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ABSTRACT

This paper considers the Stochastic User Equilibrium (SUE) assignment problem for a signal-
controlled network in which intersection control is flow-responsive. The problem is addressed
within a Combined Traffic Assignment and Control (CTAC) modeling framework, in which
the calculation of user equilibrium link flows is integrated with the calculation of consistent
signal settings. It is assumed that network equilibrium is dispersed due to user misperceptions
of travel times, and that the intersection control system is designed to allow the persistent
adjustment of signal settings in response to traffic flow variations. Thus, the model simulates
real-world situations in which network users have limited information and signal control is
traffic-actuated. The SUE-based CTAC model is solved algorithmically by means of the so-
called Iterative Optimization and Assignment (IOA) procedure, a widely used heuristic which
relies on the alternate execution of a control step (signal setting calculation for fixed link
flows) and an assignment step (network equilibration under fixed signal settings). The main
objective of the study is to define a methodological framework for the evaluation of the
performance of various traffic-responsive signal control strategies in interaction with different
levels of user information, as represented by the spread parameter of the perceived travel time
distribution assumed in the SUE assignment submodel. The results are of practical relevance
in a policy context, as they provide a basis for assessing the potential integration of Advanced
Traveler Information Systems (ATIS) and signal control systems. Several computational
experiments are carried out on a small, contrived network and using realistic intersection
delay functions, in order to test the behavior of the model under a wide range of conditions; in
particular, convergence pattern and network performance measures at equilibrium are
analyzed under alternative information/control scenarios and for various demand levels. The
issue of uniqueness of the model solution is addressed as well.
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1  INTRODUCTION

It is well known in the field of traffic engineering that the most efficient use of the

existing capacities of signal-controlled intersections can be accomplished by updating signal

timing (and possibly also phase sequencing) so as to respond to the temporal variations of

traffic flows. Operationally, such an adjustment of the signal settings may be performed in

different ways, ranging from the simple periodic, manual updating of fixed-time control plans

on the basis of merely historical information, to the full actuation of the signal, in which

control decisions are linked on-line to the current (or even projected) flow conditions through

the instantaneous detection of traffic volumes. A signal control system exhibiting either of the

above capabilities will be referred to here as traffic-responsive, or flow-responsive, signal

control, regardless of the operational mode of signal adjustment and hence of the "degree of

reactiveness" of the control parameters to the variations of traffic flows.

The most distinctive feature of traffic-responsive signal control in a network-wide

perspective is that link capacities can no longer be assumed fixed and known exogenously, but

become endogenous, as they clearly depend on the amounts of green time assigned to the

intersecting streets, and such amounts, in turn, depend on the intensity of the traffic flows

using those streets. From a behavioral point of view, this mechanism translates into a

significant interaction between the decisions of two actors, namely the signal setter (in

practice the traffic control agency’s engineer) on the one hand, and the network users on the

other hand: the former is responsible for signal control decisions (implemented either

manually or automatically), while the latter make travel decisions, in particular route choices.

Thus, the need arises almost naturally to modify network models, and especially traffic

assignment models, so as to explicitly take into account this important interaction.

Attempts at integrating equilibrium traffic assignment and intersection control into a

single modeling framework under the assumption of flow-responsive signal settings have

resulted in a class of Combined Traffic Assignment and Control (CTAC) models, also referred

to as Equilibrium Traffic Signal Setting models by some authors. Such an integration aims at

enhancing the predictive power and policy relevance of urban traffic assignment models, by

focusing on the mutual interaction between user route choices and signal control decisions in

the calculation of network traffic equilibria.

Therefore, CTAC models may play a key role in the assessment of the short- and long-

term redistributional effects induced by the implementation of various signal control

strategies. Such a modeling capability appears to be especially valuable in view of the



2

widespread adoption of actuated signal control in many urban areas. In addition, the

prospective operation of Advanced Traveler Information Systems (ATIS) and Advanced

Traffic Management Systems (ATMS) raises interesting questions as to the potential benefits

that may derive from the integration of route guidance (or, more generally, real-time

information to network users) and traffic-responsive signal control (see, for example, Van

Vuren and Van Vliet 1992; Hu and Mahmassani 1997).

This paper considers the CTAC problem under stochastic route choice assumptions,

and is organized as follows. In Section 2 we provide the essential background on the

combined traffic assignment and control problem by presenting an overview of the core issues

arising in the context of CTAC modeling, together with a brief review of the relevant

literature. The specific purpose and the practical relevance of the present study are discussed

in Section 3, while Section 4 describes the details of the modeling framework and solution

algorithm adopted in the ensuing computational analyses. The experimental design and

evaluation of results of such analyses are the subject of Section 5. Finally, conclusive remarks

are offered in Section 6.

