks to attribute underlying structural factors to them. We introduce a Bayesian 
spatial multi-level regression model using generalised linear mixed model (GLMM) 
framework, which allows the inference for the model to be carried. The population density 
and country affiliation were used as covariates and were fitted into the model at using four 
levels of spatial aggregation known as NUTS regions – official statistical units in the EU 
defined by Eurostat. Population density has been found to have a significant influence on road 
mortality at regional level. For all countries, the elasticity estimate is -0.33, meaning that a 
10% increase in population density will lead to a 3.3% decrease in road fatalities. Multi–level 
model defined at NUTS-3 level, taking into account NUTS-2 aggregation enables to take into 
account infra-regional variances in road mortality and produce most reliable model parameter 
estimates. Variations in Bayes relative risk (mortality ratio standardized by population density 
and country affiliation) is highest at NUTS-3 level, while it decreases for country level and 
NUTS-2 level, what suggests the existence of other important underlying factors being 
responsible for the variations among regions. Mapping Bayes relative risk allows identifying 
those regions, which should be targeted by national and regional policies. Last, not least, the 
new ranking of countries according to their road mortality risk adjusted for population density 
is presented.  
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1  Introduction 
It is well known that the level of road safety varies in time and space. Although time 
variations have always been subject of interest of policy makers and researchers, the spatial 
component has drawn less attention and has mainly developed in the 1980’s. Based on the 
assumption that many factors affecting the occurrence of road accidents operate at a spatial 
scale (e.g. demographical characteristics, infrastructure structure and quality, or land use 
policy), the spatial analysis must be an integrated part of any rational road accidents analysis. 
Potential utility of such investigation is then the identification of the areas to which the 
resources should be allocated. Empirical spatial data analysis mainly deals with two levels of 
spatial data aggregation: highly aggregated data such as states or countries and, at the 
opposite, local data analyses such as road sections. Regional data (intermediate aggregation 
level) have often been neglected, partly due to data unavailability, and to unavailability of 
convenient methods. Only a few papers on regional accident data have been found in the 
scientific literature (Amoros et al. 2003, Fridstrom et al. 1995, Noland and Quddus 2004, or 
Shaw et al., 2000); in general, they are restricted to one or just a few countries. More 
generally, regional variations in road mortality risk in Europe have hitherto received little 
analytical attention, despite the regular publication of atlases on regional variations in risk 
analysed as a health-problem, hence taking into consideration the place of residence of the 
victim instead of the accident location (Eurostat 2005, Shaw 2000). The only exception in this 
field is the recent work of Lassarre and Thomas (2005), who performed the first descriptive 
spatial analysis of road mortality risk based on regional fatality data coming from 17 
European countries.  
 
The choices of spatial units for regional analyses traditionally tended to be dominated by what 
is available rather than what is the best and not surprisingly only little effort has been done to 
identify the ideal aggregation level for a spatial analysis of road mortality. This is but 
essential as the choice and definition of spatial unit might seriously influence statistical results 
and consequent conclusions. This phenomenon is often termed the Modifiable Areal Unit 
Problem (MAUP), and it is formally defined as a problem arising from the imposition of 
artificial units of spatial reporting on continuous geographical phenomenon resulting in the 
generation of artificial spatial patterns (Heywood, 1998 and Openshaw, 1977). In general, the 
use of small spatial units has a tendency to provide unreliable rates because the population 
used to calculate the rate is small. On the other hand, using larger area units will provide more 
stable rates but may mask meaningful geographic variation evident with smaller areal units 
(“scale problem”) (Nakaya 2000). Using different boundaries for aggregation, e.g. 
aggregating neighbours, may improve the problem to a small degree, but does not get round 
the quantity of variations in counts which remains (aggregation problem). In our case, the use 
of politically defined spatial units makes most sense since we aim to assess the differences in 
risk resulting from different road safety policies and provisions.   

Road fatalities are considered as the consequences of accidents due to deficiencies in the 
vehicle-road user-infrastructure system and are traditionally treated as random events. The 
major factors that are used for explaining their different frequency outcomes are traffic 
structure and density, quality of infrastructure and vehicles and drivers behaviour. National 
road safety policies aim to modify the prevalence of these risk factors by means of laws and 
regulations. Hence, comparing accident statistics means evaluating those policies and 
searching for structural explanations for the observed differences. However, the policy makers 
are not able to control all relevant factors, contributing to higher risks in traffic, such as 
human and physical environment of the mobility context, in which the accident take place. 



