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Abstract 
 
The aim of this paper is to focus on the economic impacts of Dutch wetland amenities. 

In particular, a spatial statistical and econometric analysis of the housing market is 

performed in order to determine the relationship between the presence of wetland areas 

and the prices of nearby houses. For this purpose, a database with selling prices and 

characteristics of houses from the Dutch brokers association (NVM) is used. The 

approach followed here is closely related to the hedonic pricing method. This method 

determines the marginal value of various characteristics of a commodity. 

In this paper a few novelties will be presented. The spatial cross-autocorrelation 

between housing prices and environmental (wetland) characteristics is inferred from 

local Moran’s I. In addition a new spatial model called SARMA(d) is described 

together with the decomposition of the highest order spatial link matrix that is required 

for the estimation of this highly general model. A hybrid spatial link matrix is 

introduced that makes is possible to model relations between spatial units whose 

location can only be described by regions instead of (x,y) coordinates without losing 

information on the characteristics of individual observations. 
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1 Introduction 

 

The Ramsar Convention (UNESCO, 1994) defines wetlands as: "areas of marsh, fen, 

peat land or water, whether natural or artificial, permanent or temporary, with water that 

is static or flowing, fresh, brackish or salt, including areas of marine water the depth of 

which at low tide does not exceed six meters". When countries join the Convention, 

they are enlisting in an international effort to ensure the conservation and wise use of 

wetlands. The Convention on Wetlands came into force for the Netherlands on 23 

September 1980. As of February 2001 this country has 24 sites designated as "Wetlands 

of International Importance". In the near future a number of wetland sites will be added 

to this list. Figure 1 depicts both existing and future Dutch Ramsar wetland sites. 

 

 
   Figure 1: Existing and future Dutch Ramsar wetland sites 
 

Wetlands are important not only because they are cradles of biological and genetic 

diversity. They also provide positive amenity values for nearby residents. These include 

open space, enhanced views, a buffer against noise and other forms of pollution. To date 

only limited research has been conducted which links wetland ecosystem characteristics 

and functions to the amenity values of wetlands. Mahan et al. (2000) estimate the value 

of wetland amenities in the Portland metropolitan area using the hedonic property price 

model. Their results indicate that wetlands influence the value of residential property: 

increasing the size of the nearest wetland to a residence by one acre increases the 

residence's value by $24. Similarly, reducing the distance to the nearest wetland by 

1,000 feet increases the value by $436. In this paper the economic impact of Dutch 
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Ramsar wetland amenities on the housing market is analyzed using a spatial hedonic 

pricing analysis. 

Hedonic pricing analysis is based on the hypothesis that differentiated products 

are valued for their utility-bearing attributes. The pioneering analysis dates back to an 

article by Court (1939) who used the term hedonic (in capitals) to describe the 

weighting of the relative importance of various automobile components in constructing 

price indices of "usefulness and desirability". The theoretical model of the market for a 

differentiated product developed by Rosen (1974) is still influential, although there have 

been significant modifications and improvements in the implementation of that model. 

Palmquist (1999) describes some recent developments in hedonic modeling. In 

environmental economics hedonic models have been used to estimate the willingness to 

pay for environmental improvements. Hedonic methods are revealed preference 

methods, and they represent one of the few instances where environmental quality is 

traded in actual markets. Housing markets are the most frequently used example of this. 

Hedonic models seek to extract information on the value of the environmental 

characteristics from the market for houses. Geoghegan et al (1997) estimate a hedonic 

model with spatial landscape indices to capture the amenity effects of surrounding land 

use patterns on the selling prices of houses. In this paper an "appropriate" area around 

each observation is chosen and measures of percent open space and diversity measured 

at different scales around that observation are used as indices. This approach goes 

beyond the usual approach in which spatial considerations are reduced to uni-

dimensional measures. In a hedonic pricing framework the houses can also be 

considered as spatial units of observation. When Andrew Cliff and Ord (1973) 

published their book on spatial processes, the literature on spatial and space-time 

processes was "scant indeed". Anselin and Griffith (1988) and Can (1992) argue that 

methodological developments in spatial statistics and econometrics have shown that the 

straightforward use of traditional methods may not be adequate for the analysis and 

modeling of geographically referenced data due to spatial effects, namely spatial 

dependence and spatial heterogeneity. In the presence of spatial processes the 

assumption of the independence in the disturbances is violated. Another concept, which 

is important in spatial econometrics, is called spatial heterogeneity, i.e. functional form 

and parameters vary with location and are not homogeneous throughout the data set. 