2  BACKGROUND ON COMBINED TRAFFIC ASSIGNMENT AND CONTROL

We consider a road network in which intersections are controlled by traffic-responsive

signals as defined in the introductory remarks of Section 1. Signal control plans are

determined according to some signal control policy, that is a criterion for calculating, at each

intersection, a set of signal settings (e.g. cycle length and green time splits) for any given

specification of a set of relevant traffic flows. In practice, the concept of signal control policy

is rather broad, as it encompasses simple empirical rules as well as rigorous optimization

algorithms. We assume that the travel demand is fixed and known and that, for given values

of the signal settings, drivers’ route choice behavior complies with the user equilibrium

principle of Wardrop (1952).

We let:

fUE | g  be the vector of user-equilibrium link flows given a vector g of signal settings, and

gP | f    be the vector of signal settings determined through the control policy P given a vector f

of link flows. Then, the CTAC problem consists of finding a pair of vectors (f *, g *) such that:
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f * = fUE | g * (1)

g * = gP | f * (2)

If there exists a pair of vectors satisfying (1) and (2), then it is called a mutually consistent

flow-control equilibrium, since under flows f * and signal settings g * none of the decision-

makers involved (the network users and the signal setter) has an incentive to modify his or her

current course of action.

The CTAC problem can be broken down into a traffic assignment subproblem, in

which user-equilibrium link flows are computed for fixed signal settings, and a signal control

subproblem, in which signal settings are determined under fixed link flows. Delay functions

for signalized links are traffic-engineering based mathematical relationships expressing the

dependence of average vehicular delays on signal settings (typically cycle length and green

split) and link flows for given values of the saturation flows. The "rules" governing the two

submodels are, respectively, the route choice paradigm and the control policy, while the delay

functions play the key role of "interface" between the two submodels, since they act as link

cost functions in the assignment model, and therefore convey the impact of signal settings

upon route choice. It is, therefore, not surprising that the behavior of CTAC models may be

strongly affected by the choice of a specific type of delay function.

The CTAC problem has been studied for over two decades, the work of Allsop (1974)

being commonly regarded as the pioneering contribution in this area. Since an extensive

literature review is outside the scope of this paper, the reader is referred to Meneguzzer (1997)

for a recent survey of studies on combined traffic assignment and control. In the remainder of

this section, we provide only an essential overview of methods adopted in CTAC research to

date, together with a brief discussion of the key issues involved.

Broadly speaking, CTAC problems can be solved by either of two main approaches,

namely the iterative scheme approach and the optimization approach. The first is essentially a

"naive" imitation of the real-world interaction between user route choices and signal control

decisions, since it relies on the alternate execution of a control step (signal setting calculation

for fixed link flows) and an assignment step (network equilibration under fixed signal

settings). For this reason the method, first suggested by Allsop (1974), is commonly known as

the Iterative Optimization and Assignment (IOA) procedure. Though conceptually simple and

appealing from a behavioral standpoint, IOA lacks an explicit underlying model formulation
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and does not necessarily converge to a mutually consistent flow-control equilibrium, as

shown, for example, by Smith (1979).

The second approach aims at computing a mutually consistent flow-control

equilibrium that solves a constrained optimization problem, in which the objective is some

measure of system performance (e.g. total travel time) and the constraints are technical

restrictions on the signal settings plus the requirement that link flows are in user-equilibrium.

This is known to be a special instance of the more general Equilibrium Network Design

(END) problem, the design variables being the signal settings. As pointed out by Fisk (1984),

the game-theoretical counterpart of this approach is the so-called Stackelberg game, as it is

reasonable to assume that the upper-level player (the signal setter in our case) is able to

anticipate the reactions of the lower-level players (the network users) to his/her decisions, but

not vice-versa (the drivers are usually unaware of the control strategy adopted by the signal

setter).

Both the above approaches suffer from major shortcomings. The iterative scheme,

even though simple and suitable for large-scale implementations, may converge to flow-

control equilibria that are not optimal in terms of total travel time, or even lead to a decline in

network performance as compared to the initial conditions (Dickson 1981). The reason is that

signal control policies commonly adopted by traffic engineers, such as the delay minimization

policy and its approximation, Webster’s (1958) equisaturation policy, are not designed to take

explicitly into account the rerouting effects induced by their implementation. As pointed out

by Smith (1979), this results in an inefficient use of the network’s physical capacity. It is

possible, however, to devise less conventional control policies that overcome this limitation,

such as the so-called P0 policy (Smith 1980; 1981), which tends to divert traffic toward

higher-capacity routes by assigning them green splits that result in lower delays (see Section

4). It has also been noted that the behavior of the iterative scheme may depend significantly on

the type of delay function used (Smith and Van Vuren 1993).

On the other hand, owing to the nonlinearity of the user-equilibrium constraint, the

optimization formulation has a non-convex character, which may result in multiple local

optima. As a consequence, the solution to the CTAC problem may not be unique and, in fact,

depend on the starting values of the signal settings. This problem is shared by the iterative

approach, and, due to its importance, will be re-emphasized at the end of this section. Another

limitation of the optimization approach is that exact solution algorithms for END problems

are known to be computationally impractical for networks of realistic size. Interestingly, the
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effect of the latter circumstance is to provide a connection between the two approaches in

real-world applications, as the IOA procedure is usually regarded as a viable heuristic for

solving large-scale END problems.

