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ABSTRACT 

The focus of this research was to improve Mycobacterium avium subsp. 

paratuberculosis (MAP) control and management programs through increased 

understanding of the diagnostic detection ability of common pathogen and antibody 

assays over seasons and lactation stages, as well as through the novel use of MAP-

specific proteins and a cell-transport media for early diagnostic potential.  

Solid and broth cultures, real-time PCR (qPCR), and ELISA diagnostic tests 

were used to assess a 12-month period of fecal, milk, and colostrum sampling from 51 

MAP-infectious dairy cows and 52 consistently test-negative cows from four farms in 

New Brunswick and three farms in Prince Edward Island, Canada.  

For all fecal, milk, and colostrum samples, improved detection ability for MAP 

was observed with qPCR over culture methods. The bacteria was four times more likely 

to be detected in feces than in milk with the same testing method in both sample types, 

but MAP was two times more likely to be detected in feces than in colostrum with qPCR 

testing. Milk ELISA detected antibodies three out of ten sampling times, but detection 

ability improved as fecal shedding or host age increased. 

Seasonal effects were observed for qPCR and milk ELISA results. Higher 

detection ability occurred in winter and spring for fecal qPCR, in summer for milk 

qPCR, and in winter for milk ELISA. Summer held the best agreement between milk 

and fecal samples collected within the same month. In addition, milk ELISA showed 

better detection levels in late lactation animals. 
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MAP virulence proteins, including protein tyrosine phosphatase A (PtpA) and 

protein kinase G (PknG), were evaluated for use in a novel ELISA antigen-coating in 

milk and serum samples and as antigens for the interferon-gamma (IFN-γ) assay. In 

addition to the previous samples, extra serum and colostrum samples from cows from 

the same herds, and serum samples from cows from a test-negative herd were assessed. 

Improved detection of PtpA was seen in milk and PknG in colostrum, but results were 

inconsistent and variable. Production of IFN-γ was detected in interleukin-12 (IL-12) 

p40-potentiated PtpA and PknG whole blood samples. However, small sample size, low 

protein availability, and inconsistent results in the infected (two cows) and non-infected 

(two cows) animals biased the apparent benefit of these virulence proteins.  

In addition, a novel cell transport media was assessed for improving the 

utilization of the IFN-γ assay. Whole blood samples from ten healthy cows were each 

divided into test and control samples, stimulated with the mitogens pokeweed and 

concanavalinA (ConA), as well as IL-12 p40, on days 1, 5, and 8 post-sampling. 

Functional immune response was assessed through IFN-γ production (ELISA) and 

mononuclear cell viability (propidium-iodide flow cytometry). Addition of the transport 

media improved ConA-dependent IFN-γ secretion and improved mononuclear cell 

viability up to eight days post-collection. 

Improving our knowledge of factors affecting the interpretation of diagnostic 

assays could benefit Johne’s disease management programs through more effective 

diagnostic strategies and increased producer participation. Results of this research 

support the use of qPCR in a Johne’s herd control program, particularly to help 

minimize MAP exposure to calves. Furthermore, a simple method to extend white blood 
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cell viability in vitro can enhance the practicality of the IFN-γ test as another means of 

detecting MAP exposure and future risk of MAP infection and transmission within a 

herd.  
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CHAPTER 1. GENERAL INTRODUCTION 

 

Johne’s disease, also known as paratuberculosis, manifests as an infectious 

enteritis in dairy cattle; other ruminants; and several species, including wildlife, exotic 

animals, rodents, and birds (Fecteau and Whitlock, 2010; Manning and Collins, 2010b). 

The characteristic chronic nature of this disease is caused by the intracellular agent, 

Mycobacterium avium subsp. paratuberculosis (MAP), and its hallmark ability to avert 

normal immune attempts to clear the infection (Bannantine and Stabel, 2002). 

Paratuberculosis has plagued the dairy industry since the 19
th

 century, gaining the 

familiar title of Johne’s disease in 1906, following the research efforts of Dr. Heinrich 

Albert Johne and his colleagues (Manning and Collins, 2010a). Since then, ongoing, 

widespread research has been pursued to understand the complex nature of this organism 

and the challenges to control it amid serious concerns of a potential zoonotic link with 

human Crohn’s disease. 