The presence of spatial heterogeneity leads to a trade-off between locational specificity 

in the model and identifiability of the parameters and functional forms, within the 
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constraints imposed by data availability. Anselin (1988) presents an introduction to 

spatial econometric issues. In real estate economics the importance of issues related to 

spatial processes is realized only recently. For example, Pace (1997) estimates a mixed 

regressive-spatially autoregressive hedonic model. However, environmental economists 

thus far did not enter the realm of space. This paper presents a spatial econometric 

framework in which the effect of environmental amenities can be analyzed. The 

following question will be answered: 

 

Is it possible to detect and estimate the correlation between the presence of wetland 

areas and the prices of nearby houses in the Netherlands in 1996 using both spatial 

statistical and spatial econometric techniques? 

 

In the next part of this paper the data are described. In the third section spatial 

autocorrelation on the Dutch housing market is analyzed using Moran's I. In section 4 

the estimates of two non-spatial multiple regression models are presented. The residuals 

of both models will be examined. In section 5 the spatial cross-autocorrelation between 

housing prices and environmental (wetland) characteristics is inferred from local 

Moran’s I. In the next version of this paper (which will be downloadable on 

http://www.wetlands.renevdkruk.com) in section 6 a novel spatial model called  

SARIMA will be estimated using special higher order spatial link matrices. See the 

technical appendix for details.  This paper ends with the main conclusions. 
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2 Data description 

 

The data that will be used in this paper cover large parts of the Netherlands, in particular 

highly populated areas such as the Randstad and those regions that contain Ramsar 

wetland sites. Figure 2 depicts several land use categories within the study area in 1996. 

    Figure 2: Land use within the study area in 1996 
 

A database of the Dutch brokers association (NVM) will also be used. The total housing 

market share of the brokers that are member of the NVM is about 60%. This database 

contains data of 36,615 housing transactions in 1996. Only transactions on existing 

houses are studied, id est newly constructed houses are not considered. The following 

transaction data are available: transaction date; district number; transaction price; 

transaction costs; land ownership; capacity; parcel size; construction year; number of 

rooms; type of living room; type of garage; monument; inside maintenance; outside 

maintenance; length main garden; number of bathrooms; gas fire; fireplace. Note that 

the database does not contain grid coordinates of the house, which means that the 

precise location of a house is unknown. However, the district number gives some 

information on the location. Figure 3 depicts the total number of transactions in 1996 

within each of the 309 districts that make up the study area. 
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    Figure 3: Number of housing transactions per district within the study area in 1996 
 

It is relatively straightforward to show that spatial price patterns are present in the Dutch 

housing market. Figure 4 depicts the median transaction price for each district. It is clear 

from this picture that houses in contingent districts have similar transaction price levels. 

    Figure 4: The median transaction price per district in 1996 
 

This spatial autocorrelation is treated in a more formal way in the next section. 
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3 Spatial autocorrelation on the Dutch housing market 

 

The original measures for spatial autocorrelation advanced by Moran (1948) were based 

on the notion of binary contiguity between spatial units. A more general concept is the n 

× n spatial link matrix S = {sij} that represents the spatial relations between the housing 

prices in various districts, where sij > 0 if district i and district j are spatially tied 

together and sij = 0 otherwise (sii = 0 by convention) for i,j = 1,..,n. The spatial link 

matrix can also capture higher order dependence between spatial units that are not 

neighbors. See the technical appendix for details on a novel decomposition of the spatial 

link matrix. 