Apart from considerations of computational tractability, there appears to be also a

behavioral justification for the use of IOA in the context of combined traffic assignment and

control. As noted by Watling (1996), the iterative scheme accounts in a realistic manner for

the effect that initial conditions (e.g. current signal settings determined on the basis of local

traffic engineering knowledge) may have on the evolution of network flow patterns and

responsive signal control in subsequent time periods and on the eventual equilibrium, whereas

the globally optimal flow-control equilibrium, whose calculation is the ultimate aim of the

END approach, may correspond to a routing pattern too far from current route choice

behavior, and therefore unlikely to evolve from current conditions.

A critical feature of CTAC models is that conditions that are known to be sufficient for

the existence of a unique flow-control equilibrium do not hold under responsive signal

settings. In essence, this is due to the reactive nature of the control actions, which allows link

capacities to change in response to varying demand flows, thus yielding cost-flow

relationships that need not be monotone, unlike those used in ordinary equilibrium traffic

assignment. It is, however, important to realize that, once again, alternative control policies

may perform quite differently with respect to solution uniqueness (Van Vuren and Van Vliet

1992). In practice, the possibility of multiple flow-control equilibria may be a major concern

when the model is used as a tool for the evaluation of alternative schemes in the context of

planning or TSM applications. This is because multiple equilibria are likely to result in

different network flow patterns, and therefore it may be difficult to distinguish such

differences from the effects of the options being evaluated. Even though the possible

occurrence of multiple equilibria has been demonstrated on simple networks (e.g. Allsop and

Charlesworth 1977; Van Vuren and Van Vliet 1992), it should be noted that the conditions

being violated in the presence of responsive control are not necessary for solution uniqueness,

so that single-equilibrium behavior cannot be ruled out a priori. This has been confirmed

recently by extensive computational tests on a realistic network (Meneguzzer 1996).
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3  OBJECTIVES AND PRACTICAL RELEVANCE OF THE STUDY

It is well known that traffic equilibria in real networks do not obey Wardrop’s first

principle, as not all drivers select minimum-time routes from their origin to their destination

due to the prevalence of travel time misperceptions. Such misperceptions are mainly

attributable to the less-than-perfect information on which the network users base their route

choices. Assuming that perception errors are random variables distributed across the

population of drivers, Stochastic User Equilibrium (SUE) assignment (Daganzo and Sheffi

1977) provides a more realistic model of user route choice behavior in the presence of limited

information. At the aggregate level, stochastic route choice results in "dispersed" network

equilibria, in which system travel time is higher than in the deterministic case, and tends to

increase as driver information deteriorates.

Advanced Traveler Information Systems (ATIS) are currently regarded as effective

tools for alleviating congestion and improving the performance of traffic networks by

providing users with exogenous information on network conditions. Accordingly, in recent

years there have been substantial efforts in the development of models aimed at predicting and

evaluating the impacts of ATIS operation. Also, various levels of integration of ATIS and

traffic-responsive signal control have been envisaged (see, for example, Bell 1992).

In light of these considerations, the main goal of this study is to define and test a

modeling framework for the evaluation of the performance of flow-responsive signal control

strategies in interaction with varying levels of driver information. This is accomplished by

abandoning the assumption of deterministic route choice behavior, adopted in most

implementations of CTAC models documented in the literature to date, in favor of the more

realistic SUE paradigm, in which the spread parameter of the perceived travel time

distribution can be taken as a proxy for the level of user information. As the primary purpose

of our study is to highlight the basic effect of information upon the mechanism of interaction

between signal control and route choice, the model is highly simplified, and some issues that

would have to be addressed in view of a real-world implementation are not considered. In

particular, there is no attempt to differentiate between informed and uninformed drivers, nor

to account for ATIS market penetration levels. Information is assumed to be purely

descriptive, and the possibility of prescriptive routing strategies is not taken into account.
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The above ideas motivate the work presented in this paper, in which the properties of

combined traffic assignment and control under SUE are investigated from a computational

standpoint. More specifically, the study aims at: (a) comparing the performance of alternative

signal control policies as a function of the level of driver information, and for fixed values of

key exogenous (non-policy) factors; (b) providing indications for the identification of

"optimal" information/control scenarios as the above exogenous factors are allowed to vary;

and (c) assessing the robustness of the model’s forecasts under selected information/control

scenarios, by testing the consistent flow-control equilibria for uniqueness.