 

1.1 Johne’s Disease in Dairy Cows: Impact on the Dairy Industry 

1.1.1 Prevalence 

Although it has a worldwide distribution (Collins, 2003; Singh et al., 2013), 

paratuberculosis has become endemic in most of Europe and North America where 

regions have more than 50% of herds infected (Nielsen and Toft, 2009). A recent study 

in U.S. herds reported a herd prevalence of 91% (Lombard, 2011). However, due to 
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imperfect diagnostic tests, prevalence reports may vary, depending on the choice of 

diagnostic method and target condition, often making comparison between studies 

difficult (Barkema et al., 2010). For example, herd-level seroprevalence has been 

reported as 22% of approximately 1,000 U.S. dairy herds (Wells and Wagner, 2000) and 

17% of 90 Canadian Maritime herds (VanLeeuwen et al., 2001). Using milk ELISA 

testing, a recent study in Ontario, Canada, estimated 26% of over 2,000 herds to be 

MAP-infected (Ontario Johne’s Education and Management Assistance Program, 2013). 

Using environmental fecal testing, 70% of herds in Alberta were classified as MAP-

infected (Alberta Johne’s Disease Initiative, 2014), whereas 26.5% of 457 participating 

herds in Atlantic Canada were shown to be MAP-infected, at least once during a three 

year voluntary program from 2011-2014 (MacDonald et al., 2014).  

Within-herd prevalence has generally been reported as low to moderate 

(Lombard, 2011). The above studies have shown at the cow-level that 2.6% of Canadian 

Maritime cows (VanLeeuwen et al., 2001), 3.4% of U.S. cows (Wells and Wagner, 

2000), and 1.0% of cows in Ontario (Ontario Johne’s Education and Management 

Assistance Program, 2013) to be infected with paratuberculosis, respectively. However, 

McKenna et al. (2004) reported a cow-level prevalence of 16.1% in eastern Canada 

using tissue culture. 

 

1.1.2 Economics 

Because this disease can be transmitted silently and often goes undiagnosed, it 

can have long-term effects within a herd. Dairy Farmers of Canada (2014) currently lists 

Johne’s disease as one of the top two animal health priorities of the Canadian dairy 
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industry. In dairy cattle, Johne’s disease is a production limiting disease, leading to 

direct financial losses for dairy farmers, including veterinary costs (Benedictus et al., 

1987), decreased milk production of up to four kilograms less milk per day (Lombard et 

al., 2005), reproductive losses (Johnson-Ifearulundu et al., 2000), mortality, and culling 

(Ott et al., 1999). The costs for these direct losses, not including indirect losses from 

trade implications and potential zoonotic risks, were estimated in the National Animal 

Health Monitoring System’s dairy study (1996) for the United States to be U.S.$200-250 

million annually (Wells and Wagner, 2000). Comparatively, recent Atlantic Canadian 

estimates suggest that a production loss alone from paratuberculosis infection in a 100 

cow herd could amount to $5,000 annually (Chi et al., 2002). Unfortunately, depending 

on the prevalence of the disease within a herd, benefits of implementing management 

strategies can take up to five to ten years before a noticeable economic effect is felt 

(Barkema et al., 2010). At the cow-level, control efforts made on the basis of testing can 

result in benefits that generally outweigh the cost of testing (Dorshorst and Lombard, 

2006). 

 

1.1.3 Zoonotic: Crohn’s Disease 

        Public health concerns of a zoonotic link of the causative organism in Johne’s 

disease to Crohn’s disease, incurable chronic enteritis in humans, exist. The same 

pathogen causing Johne’s disease in cattle has been identified from patients with 

Crohn’s disease, leading to concerns of decreased milk demand in the market (Hermon-

Taylor and Bull, 2002; Gill et al., 2011; Serraino et al., 2014). Although a definitive 

connection has not been proven between Johne’s disease in cattle and Crohn’s disease in 
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humans, the debate still continues on whether MAP may be causally associated with 

Crohn’s disease or is merely a complicating bacteria to the condition (Feller et al., 2007; 