Thus, the human component consists of factors such as the distribution of the population by 
age and sex, and the urban and economic structures, whereas the physical component includes 
climate, physical geography, accessibility and land use. When road mortality rates are 
compared by area, it is thus more informative if structural factors are controlled for. 
Epidemiologists often standardize by age–sex structure. For road accidents, we know that 
young male drivers are approximately three times more at risk than adults, and that senior 
road users are more vulnerable in cases of collision. Moreover, we know that mobility 
patterns vary greatly with age and gender. This has not be done in this paper because we think 
that (a) factors such as differential mobility on the motorways or local roads are more 
important, (b) variations in the age–sex distribution between regions are fairly low and (c) 
migration and mobility effects, especially among young drivers, are difficult to grasp at the 
scales of analysis that are used in this paper.  

In this paper, we use the population density as a synthetic indicator (explanatory proxy) to 
“explain” major differences in road mortality across European regions, as it was used by 
Lassarre and Thomas, 2005 in their exploratory paper. Population density takes into account 
many factors which are often not available by region (such as the exposure in traffic for 
different road types, road network or urbanization). We can assume that regions with higher 
population density have developed more sophisticated and safe road network, together with 
the other optional transport choice, partly as a response to higher mobility demands of the 
population and partly due to higher economical performance allowing for infrastructural 
improvements. Often the distinction is made between urban and rural areas as two different 
environments having different accident outcomes. In particular, mortality in rural areas is 
much higher than in urban partly due to the availability and efficiency of emergency services 
(see e.g. Clark and Cushing, 1999, 2004), generally higher driving speed, drinking and driving 
prevalence, lower use of protective systems and older vehicle fleet. Less populated areas are 
also often characterized by a different age structure and social deprivation leading to 
additional risk factors (Baker et al. 1997, Clark, 2003). Rural residents travel more kilometres 
by road and are, thus, more likely to be involved in a serious collisions (Muelleman and 
Mueller, 1996). 

In this paper, we have replaced single spatial level analysis by an analysis combining several 
aggregation levels. Instead of having one model for each level, we introduced a multilevel 
model, which allows producing non-biased estimates in order to correct the biases due to the 
ecological effects of single level models. To do this, we used Bayesian modelling techniques 
using Markov Chain Monte Carlo fitting procedure to estimate the distribution of all model 
parameters. It allows determining a confidence interval of a country effect, which improves 
significantly the interpretation of the ranking of the countries according to their standardized 
road mortality ratio. It further give us a possibility to map Bayes relative risk at NUTS-2 and 
NUTS-3 level in a coherent way taking into account an influence of regional and infra-
regional heterogeneities.  

2 Methods 

2.1 The data 
The analysis covers 25 EU member states and is geographically based on the EUROSTAT 
NUTS 2003 regional classification (Eurostat, 2005). Data are analysed at four aggregation 
levels, which correspond to the first four “Nomenclature of statistical territorial units” levels 
(NUTS-0, NUTS-1, NUTS-2 and NUTS-3). The classification is hierarchical and subdivides 
each country (NUTS-0) into NUTS-1 territorial units, each of which is subdivided into 



NUTS-2 territorial units, these in turn are each being subdivided into NUTS-3 units. 
Nevertheless, some territorial units are classified at several NUTS levels.  
 
Regional accident fatalities data refer to 2002 and were exclusively collected for this analysis 
by personally contacting the national road administrations and statistical offices. The 
following areas were excluded from the analysis due to data unavailability or unreliability: 31 
NUTS-3 regions of Poland and 3 NUTS-3 regions of Scotland (UKM41-UKM43). 
Furthermore 4 NUTS-2(3) French overseas regions (DOM-TOM) were excluded due to their 
outlying location. The 30-days fatality definition originally adopted by the Vienna 
Convention in 1968 is used here: a road death is deemed to have occurred when a person 
injured dies within 30 days of the crash. We did apply IRTAD/CARE correction factors to 
standardize fatalities data in the countries using different definitions as follows: France 
(1.057), Italy (1.078), Latvia (1.08) and Slovakia (1.25).  
 

AREA (square km) POPULATION (thousands) ROAD FATALITIES 
Level N 

Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. 

NUTS-0 25 155708 316.0 543965.0 18159 396.0 82482.0 2004 16 7651 

NUTS-1 88 44741 161.4 410934.2 5118 26.1 18062.9 554 1 1771 

NUTS-2 249 15562 12.0 154312.0 1793 26.1 11106.7 195 1 1024 

NUTS-3 1211 4601 10.0 98910.7 375 19.2 5499.8 34 0 506 
 

Table 1: Basic indicators of NUTS regions for 2002 
 
Basic indicators of NUTS regions summarized in Table 1 demonstrate a great heterogeneity in 
terms of area and population at all aggregation levels. Despite the NUTS classification was 
originally strictly based on population criteria, a lack of integrity can nowadays be observed 
in population size and area coverage of the regions at the same NUTS level.       
 