4  MODELING APPROACH AND SOLUTION ALGORITHM

Following the discussion presented in the previous sections, the approach taken in this

study is to solve the SUE-based CTAC problem using the Iterative Optimization and

Assignment procedure. The overall model is directly separable in the sense of Meneguzzer

(1997), meaning that at signalized intersections only between-phase interactions among traffic

movements are allowed. This is the same as saying that signal phasing is designed so that

conflicting flows are never given way simultaneously; the main implication is that, within the

traffic assignment subproblem, cost functions are separable in the usual sense. Route choice is

represented by a Logit-based SUE model (Fisk 1980), whose solution is accomplished through

the Method of Successive Averages (MSA); see, for example, Sheffi (1985).

Two signal control policies are selected for testing their interaction with route choice

under varying levels of driver information. The first is the well-known equisaturation policy

(Webster 1958), which yields approximately delay-minimizing signal settings by allocating

green splits to phases so as to equalize the degrees of saturation of critical movements across

phases. The second is a capacity-maximizing policy due to Smith (1980), known as P0 , which

tends to induce an efficient use of network capacity by diverting traffic toward routes that

have higher saturation flow; this is accomplished by assigning these routes green splits that

result in lower delays. Even though P0 does not, in general, minimize total travel time, it does

satisfy sufficient conditions for the existence of a mutually consistent flow-control

equilibrium, as shown by Smith (1981).

Consider, for example, a simple two-phase signal controlling the intersection of two

links (i = 1, 2). Assume that cycle length is fixed, and there are no lost times. Let:

si : saturation flow for link i;
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fi : flow on link i;

yi = fi / si : flow ratio for link i;

λi : green time split assigned to link i;

di (fi, λi) : delay on link i as a function of flow and green split on the same link.

Then, according to the equisaturation control policy the green splits are:

λi = yi / (y1+ y2) i = 1, 2 (3)

whereas under P0 we compute λi (i = 1, 2) such that:

s1 d1 (f1, λ1) = s2 d2 (f2, λ2) (4)

Even though the statements of both policies can be generalized for intersections of more than

two links and signal plans with more than two phases, the simple case presented here is

sufficient to understand intuitively why the two policies exhibit a quite different behavior

when applied in interaction with route choice: equisaturation tends to favor more congested

links/routes in the allocation of green times, and this, in turn, attracts even more traffic onto

those links/routes; P0 , on the other hand, encourages the use of links/routes having higher

saturation flow, thus exploiting more fully the network’s available capacity.

A function due to Akçelik (1988) is employed to model delay for signalized links,

which acts effectively as the interface between the traffic assignment submodel and the signal

control submodel; see the discussion in Section 2. Like other so-called sheared delay

formulae, the Akçelik function is suitable for use within an equilibrium assignment

framework, since it covers oversaturated conditions through a time-dependent overflow delay

term, thus overcoming a major limitation of the classical steady-state formulae (for a

discussion of this issue in the context of CTAC models, see Meneguzzer 1997). The Akçelik

formula takes one of the following expressions, depending on the value of the degree of

saturation x:

for x ≤ 0 5. :

d
C

x
= −

−
0 5 1

1

2. ( )λ
λ

(5)
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for x > 0 5. :

d
C

x
T x x

x

KT
= −

− ⋅
+ − + − + −









0 5 1

1 1
900 1 1

8 0 52
2. ( )

min( , )
( )

( . )λ
λ

(6)

where:

d : average delay incurred by vehicles on subject link (sec.);

C : length of signal cycle facing subject link (sec.);

λ : green time split facing subject link;

T : duration of demand flow period on subject link (hrs);

K : capacity of subject link (vehicles/hr);

x : degree of saturation (flow-to-capacity ratio) of subject link.

From an algorithmic standpoint, the model solution is accomplished by embedding the

MSA, employed for the solution of the Logit-based SUE subproblem, into the IOA procedure,

thus resulting in the following steps:

STEP 0: INITIALIZATION
g = g0 (initial signal settings)
k = 0 (iteration counter)

STEP 1: TRAFFIC ASSIGNMENT SUBPROBLEM
k = k+1
Compute link flows fk solving SUE by MSA under signal settings gk-1

STEP 2: SIGNAL CONTROL SUBPROBLEM
Compute signal settings gk via chosen control policy under link flows fk

STEP 3: STOPPING RULE
For k > 1:
IF   δ(k-1,k) ≤ ε STOP   and set   f * = fk, g * = gk

ELSE go to STEP 1

where δ(k-1,k) is a measure of distance between the solutions of two successive iterations

(based on the values of link flows and/or signal settings), ε is a prespecified tolerance, and (f *,

g *) represents the mutually consistent flow-control equilibrium which solves the CTAC

problem. Note that the algorithm has a nested structure: assuming we run k = 1, ...., K

iterations of IOA (also called outer iterations), and solve each SUE subproblem by means of

Nk iterations of MSA (also called inner iterations), each consisting of a stochastic network

loading, the overall computational effort will amount to  L = Σk Nk  loadings. Also note that, in
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our application, each SUE subproblem is solved to convergence, and there is no attempt to

explore computational tradeoffs between outer and inner iterations; for a systematic analysis

of this issue in a CTAC context, see Meneguzzer (1996).