Chiodini et al., 2012). The concern also involves the possibility of milk as a vehicle of 

transmission to humans, particularly since it has been shown that, to a certain extent, 

MAP can survive some pasteurization techniques for milk (Thompson, 1994; Grant et 

al., 2002; Manning and Collins, 2010b; Van Brandt et al., 2011). Furthermore, several 

studies were found to report, in some cases, high numbers of the bacteria in dairy 

products such as milk, cheese, and infant formula (Grant, 2010). It has also been shown 

that MAP can be transmitted by run-off from MAP contaminated environments into 

water supplies, with a risk of MAP resistance to water disinfection techniques (Grant, 

2010; Manning and Collins, 2010b). The prospect of a confirmed zoonotic link between 

paratuberculosis and Crohn’s disease and the devastating economic implications for the 

dairy industry continuously drives ongoing paratuberculosis research for improved 

diagnostic efficiency and control scheme efficacy.  

 

1.2 Johne’s Disease in Dairy Cows: The Disease 

1.2.1 Overview 

Johne’s disease is caused by MAP, an obligate intracellular, acid fast bacteria 

from the Mycobacterium avium complex (He and De Buck, 2010), but with specific, 

detectable genes that differentiate it from other mycobacteria within this complex (Green 

et al., 1989; Ellingson et al., 1998). Adult cows older than two years are the main source 

of bacterial shedding, mostly via feces, but also through milk, colostrum, and in utero, 

depending on the stage of infection. Once a susceptible animal has become infected, the 
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disease progresses slowly. Traditionally, stages one and two of the disease are 

preclinical periods, while stages three and four have overt clinical signs (Fecteau and 

Whitlock, 2010). More recently, Johne’s disease stages have been tiered into three 

categories, namely: cows that carry the MAP bacterium without detectable shedding 

(infected); cows that are shedding a detectable amount of MAP at the time of diagnostic 

testing (infectious); and cows that exhibit clinical signs of the disease (affected) (Nielsen 

and Toft, 2008). This new classification system combines the traditional third and fourth 

stages into the affected group, and combines stage two and stage three cows that have 

detectable shedding into the infectious group. The following sections explain Johne’s 

disease using both the traditional and newer categorization methods. 

 

1.2.2 Transmission 

Immune-suppressed cows and those exposed to a high burden of bacteria can 

become infected; but, while there is more often resistance to infection with increasing 

age (Larsen et al., 1975; Chiodini et al., 1984), the specific age of diminished 

susceptibility has not yet been determined. In a metanalysis study, it was suggested that 

cows infected as adults may not reach the clinical stage in their lifetime (Windsor and 

Whittington, 2010). 

MAP infection occurs primarily in calves, with a higher susceptibility reported 

for calves younger than one year and especially younger than six months (Windsor and 

Whittington, 2010; Mortier et al., 2013), with the highest risk of infection for those less 

than one month of age (Sweeney, 2011). The earliest infection can begin in utero, with a 

potentially higher risk for the fetus from an infectious or affected dam (Fecteau and 
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Whitlock, 2010). Postnatally, infection is attained primarily through the fecal-oral route 

(Clarke, 1997), as well as through MAP-infected or MAP-contaminated colostrum, milk, 

water, feed, dust, soil, or environment (Sweeney, 1996; Eisenberg et al., 2010). Calves 

are highly susceptible to MAP exposure via manure contamination on the dam’s udder 

while in the maternity pen environment (Fecteau and Whitlock, 2010; Sweeney, 2011). 

Colostrum, especially from infectious and clinical dams, also presents a high risk of 

MAP exposure to calves (Nielsen et al., 2008). Aerosolized MAP poses a further risk to 

calves (Eisenberg et al., 2011). Studies have shown that the higher the exposure rate and 

concentration, the less likely the exposed calf’s immune system can resist subsequent 

infection and progression of the disease (Begg and Whittington, 2008; Mortier et al., 

2013). 