The level of road safety is measured in this paper in terms of mortality rate. Elsewhere 
presented also as a health risk, this is the one of the most common indicator for the evaluation 
of road safety level and the most common indicator used by the health sector to prioritise 
diseases and other causes of death. The major reason for choosing this indicator is the 
unavailability of exposure data on different levels of spatial aggregation applied in this study. 
The mortality rate is the number of fatalities in a region i (Yi) during 1 year divided by the 
total number of inhabitants residing in i (Ni) in the middle of that year (Tmi=100 000 Yi/Ni).  
Once divided by the mean mortality rate observed for all EU25 countries, a mortality ratio can 
be obtained: Tmi

*=Tmi/11.03.  

2.2 Introduction of explanatory variables 
Road safety researchers have been traditionally using different explanatory variables in their 
statistical models in order to provide a link between observed accident or fatality counts and 
different infrastructure-vehicle-driver risk factors. As an example the work of Friedstrom et 
al., 1995 can be mentioned here. When analyzing large sets of data covering large number of 
different countries, the number of available explanatory factors is significantly reduced to a 
limited number of rather general factors describing the conditions of road traffic. One of such 
factors is population density, which can be understood as a synthetic indicator for mobility 
demands, demography structure, urbanization, road user mix, infrastructure structure and 
quality, and response time of emergency service. (e.g. Baker et al., 1987, Muelleman et 
Mueller, 1996, Yang et al.,1997)      
   



We use Pearson correlation test for measuring the relationship between mortality rate (Tm) and 
population density at different aggregation level. At all four level of spatial aggregation, the 
Pearson product-moment correlation coefficients (r) are significant confirming a very strong 
negative correlation between the two variables. For example for NUTS-3 regions, the tests 
parameters are: r =-0.69, p <0.001. (Table 2) When considering subsets of very densely 
populated regions (population density higher than 500 inhabitants per sq. km), the relationship 
is relatively strong (r =-0.45, p <0.001) while it becomes weaker when only scarcely 
populated regions are considered (typically with the population density under 50 inhabitants 
per square kilometre). (r =-0.25, p <0.01) The identified relationship between mortality rate 
and population density at NUTS-3 level for all countries is strongly negative, meaning that the 
increase in population density leads to a decrease in mortality rate (Tm). 
 

NUTS level r CI (95%) t-value p 
NUTS-0 -0,419 -0.029, -0,699 -2,214 <0,1 
NUTS-1 -0,655 -0.517, -0.760 -8,085 <0.001 
NUTS-2 -0,616 -0.532, -0,687 -12,312 <0.001 
NUTS-3 -0,682 -0,649, -0,712 -31,648 <0.001 

 
Table 2: Pearson correlation coefficients for Log(PopDens) vs. Log(Mortality) 

 
Figure 1 shows for each country the distribution of the NUTS-3 regions in terms of mortality 
rate (log) versus population density (log). Three countries were excluded because they do not 
have a NUTS-3 regional division Luxemburg (LU), Malta (MT) and Cyprus (CY). The 
relationship is most significant (more pronounced) in case of Austria (AT), Belgium (BE), 
Germany (DE) and Portugal (PT), while there is no relationship to be observed in case of 
Slovakia (SK), Finland (FI) and Lithuania (LT). In some countries, the capital city region is 
characterized by a very low mortality rate and a very large population density.  This is partly 
to be explained by the limits of the NUTS regions for those cities: let us take the example of 
Brussels. Brussels is at the NUTS-3 level represented by a region that corresponds to the 
“Brussels Capital Region”, an administrative reality in Belgium. It is well-known that the city 
of Brussels sprawls much beyond the limits of this entity and that hence, the NUTS-3 region 
does not include the suburbs (see e.g. Thomas et al, 2003 and Vanderhaegen et al., 1996).  In 
other cases, the capital city can be fully included in a very large administrative unit such as 
Madrid, or Paris. This is a typical problem in geography which disallows to relate directly 
different road environments to the spatial units. 
 