5  NUMERICAL EXPERIMENTS

5.1  Experimental design

The model is applied to a small artificial test network in order to conduct a number of

computational experiments, whose main purposes are:

1) to evaluate the behavior of combined traffic assignment and control under alternative

information/control scenarios in terms of: (a) existence of a mutually consistent flow-control

equilibrium; (b) network performance at equilibrium; (c) speed of convergence of the IOA

procedure; (d) equilibrium values of the signal settings. The information/control scenarios are

defined by combining the two previously described signal control policies (equisaturation and

Smith’s P0) with various values of the coefficient of variation of the perceived travel time

distribution, which are intended to represent situations ranging from very accurate to very

poor information;

2) to explore the effect of some key exogenous factors in interaction with selected

information/control scenarios. These factors, which are varied parametrically in the

computational experiments, include the level of congestion in the network, the duration of the

demand flow period assumed in the time-dependent term of the delay formula, and the length

of the signal cycles;

3) to provide limited empirical evidence as to the uniqueness of the solution to the SUE-based

CTAC problem under selected information/control scenarios. This is accomplished by

repeatedly solving the model, ceteris paribus, starting from different initial solutions as

determined by different values of the green splits assigned to signalized links.

The network employed in the numerical tests consists of a single origin-destination

pair, seven nodes and ten links (see Figure 1). There are three signals, each controlling two

intersecting links and operating on a two-phase plan with fixed cycle length; for simplicity,

change intervals and lost times are not considered, so that the sum of the green times for each

pair of intersecting links equals the respective cycle length, and thus there is effectively a

single control variable to be determined at each junction. To make the example more realistic

from a traffic engineering standpoint, a minimum green split of 0.1 is assumed in the signal
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setting calculations. Note that the network topology has been purposely designed so that each

route traverses at least one signalized intersection. Travel time for each signalized link

consists of a fixed free-flow component plus a flow-dependent delay term modeled according

to the Akçelik formula (see Section 4), while the remaining links are assumed to be

uncongested.

In the implementation of the solution algorithm, the following stopping criterion is

adopted for both the IOA and MSA procedures:

max
l

l
k

l
k

l
k

f f

f

−
≤

+1

ε ∀ ≠l f l
k: 0 (7)

where the maximum is taken over all links. Different values of the tolerance ε are used for

IOA (0.001) and for MSA (0.01), in order to ensure a certain degree of "streamlining" of the

algorithm, which was found to enhance computational efficiency by previous studies (e.g.

Meneguzzer 1996). Also, the maximum number of iterations was set at 100 for both

procedures, a bound which turned out to be active only for IOA and in very few instances (see

Sections 5.2 and 5.3 below).

O D
S1

S2

S3

1

2

3

4

5

6

7

8

9

10

Figure 1. Test network (signalized intersections are S1, S2, S3)

5.2  Behavior of CTAC under alternative information/control scenarios

The combined effect of driver information and signal control policy upon the

equilibrium performance and convergence behavior of the model was investigated in the first

part of the numerical tests, whose results are summarized in Table 1. Five levels of driver

information, as measured by the value of CV, were considered in interaction with the two

assumed control policies, yielding a total of ten model runs. Note that the lowest value of CV
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(0.01) is intended to represent a situation of very accurate driver information, and results in a

nearly deterministic model. In this round of experiments, the three exogenous factors were

held fixed at "base-case" values, corresponding to a demand level equal to the "actual" origin-

destination trip rate, an oversaturation period of 0.5 hrs and a signal cycle length of 90 sec.

(common to all intersections).

First, we note that convergence to a mutually consistent flow-control equilibrium was

attained in most cases, as only the two runs corresponding to CV = 0.01 failed to meet the

stopping test within the prespecified maximum number of iterations (100), and tended to

exhibit a typical flip-flopping pattern of the convergence measure (7). If we consider the cases

of CV = 0.01 to be an approximation to a deterministic model, these results appear to be

consistent only in part with the findings of previous research: based on the studies carried out

by Smith (1979, 1981) in a deterministic route choice context, one would expect the

equisaturation and P0 control policies to behave quite differently in terms of convergence to a

mutually consistent flow-control equilibrium.