 

1.2.3 Preclinical Silent Stage 

Preclinical stages start at infection and progress through a silent (non-detectable) 

stage into infectious stages. Because the incubation period between infection and clinical 

symptoms can range from two to ten years (Whitlock and Buergelt, 1996), some cattle 

remain within the preclinical phase, while other animals, usually exposed to a higher 

MAP bacterial load, may take less time to reach the clinical state (Lombard, 2011). 

MAP-infected cows in this stage usually do not shed MAP bacteria in their feces (silent 

infection) or have detectable antibodies to MAP (Whitlock and Buergelt, 1996). 

However, an inflammatory response via macrophages and lymphocytes within the small 

intestinal, primarily ileal, submucosa and mesenteric lymph nodes creates the formation 

of granulomas in the intestinal tract as an attempt to control the infection (Sweeney, 
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2011). Therefore, the presence of infection at this stage can only be confimed via 

histopathology and culture of the intestinal tract and regional lymph nodes. Although 

lacking specificity for Johne’s disease, Johnin skin tests and interferon-gamma (IFN-γ) 

tests detect these early cell-mediated immune responses and can also be used in this 

disease stage as an indirect detection method by determining exposure to the disease and 

subsequent risk of becoming MAP-infectious (Tiwari et al., 2006). 

  

1.2.4 Preclinical Infectious Stage 

Progression to this stage, still within the preclinical phase, begins when the cell-

mediated attempt to contain the infection fails (Sweeney, 2011). As the cell-mediated 

immunity wanes, a switch to humoral antibody immunity ensues (Stabel, 2000). 

Progression of infection increases, resulting in MAP shedding into feces and into other 

tissues (Whitlock and Buergelt, 1996; Sweeney, 2011). However, this bacterial shedding 

is intermittent rather than continuous (Nielsen, 2008), as MAP-infected macrophages 

within intestinal granulomas are shed across the mucosal lining into the intestinal 

luminal space (Sweeney, 2011). This migration of MAP-infected macrophages can 

decrease during periods of regression, resulting in waxing and waning phases of 

bacterial shedding (Sweeney, 2011). Therefore, a negative fecal detection test result at 

this stage does not necessarily imply that the cow is Johne’s disease-free, but rather that 

shedding was not occurring at that one time or that the bacteria in that particular sample 

were fewer than the detectable limit. False negative test results are caused by poor 

diagnostic sensitivity (Se) for preclinical cows, although MAP still silently contaminates 

the environment, increasing risk of exposure to calves (Tiwari et al., 2006). Although 
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rare, it is also possible that cows in the preclinical stages can have an antibody response 

detected via an enzyme linked immunosorbent assay (ELISA) (Nielsen, 2008; Sweeney, 

2011). Higher antibody concentrations typically correspond to increased MAP shedding 

and consequently disease progression (Koets et al., 2001). 

 

1.2.5 Clinical Infectious Stage 

The transition from preclinical to clinical stages can begin as early as two years 

or up to ten years post-infection, but most commonly between three to five years (Larsen 

et al., 1975; Whitlock and Buergelt, 1996). This disease transition can be accompanied 

by both reduced milk production, which sometimes can be noticed up to 300 days before 

any detectable humoral response by ELISA (Sweeney et al., 2006), and reduced 

reproductive efficiency, including days open and repeat breeding (Fecteau and Whitlock, 

2010). As an infected cow moves into this stage, weight loss and diarrhea commonly 

ensue (Whitlock and Buergelt, 1996). Similar to shedding, diarrhea begins intermittently 

and worsens over time. To compensate for fluid lost with the diarrhea, polydipsia may 

also be observed. Nevertheless, heart rate, respiratory rate, temperature, and appetite 

remain within normal limits. These clinical signs occur as the focal ileal granulomas 

become disseminated and spread to other parts of the intestinal tract leading to a 

thickened intestinal lining, with subsequent malabsorption and protein loss (Stabel, 

1998). As the clinical cow’s immune system becomes overwhelmed, bacterial shedding 

increases dramatically not only in feces but also within milk, colostrum, the uterus, 

muscle tissue, and internal organs. Often stressful situations, including parturition, can 

be followed by increased or more obvious clinical signs and further bacterial shedding 



9 

 

(Fecteau and Whitlock, 2010). Ultimately, the advanced clinical stage presents with 

profuse watery diarrhea, hypoproteinemia leading to subcutaneous edema (usually 

submandibular), lethargy, and severe reduction in milk production. Cows that are not 

culled prior to stage 4 become debilitated and die from emaciation and dehydration 

(Sweeney, 2011).
 