One can test for the presence of different kinds of spatial autocorrelation in the 

housing market by using Moran’s I.  The observed value of this test statistic is defined 

as a ratio of quadratic forms in the regression residuals e: 
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In this expression p is an n × 1 random vector of the dependent variable and the 

projection matrix TT XXXXIM 1)( −−≡ . I is an n × n identity matrix and X is an n × k 

regression matrix of independent variables. S is an n × n spatial link matrix like the one 

introduced in the technical appendix. In the basic form of Moran’s I the unity vector is 

the only independent variable (i.e. k = 1) and specifies the variation of y around its 

mean. Tiefelsdorf and Boots (1995; 1996) calculate the exact distribution of Moran’s I 

assuming that the disturbances are normal distributed and that the spatial structure used 

to encode the underlying spatial relationship is well behaved. This warrants to 

approximate the significance of an observed value of Moran’s I by the normal 

distribution. However, Tiefelsdorf (1999) notes that "for less well behaved spatial 

structures results from the normal approximation of the distribution of Moran’s I can be 

misleading. Examples of less well-behaved structures are local spatial link matrices; 

spatial hierarchies or spatial link matrices associated with higher order spatial lags. 

Common among these spatial structures is that they lead to sparse spatial link matrices."  

In the same paper he introduces a saddle point approximation of the exact distribution 

of Moran’s I. For more details see Tiefelsdorf (2000). If ε ~ N(0,σ2Ω) the spectrum of 

eigenvalues of 2
1

0
2
1

)()( Ω−Ω≡ MIISMD T determines the exact distribution of Moran’s I 

and its saddlepoint approximation. Lieberman (1994) derives the saddlepoint 
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approximation to the density and tail probability of a ratio of quadratic forms in normal 

variables where Ω = I. 

 Before Moran's I can be applied to the Dutch housing market there is only one 

issue that must be resolved: in the previous section it is noted that the database used 

here does not contain grid coordinates of the houses. Only the district number provides 

information on the location of the house. One solution would be to make additional 

assumptions about the spatial contiguity of houses both within a single district and of 

houses in different districts. However, this approach would come at the cost of 

maximum number of observations per district that can be used and very restrictive and 

arbitrary assumptions. One way out would be to consider ZIP code areas instead of 

district numbers. In any other case even sparse matrix algorithms will not be sufficient 

to prevent the occurrence of computer memory problems. See the technical appendix for 

more on this issue. 

 These remarks provide good reasons to "scale up" the analysis to a higher spatial 

level: the spatial units of analysis are districts instead of houses. The total number of 

observations is thus reduced from 36,615 to only 309. A drawback of this approach is 

that much information on the characteristics of each individual house is lost: restrictive 

assumptions must be made regarding the homogeneity of the houses within a certain 

area. Since Moran's I will be used in this section to detect large-scale spatial 

autocorrelation patterns this approach will be followed here. For each district the 

median transaction price of the houses, which have been sold in 1996 is determined. In 

terms of Moran's I the dependent variable p contains these median prices. The 309 × 

309 spatial link matrix S expresses the spatial relations between districts. We first 

consider the variation of the median prices around the overall mean. Table 1 contains 

values of the I0, the sample version of Moran's I. See the technical appendix for more 

information on coding schemes. 

 
Table 1: Moran's I0 and p-values for 8 cases 

 No coding C-coding S-coding W-coding 
I0 using S1 1.22 0.25 0.26 0.28 

p-value 0.00 0.00 0.00 0.00 
I0 using S 3.60 0.09 0.12 0.15 
p-value 0.00 0.00 0.00 0.00 

 

It is clear that there is a strong positive autocorrelation between the median prices of the 

houses within the study area. 
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A spatial link matrix (of any order) can also be decomposed into local spatial link 

matrices as defined by Tiefelsdorf and Boots (1997). These matrices can be applied to 

analyze the heterogeneity of spatial autocorrelations using local Moran's I. In section  5 

this test statistic will be used to detect spatial (cross-)autocorrelation in error terms of 

ordinary regression models. 
 