Table 1. Equilibrium values of mean travel time, IOA iterations and signal settings
for various levels of information and two control policies

CV = 0.01 CV = 0.05 CV = 0.15 CV = 0.25 CV = 0.35

ES

MTT
NIT
S(3)
S(5)
S(6)

30.355
100

0.100
0.845
0.900

28.398
70

0.449
0.540
0.867

27.206
25

0.464
0.512
0.664

27.150
16

0.466
0.506
0.619

27.173
12

0.467
0.499
0.596

P0

MTT
NIT
S(3)
S(5)
S(6)

27.067
100

0.635
0.255
0.764

26.988
41

0.515
0.426
0.605

27.027
18

0.490
0.456
0.554

27.070
12

0.485
0.458
0.538

27.105
10

0.482
0.458
0.529

CV: Coefficient of Variation of perceived travel times ES: Equisaturation
MTT: Mean Travel Time (min.) NIT: Number of IOA iterations

S(i): Green split for link i, i = 3,5,6

Second, we observe that, for both control policies, the number of IOA iterations

needed for convergence decreases monotonically as CV increases, suggesting that the spread

of traffic over alternative routes, induced by driver misperceptions, tends to accelerate the

redistributional effect of responsive signal control. Also, convergence appears to be slower

under equisaturation, especially for low and medium values of the perceived travel time
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variance. A possible explanation is that this control policy encourages the use of more

congested routes, and hence causes some links to operate at high volume-to-capacity ratios,

where the delay function is considerably steep, and therefore sensitive to small flow

variations: at the network level, this may result in a longer "time" (i.e. number of iterations)

needed to reach equilibrium.

The results of the ten "base" runs are less clear-cut in terms of mean travel time. A

somewhat counterintuitive result is obtained under equisaturation, where system performance

is seen to improve as driver information becomes less accurate: this is in contrast with the

expected network inefficiency normally ascribed to the perception errors inherent in the

stochastic nature of route choice behavior. On the other hand, the equilibrium mean travel

times obtained under P0 appear to be rather insensitive to the values of CV. Also, we observe

that, for the assumed demand level, the network performance of P0 is consistently superior to

that of equisaturation, even though the difference tends to vanish as information deteriorates.

The latter tendency is evident from the experiments described in the subsequent sections as

well, and suggests that the impact of the supply action (the control strategy in our case) on

network performance becomes less important as driver perception errors dominate route

choice behavior.

Finally, equilibrium green splits for links number 3, 5 and 6 are also shown in Table 1.

Each of these links represents one of the two approaches to each of the three signalized

junctions included in the network, so that the green splits assigned to the other intersecting

links can be derived straightforwardly from those appearing in the table. The values of the

splits obtained for CV = 0.01 suggest, in agreement with previous studies, that the two control

policies perform quite differently under quasi-deterministic route choice: equisaturation tends

to generate "extreme" signal settings (maximum green to one approach and minimum to the

other), whereas P0 produces more even green time allocations. Moreover, it is clear from the

results that the prevalence of perception errors tends to move the signal settings toward a

50/50 split, and that the two policies behave in a similar fashion as information deteriorates.

5.3  Effect of exogenous factors

The second part of the numerical experiments was devoted to testing the effects of key

exogenous factors upon model behavior under selected information/control scenarios, defined

by four combinations of CV and control policy (equisaturation and P0 with CV = 0.05 and

0.25). The analysis relies on the same descriptors previously considered in the base case.
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Table 2 presents the results obtained with three different demand levels, corresponding

to the base-case trip rate (1.0 D) plus two alternative situations of low (0.5 D) and high

(1.5 D) network congestion. It can be observed that, in the scenarios with better information

(CV = 0.05), P0 tends to outperform equisaturation only at medium and high congestion

levels, a result which is consistent with the findings of previous studies conducted in a

deterministic route choice setting (e.g. Smith et al. 1987). On the other hand, as the variance

of driver perceptions increases (CV = 0.25), the only noticeable difference in mean travel time

occurs in the high-demand case (1.5 D), and with an opposite sign as compared to CV = 0.05.

As expected, convergence of IOA is consistently faster at low demand levels, whereas

equilibrium signal settings show generally limited sensitivity to network congestion.

The length of the period of oversaturation caused by demand flows temporarily

exceeding the capacity of intersection approaches is another element that may have a

significant impact on model behavior. Its effect is represented in the time-dependent term of

the delay function (6) by T, a parameter which essentially controls the slope of the function in

the region of volume-to-capacity ratios greater than unity. The values of T assumed in the tests

Table 2. Equilibrium values of mean travel time, IOA iterations and signal settings
for various demand levels under selected information/control scenarios

ES  0.05 P0  0.05 ES  0.25 P0  0.25

0.5 D

MTT
NIT
S(3)
S(5)
S(6)

23.446
8

0.445
0.523
0.891

23.607
6

0.511
0.446
0.486

23.719
4

0.466
0.463
0.588

23.721
3

0.506
0.435
0.439

1.0 D

MTT
NIT
S(3)
S(5)
S(6)

28.398
70

0.449
0.540
0.867

26.988
41

0.515
0.426
0.605

27.150
16

0.466
0.506
0.619

27.070
12

0.485
0.458
0.538

1.5 D

MTT
NIT
S(3)
S(5)
S(6)

39.042
67

0.456
0.646
0.843

38.637
53

0.622
0.602
0.435

39.116
16

0.467
0.613
0.699

39.528
9

0.513
0.488
0.484

MTT: Mean Travel Time (min.) NIT: Number of IOA iterations
S(i): Green split for link i, i = 3,5,6