Since milk production loss causes many infected cattle (between 85 to 90%) to 

be culled during preclinical stages, few infected cattle may reach the clinical stage 

(Abbas et al., 1983). However, adult cows with clinical symptoms of MAP can shed 10
6
 

to 10
8
 colony forming units (CFU)/gram of feces (Jørgensen, 1982; Whittington et al., 

2000). MAP shedding into milk has been reported as less than 10 CFU/50 ml of milk for 

infected cows (Sweeney et al., 1992; Rademaker et al., 2007), versus up to 100 CFU/ml 

of milk for affected clinical cows (Giese and Ahrens, 2000). However, a calf can 

become infected with Johne’s disease by ingesting merely 50 to 10
3
 CFU of MAP/calf 

(Chiodini, 1996; Gilmour et al., 1965).  

 

1.2.6 Host responses: Cell-mediated and Humoral Immunity 

Following exposure and infection with MAP, the pro-inflammatory cell-

mediated immune system in susceptible hosts is activated. Macrophage-surface major 

histocompatibility complex (MHC) class II molecules are involved in the presentation 

of the bacteria to T helper (Th) cells. These activated T cells, in particular Th1 cells, 

such as CD4+, CD8+ and γ/δ cells, and natural killer (NK) cells (Stabel, 1996), lead to 

secretion of IFN-γ. IFN-γ stimulates the production of Immunoglobulin (Ig) G2, 
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activates macrophages, and induces MHC class II expression on the macrophage 

surface. As the incubation period for the disease progresses and an anti-inflammatory 

state unfolds, a gradual switch to a Th2 immune response leads to a humoral response 

and the production of IgG1 antibodies with the onset of clinical signs (Nielsen and Toft, 

2006; Stabel, 2010; Sweeney, 2011). Recent research into this transition suggests that 

rather than the classical Th1/Th2 explanation (which still remains an invalidated 

hypothesis), the transition may be more likely affected by cytokines such as interleukin 

(IL)-10 from regulatory T cells or IL-17 from proinflammatory Th17 cells (Dudemaine 

et al., 2014). It has been suggested that the transition to humoral immunity, when the 

host loses control over the infection, can occur as early as 10 to 17 months old (Lepper 

et al., 1989), but is more typically seen between 2 to 6 years of age (Nielsen and Ersbøll, 

2006). This humoral immune response is delayed following infection because of MAP’s 

survival within macrophages (Hostetter et al., 2003; Kabara and Coussens, 2012).  

Because of the intracellular proliferation of MAP, cell-mediated immune 

response is one of the main pathways to respond to bacterial invasion (Stabel, 1996). It 

has been suggested that cows that never will be ELISA positive still have a 2 to 4% 

chance of being fecal culture positive. Therefore, most infected cows will also 

eventually show a detectable humoral response, although it commonly occurs during 

infectious stages (Nielsen and Toft, 2006). MAP-infectious cows that are positive for 

both humoral antibodies and cell-mediated IFN-γ may be less likely to progress to 

affected stages than those that are only antibody-positive (Jungersen et al., 2012). 

It is the hallmark intracellular state of MAP that causes the chronic nature of the 

disease. In a normal immunological pathway, engulfed microorganisms are enclosed in 



11 

 

vesicles termed phagosomes, transported towards lysosomes, and killed. Processed 

antigens are then presented to specific Th cells. Since MAP multiples in macrophages, it 

manipulates the immunological response of the macrophage (Li et al., 2005), allowing 

the bacteria to not only survive but multiply within the host’s macrophages (Bannantine 

and Stabel, 2002). Intracellular MAP survivability is mediated by the prevention of 

phagosome-lysosome fusion within macrophages and the decrease of phagosome 

acidification (Walburger et al., 2004; Bach et al., 2008; Wong et al., 2011). By altering 

normal macrophage activity, MAP can inhibit normal antigen processing and 

presentation and alter innate immune activity. For example, MAP can reduce MHC class 

II levels in these infected macrophages, thereby decreasing the amount of antigen 

presented to and the activation of Th cells and subsequently the production of IFN-γ 

(Bach et al., 2011; Sweeney, 2011; Verschoor et al., 2010; Dudemaine et al., 2014). 