4 A non-spatial multiple regression model of the Dutch housing market 

 
As noted in the introduction the assumption of the independence in the disturbances is 

violated in the presence of spatial autocorrelation. In the previous section it is shown 

that there is a strong (positive) autocorrelation in the Dutch housing market. If one 

would nevertheless estimate ordinary regression models the results in table 2 are 

obtained. 

 
Table 2: OLS regression results of both a model with and a model without land use variables. The 

dependent variable is the transaction price. The independent variables are the attributes of the house. 

Share of agricultural use other than cultivation under glass is the default land use category. 

Variable Model 1 Model 2 Variable Model 1 Model 2 Variable Model 1 Model 2 

Constant 216294 -99102 dummy det. stone garage 40749 40206 railway - 468098 

dummy January -25683 -27184 dummy wooden garage -1313 14254 asphalted road - 433124 

dummy February -23662 -24474 dummy built-in garage 45200 48902 unpaved road - -2696181 

dummy March -14167 -15515 dummy monument 56068 58936 airport - -1055183 

dummy April -13102 -14079 In maint. (1:good – bad:5) -5920 -8403 parc or public garden - -261035 

dummy May -11420 -13824 out maint. (1:good – bad:5) -25877 -21652 sports park - -61280 

dummy June -9382 -9154 dummy 5-10 meter garden -14092 -702 day trip location - 471440 

dummy July -7879 -9064 dummy 10-15 meter garden -10482 7727 allotment gardens - 706170 

dummy August -6456 -6136 dummy 15-20 meter garden 23462 41560 dry natural ground - 260587 

dummy September -4224 -4663 dummy 20-50 meter garden 60317 77554 wet natural ground (wetland) - -271430 

dummy October -1264 -1772 dummy > 50 meter garden 70764 94196 dumping ground - 3173462 

dummy November 690 95 number of bathrooms 32506 31129 wreckage ground - -3598969 

dummy not KK 31518 33839 dummy gas -21648 -22971 cemetery - 1416348 

dummy fixed lease 10459 -14144 dummy fireplace 42169 35309 construction site (firms) - -416745 

dummy variable lease -5503 -24116 cultivation under glass - 152531 construction site (other) - -178819 

capacity 438 427 forest - 158266 other grounds - 197297 

parcel size 14 15 residential area - 138804 IJssel Lake - -262215 

construction year -52 69 extraction of minerals - 435679 water reservoir - -289675 

number of rooms 7504 7404 industrial ground - -433093 water with recreational function - 1085231 

Dummy through room -8200 -11681 service facilities - 645680 other waters broader than 6 m - 223281 

dummy room and suite 41796 25509 other public facilities - 29193 Wadden Sea - -2960544 

dummy undet. stone garage 29965 41661 socio-cultural facilities - 81831 North Sea - -206190 
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If one would be unaware of the presence of spatial autocorrelation a first glance at the 

table on the previous page would point towards a negative impact of wetlands on the 

housing prices. However, the other important spatial concept (heterogeneity) will prove 

to be important as will become clear later on. 

 

The justification of adding neighborhood characteristics to the first model above is 

given by figure 6. This map illustrates the spatial distribution of the median value of the  

errors of model 1 for each district.  

   Figure 6: The median error of model 1….            …. and model 2 per district 
 
From figure 6 (and the Moran's I test) it is clear that after correcting for housing 

characteristics there is still some spatial autocorrelation present in the (median) error 

terms, i.e. the part of the housing price that cannot be explained by the regressors used 

either in model 1 or in model 2. The median errors in the Randstad districts are positive, 

while in other parts of the Netherlands the errors are negative. Apparently, people want 

to live in this part of the country. Note the error differences (from red to blue) in the 

districts with large shares of dry natural ground such as the dunes near the coast and 

parts of the Veluwe. What about the wetlands?  