15

are 0.25 hrs, 0.5 hrs (the base case), and 1.0 hr, and the corresponding results are shown in

Table 3. It can be seen that P0 yields lower mean travel times in all cases; note, however, that

the two control policies exhibit a markedly different performance only for T = 1.0 hr and

under conditions of accurate driver information. Overall, mean travel time appears to be

considerably less sensitive to the length of the oversaturation period than to the demand level

for all information/control scenarios. This is not an unreasonable result if one considers that,

for volume-to-capacity ratios greater than 0.5, T affects only the second term of the delay

formula (6), while x, which directly reflects the congestion level, appears in both terms of the

same equation. Further, we note that the speed of convergence of IOA decreases as the

oversaturation period becomes longer, consistent with the previous observation on T

controlling the slope of the delay function, and hence the sensitivity of link performance to

flow variations. Finally, the results shown in Table 3 indicate a remarkable stability of green

splits with respect to variations of T under all information/control conditions.

The last parameter investigated in this part of the numerical tests is the length of the

signal cycle, assumed to be the same for all intersections. According to the results presented in

Table  4, it has, among the exogenous  factors examined, the lowest impact  on model

behavior

Table 3. Equilibrium values of mean travel time, IOA iterations and signal settings
for various oversaturation periods under selected information/control scenarios

ES  0.05 P0  0.05 ES  0.25 P0  0.25

0.25h

MTT
NIT
S(3)
S(5)
S(6)

26.135
54

0.447
0.541
0.900

25.548
30

0.501
0.407
0.643

25.671
11

0.466
0.497
0.615

25.633
9

0.483
0.450
0.536

0.5 h

MTT
NIT
S(3)
S(5)
S(6)

28.398
70

0.449
0.540
0.867

26.988
41

0.515
0.426
0.605

27.150
16

0.466
0.506
0.619

27.070
12

0.485
0.458
0.538

1.0 h

MTT
NIT
S(3)
S(5)
S(6)

32.451
100

0.453
0.534
0.828

29.628
38

0.534
0.478
0.546

30.043
22

0.467
0.515
0.619

29.860
15

0.490
0.473
0.529

MTT: Mean Travel Time (min.) NIT: Number of IOA iterations
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S(i): Green split for link i, i = 3,5,6

in terms of all descriptors considered in the analysis. In particular, we observe that mean travel

time always increases, and at an almost constant rate, with cycle length, reflecting the positive,

albeit moderate, effect of the latter on signalized link delay. Also, it should be noted that P0

consistently outperforms equisaturation in terms of both system travel time and speed of

convergence of IOA.

5.4  Tests of uniqueness of the flow-control equilibria

Solution uniqueness is generally regarded as a highly desirable property of network

equilibrium models; as stressed in Section 2, this consideration applies, in particular, to

CTAC models as well. In this study, a limited analysis of uniqueness of the mutually

consistent flow-control equilibria obtained under selected information/control scenarios is

conducted using a computational approach. A discussion of the rationale for tackling the issue

of uniqueness from a computational (as opposed to analytical) standpoint can be found in

Meneguzzer (1997).

For each of the four information/control scenarios selected for the experiments of

Section 5.3, the model was run five times, corresponding to five different values of the green

splits initially assigned to signalized links, while the exogenous factors were kept at their

"base-case" values. The descriptors of interest in this analysis are average and deviation

measures (over five runs) of equilibrium mean travel time and flow on each link of the

network, and their resulting values are presented in Table 5. As pointed out by Meneguzzer

(1997), considering only the values of mean travel time is not appropriate when investigating

uniqueness, since different equilibria could conceivably result in a similar performance at the

aggregate network level.

The values shown in Table 5 seem to indicate that the solution algorithm always

converges to a unique equilibrium, with the exception of scenario s1: in fact, under the

remaining scenarios the coefficient of variation of both mean travel time and link flows is of

the same order of magnitude as the tolerance assumed for testing convergence of IOA,

suggesting that, within the approximation of the computational procedure, the same

equilibrium is approached starting from different initial solutions. Also, we note that even

under s1 the solution would appear to be unique if we were to look only at the aggregate

network performance measure, thus confirming our previous remark. A further examination of

the deviation measures of link flows across scenarios reveals that solution uniqueness may
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depend critically on the signal control policy under conditions of accurate information, while

the same

Table 4. Equilibrium values of mean travel time, IOA iterations and signal settings

for various cycle lengths under selected information/control scenarios

ES  0.05 P0  0.05 ES  0.25 P0  0.25

60 s

MTT
NIT
S(3)
S(5)
S(6)

27.899
91

0.457
0.504
0.842

26.821
60

0.514
0.414
0.613

26.952
15

0.467
0.503
0.613

26.882
12

0.484
0.457
0.539

90 s

MTT
NIT
S(3)
S(5)
S(6)