Research is ongoing into identifying and classifying the battery of proteins secreted by 

MAP in order to cleave lipids and allow basic metabolism and survival for the bacteria 

(Bach el al., 2011). Two of the identified proteins released upon macrophage-uptake of 

MAP are protein tyrosine phosphatase A (PtpA) and protein kinase G (PknG) 

(Walburger et al., 2004; Bach et al., 2006). In general, protein kinases activate protein 

substrates by mediating phosphorylation, but the protein phosphatase action of 

dephosphorylation (specifically of tyrosine amino acids in the case of PtpA of MAP) is a 

reverse-regulation of kinases to prepare for the next signal transduction (Av-Gay and 

Everett, 2000; Bach et al., 2006; Bach et al., 2009). The important virulence capability 

of tyrosine phosphatases, in addition to involvement in many cellular activities 

(Charbonneau and Tonks, 1992; Walton and Dixon, 1993), highlights their role in the 
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survival of MAP within macrophages (Bach et al., 2006). PtpA is actively involved in 

disruption of phagosome-lysosome maturation by reducing the pH in MAP-containing 

phagosomes through exclusion of the H+ATPase-subunit H, whereas PknG can inhibit 

phagosome-lysosome fusion and thereby aid the bacteria in avoiding hydrolases from 

the lysosomes (Walburger et al., 2004; Bach et al., 2008; Wong et al., 2011). 

 

1.3 Johne’s Disease in Dairy Cows: Diagnostic Assays 

1.3.1 Overview  

Due to the chronicity and preclinical nature of the disease, no single assay at a 

time will be able to detect all infected cows within a herd (Kalis, 2003). Furthermore, 

even when more sensitive molecular assays are used, fewer than one third of infected 

preclinical cows in a herd will be identified (Whitlock, 2009). This leads to what has 

been dubbed the “iceberg phenomenon” for paratuberculosis, in which the few 

diagnosed affected cows are merely sentinels of the majority of the undetectable MAP 

infection residing within a herd. In fact, for every stage 4 cow within a herd, there can 

concurrently be 15 to 25 cows within stage one and another six to eight within stage two 

(Whitlock, 1992; Fecteau and Whitlock, 2010). The proportion of detectable animals 

within this pyramid increases dramatically with increasing age, from 33% for two year 

old cows to 94% for five year old cows (Nielsen et al., 2013). This would indicate that 

the greater the number of these older cows at the tip of the pyramid, the greater the MAP 

infection burden within the herd. 

There are three broad categories of diagnostic tests available for Johne’s disease 

detection and monitoring: cell-mediated assays, humoral assays, and organism detection 
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assays (Barkema et al., 2010). The most commonly used methods include culture and 

polymerase chain reaction (PCR) to detect the bacterium, and ELISA to detect immune 

responses. Individual tests available for Johne’s diagnostics perform better as the stage 

of the disease increases (Tiwari et al., 2006).  

 

1.3.2 Culture 

For MAP, culture can be used not just for feces, but also milk, colostrum, and 

tissues (intestine, muscle, lymphoid). Despite the intermittent shedding of MAP in 

preclinical phases, fecal culture is considered in much of the literature as the primary 

reference standard, as tissue culture is invasive and therefore reserved mainly for post-

mortem detection (Bölske and Herthnek, 2010). Unfortunately, MAP is extremely slow 

growing, and culture incubation times for bovine samples can take up to seven weeks on 

broth media and up to 16 weeks on solid media. This slow growth of MAP necessitates 

the use of decontamination techniques, including antimicrobials, to eliminate faster-

growing, competitive bacteria and fungi (Whittington, 2010), for which there are various 

media and techniques available. Commonly used solid media includes Herrold’s egg 

yolk media (HEYM) with the addition of mycobactin J, an iron-chelating agent, since 