 
 



Figure 1: Smooth curve for the relationship between log-Mortality rate (LogMort) and log-
Population density (LogPop) by country for NUTS-3 regions 

 
Let us now to further statistically describe the relationship between road mortality (log) and   
population density (log).  We use six Poisson (generalised linear additive) regression models 
(McCullagh and Nelder, 1989). Model 1 depends on the logarithm of the density and model 2 
on a spline function of the logarithm of the density. Models 3 and 4 include an intercept, 
which varies by country (NUTS-0 level). Model 3 allows for a separate intercept for each 
country but imposes a straight-line relationship (with a common slope) with log-density. 
Model 4 relaxes this assumption and instead allows for a common non-linear spline 
relationship after allowing for different country intercepts. Mortality is indeed affected to 
some extent by national policies towards drivers and cars. Issues such as speed and alcohol 
limits, safety features, safety enforcement and driving tests are all determined nationally. The 
model 5 is the model 4 for a broken-line relationship. This model assumes two segments line, 
the first segment with a slightly positive slope of a regression line 0.24 [CI (95%)=0.19,0.28] 
for all Log(PopDens)=2.394 (11 hab/km2) and the second with a negative slope -0.49 [CI 
(95%)=-0.54,-0.45] for higher values of Log(PopDens). In model 6, we add the interaction 
between the NUTS-0 level (country effect) and the logarithm of the population density.  
 
(a) model 1, log(λi)=α+β log(PopDens) 
(b) model 2, log(λi)/=α+β-spline log(PopDens) 
(c) model 3, log(λi)=α+βc +β2 log(PopDens)  
(d) model 4, log(λi)/=α+βc +β2-spline log(PopDens)  
(e) model 5, log(λi)=α+βc +β2c log(PopDens) - segmented 
(f)  model 6, log(λi)=α+βc *β2c log(PopDens) 
 
Considering the analysis of deviance, as the observed Pearson value of model 6 is high (χ2= 
6761 with 1116 degrees of freedom), it is preferable to take into account the overdispersion 
by inflating the variance by a factor Φ. The estimation of Φ can be done by dividing Pearson 
Chi-square by the difference in degrees of freedom as follows: χ2/(n−p)=6.006. The statistic 
for comparing the models is equal to the difference in deviance divided by Φ multiplied by 
the difference in degrees of freedom and should be compared with the appropriate F-
distribution (Firth, 1991). The spline function is fitted by means of a generalized additive 
model. The spline fit accounts for 3 degrees of freedom. The interaction term relative to the 
different slopes by country (Model 6) improves the model to a lesser extent 
(1029/(6.006×21)=8.16 which is large compared with the F(18.1116) distribution  (1.60) and 
should not therefore be neglected. For all countries, the slope is equal to -0.29, it is less 
pronounced for Italy (-0.13) and Sweden (-0.12) and more pronounced for Belgium (-0.45), 
Austria (-0.43) and Portugal (-0.39). Generally, a 10 % increase in population density leads to 
a 2.94 % decrease in the number of fatalities, on average. Considering the statistic 
549/(6.006×3)=30.47 which is large compared with the F(3.1134) distribution (3.84), the best 
model must include a country effect (NUTS-0 level) and the logarithm of the population 
density with a non-linear (spline) rather than a linear form.   
 

Model Deviance  Degrees of freedom Difference in 
degrees of freedom Test statistic 

Null (NUTS-3) 62114 1162 - - 
1, logDens 27145 1161 1162-1161=1 5822.34 vs. F(1,1161) 
2  spline (logDens) ,

r  

r

23329 1158 1161-1158=3 211.79 vs. F(3,1158) 
3, Count y+logDens 7790 1137 1161-1137=24 134.28 vs. F(24,1137) 
4, Country+ spline(logDens) 7241 1134 1137-1134=3 30.47 vs. F(3,1134) 
5 , Country+ (logDens) 7238 1134 1137-1134=3 30.47 vs. F(3,1134) 
6, Count y*logDens 6761 1116 1134-1116=18 4.44 vs. F(18,1116) 

 

Table 3: Analysis of deviance for the Poisson regression 



 
As mortality rate decreases with population density, it is recommended to take this factor into 
account when comparing countries, while both linear and spline form can be suggested. We 
hence select the model 5 with population density and country effect as covariates. 

2.3 The Bayesian ecological regression model 
We here propose an ecological Bayesian regression model incorporating the two chosen 
effects influencing road fatality counts in European regions – population density and country 
affectation to analyse the heterogeneity in road mortality across European regions. Bayesian 
methods have recently gained increased popularity and recognition especially among 
epidemiologists as they allow handling context data where unmeasured confounders and 
spatial autocorrelation are evident, what is the weakness of traditional methods such as 
Gaussian and Poisson regression models (see e.g. Elliott et al., 1992). The most important 
feature of this kind of model is that it allows incorporating random spatial effects into the 
modelling of potential associations between fatality occurrence and covariate effects, at an 
ecological (i.e. regional) level. This model framework makes it possible to ascertain whether 
residual variation remains after accounting for known and measured covariate effects and 
whether the residual effects suggest spatial patterns or clusters. This method also facilitates 
spatial smoothing when regions under investigation involve small-population areas (areas not 
necessarily small in geographical size, but rather with small at risk population, since they are 
subject to high chance of variation). Moreover, it enables data sharing, i.e. risk smoothing, 
over space, which often results in more reliable risk prediction (MacNab, 2004). 
 