28.398
70

0.449
0.540
0.867

26.988
41

0.515
0.426
0.605

27.150
16

0.466
0.506
0.619

27.070
12

0.485
0.458
0.538

120 s

MTT
NIT
S(3)
S(5)
S(6)

28.902
87

0.438
0.567
0.900

27.167
40

0.517
0.431
0.600

27.349
16

0.466
0.509
0.624

27.259
12

0.486
0.459
0.536

MTT: Mean Travel Time (min.) NIT: Number of IOA iterations
S(i): Green split for link i, i = 3,5,6

Table 5. Average and deviation measures of equilibrium mean travel time and link flows
obtained from different initial solutions and for selected information/control scenarios

MTT f(1) f(2) f(3) f(4) f(5) f(6) f(7) f(8) f(9) f(10)

s1
A
C
R

28.456
.00222
.00499

2434.6
.00818
.02571

3065.4
.00649
.02042

1141.6
.01641
.03451

1234.6
.01684
.03556

1293.0
.02655
.07796

1830.7
.01016
.02698

1808.5
.02643
.08145

567.7
.05067
.11695

3101.5
.00479
.01499

2398.5
.00620
.01939

s2
A
C
R

26.991
.00016
.00037

2765.1
.00501
.01136

2734.9
.00507
.01148

1830.0
.00534
.01142

1549.9
.00520
.01136

935.0
.00469
.01209

1185.1
.00498
.01215

1952.8
.00402
.01024

1427.1
.00658
.01619

2887.8
.00120
.00298

2612.2
.00133
.00329

s3
A
C
R

27.152
.00005
.00015

2702.2
.00087
.00207

2797.8
.00084
.00200

1623.9
.00089
.00228

1642.2
.00096
.00225

1078.2
.00095
.00260

1155.6
.00089
.00260

1758.5
.00101
.00279

1507.7
.00123
.00352

2836.7
.00029
.00081

2663.3
.00031
.00086

s4
A
C
R

27.072
.00006
.00015

2768.8
.00116
.00285

2731.2
.00118
.00289

1778.4
.00115
.00287

1702.9
.00124
.00299

990.3
.00120
.00293

1028.3
.00107
.00272

1811.0
.00103
.00254

1670.4
.00108
.00275

2801.3
.00024
.00061

2698.7
.00025
.00063
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MTT: Mean Travel Time (min.) f(i): flow on link i, i = 1, ..., 10 (veh./hr)
s1: ES and CV = 0.05 s2: P0 and CV = 0.05 s3: ES and CV = 0.25 s4: P0 and CV = 0.25

A: Average C: Coefficient of variationR: Range-to-average ratio

equilibrium is attained, regardless of the control policy adopted, when driver perception errors

dominate route choice behavior.

6  CONCLUSIONS

This paper has presented a modeling framework suitable for investigating key

properties of combined traffic assignment and control under the assumption of stochastic

route choice. The primary aim of such a framework is the simulation of real-world signal-

controlled networks in which drivers have limited information and intersection control is

flow-responsive. Even though the SUE-based CTAC model developed in this study is applied

to a small, contrived network, the results of the computational experiments are of practical

relevance in a policy context, as they provide a methodological basis for assessing the

potential integration of Advanced Traveler Information Systems and signal control systems.

The main findings of the numerical tests carried out in this study suggest the following

conclusions. First, convergence to a point of equilibrium of the CTAC problem can be

expected to occur whenever driver perception errors are not negligible in the description of

route choice behavior. Also, the results show a clear positive relationship of the speed of

convergence of IOA to the magnitude of the perception errors, suggesting that the prevalence

of stochastic routing patterns tends to accelerate the redistributional effect of responsive signal

control. A comparative evaluation of the performance of the two traffic-responsive control

policies considered in this study indicates a consistent superiority of P0 over equisaturation,

even though the difference tends to vanish as perception errors dominate route choice. This

suggests that the impact of the control strategy on equilibrium signal settings and network

performance may be negligible under conditions of poor driver information.

The second interesting conclusion is that, among the three exogenous factors

considered in interaction with alternative information/control scenarios, the demand level has

the most significant effect on network performance, followed by the duration of the period of

oversaturation of the intersection approaches, and by the signal cycle length. This result hints

at the potential benefits of integrating signal control and information provision strategies with

normative Travel Demand Management actions, such as, for example, road pricing.
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Last, our tests of uniqueness of the model solution provide limited computational

evidence that the possibility of multiple, starting-point dependent, flow-control equilibria may

materialize only under the equisaturation policy and in the presence of accurate driver

information. This can be viewed as another element in favor of the adoption of the alternative

policy P0 , except for situations in which a more realistic model might be obtained by

explicitly allowing for the effect of initial signal settings upon the long-term equilibrium of

signal control actions and route choice.

Finally, further efforts should be directed toward implementing the modeling

framework presented in this paper on larger and more realistic networks.
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