Lieberman (1994) observes that a ratio of a bilinear form to a quadratic form can 

be easily transformed into a ratio of quadratic forms. The cross-autocorrelation 

coefficient 
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can be used as a test statistic for spatial cross-autocorrelation between the variables y 

and z. In the next section the communality in the spatial patterns of housing prices and 

wetland characteristics is investigated in more detail using local Moran's I where M is 

made up of the regressors used in model 1. 



 10 

5 Spatial cross-autocorrelation between wetlands and housing prices 

 
In the introduction op this paper the question is raised whether it would be possible to 

detect and estimate the correlation between the presence of wetland areas and the prices 

of nearby houses in the Netherlands in 1996 using both spatial statistical and spatial 

econometric techniques. In this section the local cross-autocorrelation test statistic will 

be used to answer the first part of this question. The second part will be answered in the 

next section. Figure 7 shows the approximated value of the CDF of local Moran's I. 

    Figure 7: the approximated value of the CDF of local Moran's I per district 

 

From figure 7 and from the value of the global Moran's I the conclusion can be drawn 

that there is an overall strong positive autocorrelation between the median transaction 

price and the presence of wetlands. There are, however also districts with strong 

negative autocorrelation. 

 

 
6 A SARMA model of the Dutch housing market 

 

When applied to spatially distributed observations, ignoring spatial autocorrelation may 

lead to a serious violation of the assumptions underlying ordinary least squares 

regression which can result in erroneous statistical inference. The previous sections 
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have shown that some strong (cross-)autocorrelation in the Dutch housing market exists. 

Fortunately, a variety of spatial models can adjust for this problem. In this section the 

estimates of some spatial econometric models of the housing market in the Netherlands 

will be presented. The starting point from the analysis is the following (very general) 

theoretical model: 

TtYXyxZpPZPpp tyxtyxtyxtyxtyxtyx ∈∈==≡ ~);,()~,~(};{};{ where),,( ~),~,~(~),~,~(),,(),,(),,(),,( zz ββββ  

In this expression p(x,y),t denotes the revealed (transaction) price of a house at a certain 

moment in time t. The house is situated at a certain point in space, which is defined by 

the grid coordinates (x,y). The vector variable z(x,y),t contains the attributes of the house. 

Given these characteristics of the house, the transaction price is determined by the 

vector of parameters ββββ(x,y),t. Note that this formulation allows for a change in both the 

characteristics of the house and the implicit price of the attributes. Moreover, the 

functional form of the relationship between the price and the attributes is indefinite. P 

and Z denote the sets of the transaction prices and attributes both of houses at other 

locations, as defined by elements of the set (X,Y), and of the same house at another 

moment in time, which is defined by elements of the set T. Although this highly general 

model incorporates important features such as space-time autocorrelation and 

heterogeneity and allows for general function forms such as the quadratic Box-Cox 

specification, it is obvious that it is impossible to identify the parameters and functional 

forms, within the constraints imposed by data availability. 

 

In the next version of this paper a class of spatial autoregressive models that is outlined 

in the technical appendix will also be applied in order to analyze cross-sectional spatial 

data on the Dutch housing market. Spatial-temporal models like the one introduced by 

Pace et al. (2000) will not be considered. 
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6 Conclusions 

 

This paper addresses the following question: Is it possible to detect and estimate the 

correlation between the presence of wetland areas and the prices of nearby houses in the 

Netherlands in 1996 using both spatial statistical and spatial econometric techniques? 