Markov Chain Monte Carlo (MCMC) is a generic name given to a whole set of model fitting 
procedures that has revolutionized the use of this set of statistical procedures by providing a 
very convenient method for fitting ecological models which cannot be solved analytically. A 
tractable introduction to the approach is available in a road safety context (Tunaru, 1999). 
Briefly explained, MCMC enables an estimate of the posterior distribution, something that 
cannot be estimated analytically for some models. However, unlike many numerical 
algorithms, this is a simulation approach which is not guaranteed to converge around the 
correct solution, hence in addition to model fitting diagnostics it is important to carry out 
convergence diagnostics with these models (Cowles and Carlin, 1996). Our model has been 
fitted with the WinBUGs software (Win referring to Windows and BUGs referring to 
Bayesian Updating by Gibbs Sampling -one of a number of MCMC methods) as this software 
is particularly capable of fitting these spatial models (Spiegelhalter et al., 1998). 
 
Road mortality counts can be conveniently modeled assuming the data to be Poisson 
distributed: 
 
Yi ~ Poisson (λiNi)  
 
where λi is the Poisson parameter, often referred to in this context as the mortality rate, and Ni 
is the number of road fatalities in region i. In the generalized linear model, the λi for each 
region contains covariates and parameters which indicate the association between the 
covariates and the mortality rate. This model can be extended to form a generalized mixed 
linear model incorporating a random effect within λi. Such model combining fixed and 
random effects is sometimes called also as a mixture model. The Bayesian modelling may be 
implemented for rates (Yi/Ni) and counts (Yi), assuming that the response Yi’s, given a vector ν 
of random effects, are conditionally independent, )(~ νλν ii PoissonY , while  represents the 
expectation of Y

νλi

i given all the random effects. By other words, while conditioning on random 



effects, the corresponding fatality counts are assumed to follow Poisson distribution. In the 
analysis of mortality rates, one assumes the following form of the model: 
 
log(λi

ν)=log(Ni)+ βc+β2.(logDens)+νi
 
where log(λi

ν) represents the expectation of Yi conditioning on random spatial effects νi, 
log(Ni) is an offset population level intercept, βc is a fixed effect measuring the strength of the 
association between the country and mortality rate in a region i (country effect) and β2 is a 
fixed regression parameter for population density. Both βc and β2 are believed to be random. 
Random effect ν captures all the uncertainty regarding the differential mortality rate in each 
geographical unit, such as that arising due to reporting error, missing covariates, over-
dispersion or even genuine underlying differences in mortality rate. The exp(νi)’s represent 
local area mortality ratios adjusted for country and population density (also called relative 
risk). If νi are assumed to be zero mean normal variables ν ~N(0,σ2), the model takes on the 
fairly standard mixed form and only σ has to be estimated during the model fitting procedure. 
Our model can be easily extended by spatial interaction term in form of an additional random 
effect (Aguero-Valverde and Jovanis, 2005), however we decided to do not do so, since it is 
very difficult to rightly interpret all existing interaction between neighbouring regions. 
 
Within a generalised linear mixed model (GLMM) framework, inference for the models can 
be carried out using full Bayesian methods described above. The Bayesian methodology 
requires prior assumptions about the model to be made. The parameter βc has been assumed to 
follow a uniform distribution (-100,100) and β2 a uniform (−∞,∞) distribution. The precision 
(inverse value of variance) τ(ν) is assumed to follow a gamma distribution. τ.ν=1/σ2~ gamma 
(0.001,0.001). We run 50.000 iterations separately for each data set. Such high number of 
iterations is a fundamental condition to reach a convergence of all monitored parameters in 
our models, especially if the prior variables are suffering from random variation. As the result, 
standard deviation, MC error, Deviance Information Criterion (DIC) proposed by 
Spiegelhalter et al. (2002), and 5% and 95% confidence intervals of most important 
parameters as the average value from 25.000-50.000 iterations taken as a reference, are 
considered. (After 25.000 running 25.000 iterations all model parameters are likely stabilised 
and converge to the true values of relevant posterior distributions.) This choice was justified 
by the comparison of Bayesian ecological regression model parameters with GLMM 
parameters assuming Poisson and negative binominal probability distribution.  