MAP is the only mycobacterium that can use mycobactin J as a siderophore. A benefit to 

solid media is the direct detection and enumeration of MAP colonies which gives an 

indication of bacterial load. Liquid media, on the other hand, is quicker, and qualitative 

or quasi-quantitative. Liquid systems include the Bactec 460 radiometric detection, 

Bactec MGIT 960 fluorescence detection, TREK
®

 ESP pressure detection, and 

MB/BacT reflectance detection (Whittington, 2010). For milk and colostrum samples, 
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where bacterial numbers tend to be much lower than in feces, sedimentation, 

centrifugation, and filtration are all extra steps that can be added to the culture protocols 

to aid in bacterial identification (Gao et al., 2005; Gao et al., 2009; Bradner et al., 

2013a). In addition, to decrease costs, culture of environmental fecal samples, and/or 

pooled fecal samples is a common practice for herd testing and screening, where the 

number of individual cows/pool depends on the total number of cows within a herd. 

Positive-pool culture results can then be followed up with the culture of individual 

samples to identify positive cows within that pool (Whittington, 2010; Lavers et al, 

2013). However, the culture techniques require further confirmation of MAP growth 

with positive acid fast staining and with molecular identification methods using MAP 

specific genes. 
 

 Fecal culture specificity (Sp) is nearly 100% (Nielsen and Toft, 2008), while Se 

of 26% for pre-clinical cows and 82% for infectious cows have been reported (McKenna 

et al., 2005; Sockett et al., 1992; Whitlock et al., 2000). Tiwari et al. (2006) reported Se 

of fecal culture from19% in low MAP-shedding cows to 53% in high MAP-shedding 

cows. Herd level screening and decreased cost can be achieved with the pooled fecal 

culture method (pools of five cows) (Kalis et al., 2004) and environmental fecal cultures.  

Unfortunately, Se of culture methods for individual milk and colostrum samples 

or even bulk tank milk samples would invariably be lower than for feces, as there is a 

significantly smaller proportion of MAP-fecal shedding cows that are suspected to shed 

the bacteria through their mammary glands (Jayarao et al., 2004; Streeter et al., 1995; 

Sweeney et al., 1992). In addition, milk results need to be cautiously interpreted as they 

risk being biased by potential fecal contamination (Barkema et al., 2010). 
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1.3.3 Polymerase Chain Reaction 

As an alternative to direct growth and identification of the bacterium, molecular 

techniques can be used to detect the bacterium genetically. Polymerase chain reaction 

methods have been developed for feces, milk, colostrum, and tissue samples directly or 

as confirmation to culture techniques. In addition, the quasi-quantitative cycle threshold 

(Ct) values obtained can be used to estimate the amount of MAP present in the sample, 

with lower Ct values corresponding to higher MAP concentration as fewer amplification 

cycles are required for the fluorescence to reach the required threshold (Bölske and 

Herthnek, 2010).
 

There are 3 main advantages to PCR, particularly real-time PCR (qPCR). First, 

it is a very rapid technique compared to culture, taking less than 24 hours if needed to 

obtain results. Second, no decontamination techniques are required, which avoids the 

subsequent reduction in viable MAP numbers within the sample that is seen with culture 

methods. And third, PCR can detect not only viable bacteria, but also dead bacteria, 

which is helpful when fresh samples cannot be processed immediately, as some bacteria 

may be killed with particular storage methods (Bölske and Herthnek, 2010). The 

insertion element IS900 is the usual sequence targeted; however, sequences such as 

hspX, F57, ISMAV2, and ISMAP02 are unique to MAP (Ellingson et al., 1998; Bölske 

and Herthnek, 2010; Pithua et al., 2011; Hanifian et al., 2013), allowing Sp to be 

comparable to culture techniques (Leite et al., 2013). Sensitivity of the molecular 

method will be dependent on technique and kit used, gene identified, reference standard, 

bacterial load within the sample, and loss of bacteria during processing or storage 
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(Bölske and Herthnek, 2010; Leite et al., 2013; Plain et al., 2014). Another important 

factor that can affect the Se and Sp of the assay is the number of copies of the selected 

gene sequence, with Se increasing with greater copy numbers. However, concern over 

cross-reaction with other mycobacteria harbouring IS900-like elements have led to the 

selection of other MAP-specific sequences, despite their having fewer copy numbers 