Before answering this question this paper first gives an impression of the data and the 

spatial autocorrelation in the Dutch housing market. In the third section spatial 

autocorrelation is detected using Moran's I. In section 4 the estimates of two non-spatial 

multiple regression models are presented. The residuals of both models still contain 

strong spatial autocorrelation. This warrants the use of spatial models. In section 5 the 

spatial cross-autocorrelation between housing prices and wetland characteristics is 

inferred from local Moran’s I. It is not possible to give a straight answer as to whether 

wetlands have a positive influence on housing prices. There is a lot of spatial 

heterogeneity in this relation. There is however a remarkable spatial pattern in the cross-

autocorrelation that cannot be explained by the data. In the next version of this paper 

(which will be downloadable on http://www.wetlands.renevdkruk.com) in section 6 a 

novel spatial model called SARIMA will be estimated using special higher order spatial 

link matrices. The technical appendix of this paper already presents a theoretical 

framework. 
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Technical appendix 

 

In this appendix a new spatial link matrix is introduced, which captures higher order 

spatial dependence between spatial units. This matrix can be obtained by a small change 

in the so-called higher order spatial lag operators. Anselin and Smirnov (1996) present 

efficient algorithms to compute higher order spatial lag operators without redundant and 

circular patterns. They use a simple example of spatial dependence, which can be 

represented by the following graph. 

 

             
                            

A novelty in this paper is the introduction

which summarizes the spatial dependence: 
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difference with the paper by Anselin and Smirnov (1996) is that d is inverted. This is 

done because it is easier to use Sd as a spatial weight matrix. The intuition is that the 

spatial link between units that are further away from each other is weighted less. S1 is 

the first order spatial link matrix, i.e. the contiguity matrix defined on the first order 

spatial neighborhood relation between adjacent spatial objects.  SD is the highest order 

spatial link matrix. It represents the highest order spatial contiguity. The sum of all 

spatial link matrices yields the matrix S, which captures all the spatial link relations of 

the spatial units. For most spatial research the matrix S1 is used. However, if one wants 

to detect higher order spatial dependence, it is more appropriate to use either one or a 

combination of higher order spatial link matrices. 

 

Coding schemes 

 

In order to cope with heterogeneity, which is induced by the different linkage degrees of 

the spatial objects a spatial link matrix is converted using coding schemes. The paper by 

Tiefelsdorf et al. (1999) describes the C-coding, W-coding, and S-coding schemes that 

can be used. The different results of applying the coding schemes to the first order 

spatial link matrix S1 and the spatial link matrix S are presented below. 
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Note that the numbers are rounded off at two digits. By construction each of the entries 

of the S-coding schemes are in between the corresponding elements of the C-coding and 

W-coding schemes. The variation of the entries among the coding schemes using the 
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matrix S is much smaller than the variation of the elements of the matrices 

corresponding to the first order spatial link matrix. The explanation for this observation 

is the higher order spatial character of the matrix S that has an extra stabilizing effect. 

These findings indicate that the effect of the chosen coding scheme is more important if 

one only considers first order spatial links. If higher order spatial links are also 

important, the choice of the coding scheme is less relevant. 

 

A solution to the location issue 

 

If there is more than one observation (house) in at least one spatial unit (district) the 

following method can be used to construct an artificial spatial link matrix. Consider the 

example used in this technical appendix. 
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nd the second factor is the inverse of the 

er district. Note that the element that 

n a district is set equal to 2. 
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SARMA(d) model 
 

The results in the previous sections of this technical appendix can be used to construct a 

new spatial ARMA(d) or SARMA(d) model where d = [di]i =1,2,3. 

 

y = ααααW(d1)y + ββββW(d2)X + γγγγY + εεεε 

εεεε =  δδδδW(d3)εεεε + χχχχ 

χχχχ ~ N(0,σ2In) 

 

In the SARMA model W(di) = [Sk]k = 1,..,d[i] for 0 ≤ di ≤ D. Note that in literature W(d1) = 

W(d3) = S1 while W(d2) = In. The advantage of this general model is that higher order 

spatial links can also be taken into account. This would solve the issue raised by Dubin 

(1992) who argues, "even if a set of variables could be agreed upon, a severe 

measurement problem exists. Neighborhood measures are necessarily geographic in 

nature. Therefore, in order to measure some aspect of the neighborhood, one must first 

know what its boundaries are." 
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