2.4 Choropleth maps  
Choropleth maps provide an easy way to visualize how a measurement varies across a 
geographic area and allow identification of areas with extreme values. In our paper, the values 
of Bayes relative risk are of a primarily interest rather then values of mortality rates and are 
later mapped using choropleth map techniques. (Bayes relative risk refers here to the random 
effects representing an extra quantity variation estimable within the map and which can be 
ascribed a defined probabilistic structure.) The histogram of the Bayes relative risk exp(ν) 
follows a bell-shaped distribution curve; it is more or less symmetrical at all NUTS levels, but 
becomes slightly positively skewed at NUTS-2 and NUTS-3 level of spatial aggregation. In 
order to produce reliable maps, the choice of the number of classes is essential, as too few 
classes will tend to emphasize broad regional patterns and some details can be lost. 
Conversely, too many classes can make the map difficult to interpret (see e.g. Campbell, 
2001). We used the equal interval counts technique for defining the class limits because this 
method ensures, that the ranges are well represented by their averages, and that the data 
within each range are fairly close together. We adjusted all values of Bayes relative risk by 



dividing them by the average value of Bayes relative risk at each level of spatial aggregation. 
Class limits identified at NUTS-2 level were slightly modified assuring that the limits of the 
middle class are symmetrically set around 1 so it has the same interval length for positive and 
negative values (0.93-1.07). Identified class limits were then employed to map the Bayes 
relative risk coming from the NUTS-3(2) model at NUTS-3 spatial aggregation level. 



3 Results 
Running the specified model for the four sets of data each of which corresponding to one 
level of spatial aggregation allows to study in details the changes of key model parameters at 
different aggregation levels. (Please note, that in order to study the effects of spatial 
aggregation on model parameter, within Bayesian modelling we had to exclude Poland from 
all datasets.) Regression coefficient 2β  representing a fixed effect of population density on the 
occurrence of road fatalities is changing significantly with different aggregation levels as it 
decreases from -1.245 (NUTS-0) to -0.293 at NUTS-2 level. It becomes however relatively 
stable at NUTS-2 and NUTS-3 level of spatial aggregation, whereas it can be assumed, that 
the best estimate of the parameter is close to the -0.326 [CI (95%)=-0.307,-0.326] estimated 
from the model at NUTS-3 level. By the way, with spatial aggregation, both standard 
deviation and MC error estimates increase. (Table 4)  
 

β2 mean SD MC error 5.0% median 95.0% 

NUTS-0 -1.245 0.1019 0.0081 -1.457 -1.209 -1.126 
NUTS-1 -0.4782 0.0237 0.00181 -0.5171 -0.481 -0.4347 
NUTS-2 -0.2925 0.0143 0.001029 -0.3155 -0.2921 -0.27 
NUTS-3 -0.3257 0.01107 0.000752 -0.344 -0.3257 -0.3069 

 

Table 4:  Regression coefficient 2β  at four levels of spatial aggregation 
 
Let us now to analyse the effect of spatial aggregation on standard deviation of random effect 
(relative risk) )(νσ . The standard deviation of relative risk decreases from 1.153 at NUTS-0 
level to 0.294 at NUTS-3 level, but the decrease is not linear (or proportional) over all levels 
of spatial aggregation employed. Not surprisingly, the MC error decreases with the increase in 
the number of regions in the model (spatial disaggregation). (Table 5)  
 

)(νσ  mean SD MC error 5.0% median 95.0% 

NUTS-0 1.1530 0.4793 0.03459 0.3166 1.1690 1.9140 
NUTS-1 0.3398 0.0384 0.00118 0.2819 0.3373 0.4065 
NUTS-2 0.2423 0.01445 0.00019 0.2193 0.2418 0.2670 
NUTS-3 0.2943 0.009112 0.00011 0.2795 0.2941 0.3096 

 

Table 5:  Standard deviation of random effects )(νσ   
 
The model run at both NUTS-2 and NUTS-3 level allows reliable estimation of all covariates 
in the model and of random effectsν , but we might aim to further improve the estimates. We 
can do so by the integration of the random effects coming from the models run at NUTS-3 
aggregation level into the new model run at NUTS-2 level taking this variation into account. 
The two random variation parameters are defined as follows: iji VU +=ν  (i=1-1139, j=1-238 
for NUTS-3 and NUTS-2 regions.) This model, later called NUTS-3(2), takes into account 
infra-regional variations of road mortality between NUTS-2 and NUTS-3 level. The sum of 
the variance for the two parameters is now almost equal to the variance of iν  at NUTS-3 
level: . The resulting values for all variables are as follows: 
The coefficient 

( ) ( ) ( 222 1682.02457.02943.0 +≅ )
2β  has now a value close to the 2β  at NUTS-3 level and its standard error of 

its estimate is now significantly lower than at any other level of spatial disaggregation. This is 
likely the most reliable value of this coefficient (-0.321 [CI (95%)=-0.305,-0.321]).  Note also 
that the standard deviation of  (NUTS-3 vs. NUTS-0) is much higher than the standard iV



deviation of  (NUTS-2 vs. NUTS-3 regions). This confirm that the hypothesis that the best 
estimates of model parameters come from the models counting for infra-regional variation in 
mortality rates. By the way, the DIC for this model (7748) is slightly lower than in case of the 
model run at NUTS-3 level (7784). 

iU

 
NUTS-3(2) mean SD MC error 5.0% median 95.0% 

2β  -0.3207 0.0102 0.000667 -0.3377 -0.3207 -0.3047 
)(Vσ  0.2457 0.009338 0.000155 0.2306 0.2456 0.2613 
)(Uσ  0.1682 0.01615 0.000432 0.1427 0.1678 0.1955 

 
Table 6:  Regression coefficient 2β  and standard deviation of random effects )(νσ for NUTS-
3 (2) model  
 
We can now study the effect of spatial aggregation on the regression coefficients cβ standing 

for country effects in the above presented models. The variance of 24 parameters cβ decreases 
with spatial disaggregation in general, while there is only little difference between the two 
models results for NUTS-3(2) level as shown in Table 6. Comparing the standard deviation of 
regression parameters )( cβσ  with random effects parameters )(νσ the following conclusions 

can be drawn: The variance of cβ parameters as well as the variance of ν  is more or less the 
same at different aggregation levels, meaning that the same degree of heterogeneity in terms 
of road mortality can be found at all aggregation levels. The strongest variation in term of 
relative risk exists at NUTS-3 level, followed by Country level and NUTS-2 aggregation 
level, what point to the fact, that the national road safety provisions have a similar weight as 
the regional differences in terms of traffic conditions, mobility or others.  
 
 

Level NUTS-1 NUTS-2 NUTS-3 NUTS-3(2) 
)(2

cβσ  0.186 0.028 0.055 0.049 
)( cβσ  0.432 0.169 0.234 0.222 
)(νσ  0.339 0.242 0.294 0.294 

 
Table 6: Standard deviation of random effects )(νσ  and regression coefficient 2β  for NUTS-
3 (2) model compared to previous results 
 
We can now estimate the mortality ratios standardized by the population density for NUTS-0 
regions as a result of the NUTS-3(2) modelling procedure, i.e. the mortality ratios of EU24 
countries involved in the analysis. The exponential of the cβ  parameters, as a result of 
MCMC Bayesian modelling approach after having been centred to 1, is shown in Figure 2. 
Each line of the plot features a line indicating the 5th and 95th percentiles for the posterior 
distribution of the mortality ratio, with a point denoting the mean. The interval is naturally 
large for the small countries, having only limited number of NUTS-3 regions such as Malta, 
or Luxemburg and for those countries where significant variation in road mortality among 
regions exists, while relatively narrow for the countries with a large number of NUTS-3 
regions. This ranking is fairly different from the simple ranking of countries according to their 
mortality ratio. Countries with relatively low population density such as Finland or Sweden 
now occupy better position in ranking, while the countries with relatively high population 
density (Belgium, Luxemburg) belongs now to the worst performing countries. By the way, 



the ranking based on NUTS-2, respectively NUTS-1 model is fairly similar to the one 
presented here. A wider confidence interval is not surprising. Some less relevant changes can 
be however traced among the countries with a high mortality ratio. E.g. for NUTS-2 regions 
based ranking, the worst performing country is Portugal. 
 

 
 

Figure 2: Mortality ratios of 24 EU countries standardized by population density (NUTS-3) 
 
In regards to the 95% confident intervals towards 1, the four groups of countries can be 
identified: two countries with extremely low standardized mortality ratio (Sweden, Finland), 6 
countries, whose confidence interval does not contain 1 (Malta, Ireland, United Kingdom, 
Denmark, Netherlands and Germany), three countries with extremely high mortality ratio 
(Portugal, Belgium and Latvia) and then all other countries, whose confidence interval 
contains 1. Comparing countries among each other, the three groups can be distinguished: The 
two Scandinavian countries with ratio under 0.5, two countries (Belgium, Latvia) with the 
ratios above 1.5 and all other countries.   
 
The highest relative difference between the mortality ratio standardized by population density 
and crude mortality ratio (expressed as a rate between the both) can be found highly populated 
countries such as United Kingdom, Belgium, Netherlands and Malta, while the smallest one 
for scarcely populated countries such as Sweden, Finland, Estonia and Lithuania.   
 
We can further map the Bayes relative risk (the exponential of random effectνi ) having the 
effect of shrinking on the estimate of the mortality across regions. Map of Bayes relative risk 
provides a smooth representation of the road mortality risk in Europe, adjusted for the 
population density and country effect (Figure 3). Surprisingly, some very densely populated 
regions (usually capital regions) still appear on the maps as light spots (see e.g. Ile-de-France, 
Madrid, etc.). In general, smoothing provided by the use of Bayes approach is clearly 
tractable, likely diminishing heterogeneity in mortality risk. Nevertheless, all significant 
variations remain clearly visible on the maps presented. (e.g. Italy or Sweden) By the way, the 
heterogeneity in Bayes relative risk for NUTS-2 and NUTS-3 regions is tractable also in the 
countries in which the mortality rates shows rather homogenous pattern (e.g. Sweden, Czech 
Republic, Hungary). The highest variance in Bayes relative risk across regions is traceable in 
Portugal, Latvia and Finland. There is a clear north-south division of Bayes risk across some 
countries like Italy, Sweden, or Finland. It can be assumed that this is due to geographic, 
demographic, weather-conditions or economic differences between the northern and southern 
part of each country. In Italy, for example, significant differences in land use, or mobility 



demands can be identified between the North and the South. To attribute these differences to 
the observed road fatality counts remains, however a challenging task for future research.     
 

 
Figure 3: Bayesian relative risk in Europe at the NUTS-2 (left) and NUTS-3(right) 

aggregation level for 24 European countries 

iνexp

4 Discussion, conclusions 
The use of NUTS classification allows an easy access to regional data, however their use 
should be always taken with certain precaution, since there are significant differences between 
the regions belonging to the same aggregation level. For example, French counties (NUTS-3) 
correspond to Belgian provinces (NUTS-2) in terms of area and population making the 
comparison rather difficult. A solution might be mixing regions from several aggregation 
levels, nevertheless, no one can guarantee that this will lead to a better description and 
understanding of studied problems.  
 
Regional disparities in terms of road mortality are higher than disparities identified among 
countries. It’s likely that the existing regional disparities existing within one country comes 
from structural differences (represented here by population density), but there are still 
significant differences coming from other, road safety policy related issues.  
 
Standardizing road mortality by population density allows taking into account a large number 
of underlying structural factors having a significant influence on road safety of countries and 
regions, which cannot be addressed empirically. It should be however highlighted, that it 
cannot take into account all existing structural differences. While intra-national differences 
can partly be explained by the different general conditions of road traffic, such as level of 
motorization, or road safety related measures and partly by other differences, the intra-
national heterogeneities in road mortality cannot be unambiguously attributes to many of 
these structural factors. Generally higher level or road safety in densely populated regions can 
be due to lower travelling speed, availability of public transport services lowering traffic 
performance of individuals, better access and quality of emergency services, more developed 
infrastructure and higher standards of vehicles in traffic. Mortality ratios of countries 

http://www.slovniky.centrum.cz/search.php?lang=1&q=unambiguously


standardized by population density (as the product of modelling procedure) allow ranking 24 
European countries according their road safety level. Such ranking allows identifying those 
countries with significantly better and worse road safety records then the others. Similarly 
maps of Bayes relative risk allow identifying those regions having significantly different 
mortality rates than country’s average.    
 
The use of Bayesian modelling allows mixing fixed and multi-level random effects what is a 
clear advantage comparing to commonly used general linear models. Mapping random effects 
allows identifying at regional and infra-regional level those areas with significantly higher 
mortality rates, being standardized by fixed effects (country effect and population density 
here). Spatial disaggregation decreases, in general, the value and variance of all model 
parameters, while the confidence interval narrows at the same time. NUTS-2 aggregation 
level represents a satisfactory aggregation level, while NUTS-3 level of spatial aggregation 
allows for most reliable estimates of model parameters but the combination of the two levels 
leads to a further precision of model parameter and his robustness.     
 
This analysis is limited on the influence of some basic structural factors on observed level of 
road un/safety in EU25 countries due to data unavailability. Analyses made at national level 
suggest a wide range of additional explanatory factors, which can be used to explain the 
heterogeneity of road mortality within the EU. Extending a recent model by a time-series data 
in a hierarchical model should allow to further precise the estimates of Bayesian relative risk, 
as it will take into account variations of road fatality counts in time. Similarly, the model does 
not take into account the effects of spatial autocorrelation (i.e. the effect of the spatial 
dependence among observations) which produces higher variance of the estimates. 
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