(Bölske and Herthnek, 2010). Furthermore, the selected cut-point for a positive result 

can lead to an underestimated Se the lower the cut-point threshold. Therefore, 

comparisons of qPCR results for paratuberculosis research across the literature need to 

be cautiously interpreted in light of these factors. A disadvantage to the efficiency of 

PCR for paratuberculosis is the challenge faced in extracting DNA from MAP, which 

can be enhanced by selecting the most accurate methodology for the purpose of testing 

(Leite et al., 2013). Two specific challenges faced during DNA extraction from MAP 

include inhibitors present in the sample that can hinder DNA amplification, such as 

phytic acid and polysaccharides within fecal samples (Kreader, 1996; Monteiro et al., 

1997; Thornton and Passen, 2004; Leite et al., 2013), and also the thick, waxy cell wall 

of MAP, which requires more intense lysis techniques, such as bead-beating, to extract 

the DNA (Lanigan et al., 2004; Leite et al., 2013).  

 

1.3.4 Enzyme Linked Immunosorbent Assays 

The second group of diagnostic tests involves detecting an immune response to 

the bacteria, with ELISA most commonly used. ELISA kits can be used to detect a 

quantitative optical density (OD) reading that correlates to the amount of MAP-specific 

antibody in either serum or milk samples (Nielsen, 2010). This assay is widely used, 
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being cost-effective and taking only a few hours to process. The Se of ELISA is 

generally poor but varies greatly depending on reference standard, target condition, herd 

MAP prevalence, and ELISA kit and methodology (Nielsen et al., 2002; Collins et al., 

2005; Lombard et al., 2006; Nielsen and Toft, 2006). For example, McKenna et al. 

(2005) reported Se of absorbed serum ELISA as low as 6.9% to 8.8%, but Se of 

unabsorbed ELISA at 16.9%, when tissue culture is used as the reference standard. 

Meanwhile, Sp for ELISA has been shown to be less than 100% depending on the kit 

and method (McKenna et al., 2005; Nielsen and Toft, 2008). Therefore, ELISA results 

(milk or serum) need to be evaluated in light of the purpose for testing (such as detection 

or screening) (Nielsen and Toft, 2006), and should be followed up with direct detection 

methods for absolute confirmation (Collins, 2011).
 

 
Furthermore, there can be much variation between ELISA kits and protocols, 

with results ranging from strong positive in one type of commercial ELISA to negative 

in another on the same sample. One reason for this lies in the unique antibody responses 

within each cow (Collins et al., 2005). The detection of antibodies to IgG1 occurs as the 

pro-inflammatory stage (IgG2) switches over to the humoral anti-inflammatory stage 

(IgG1). Sometimes both IgG1 and IgG2 can occur simultaneously during the immune 

transition (Th1 to Th2 shift) (Nielsen, 2010). In addition, the type of IgG antibody 

detected depends on the sample. For example, IgG1, which is primarily detected in milk 

and colostrum, only characterizes approximately half of the IgG present in serum. 

Therefore, differences among Se of ELISA kits and protocols may also be dependent 

upon the target condition and sample (Harp et al., 1988). 
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In a study by Sorge et al. (2012) of dairy herds in Ontario and Western Canada, the 

two most important risk factors for a positive milk ELISA test outcome included MAP 

herd status and Johne’s disease history. The effect of these risk factors may also 

potentially affect the risk of a positive outcome using other diagnostic tests for 

paratuberculosis. Other risk factors listed by Sorge et al. (2012) included the 

introduction of subclinical or unknown status cows into test-negative farms, exposing 

young calves to the bacteria, increased use of pooled colostrum, calf management, 

nutrition, and disease states.  

 

1.3.5 Interferon Gamma Assays 

Detection of IFN-γ, although not necessarily always indicating MAP infection, 

can be used in the context of a “recall” immune response. This recall IFN-γ response 

identifies cows previously exposed to MAP and at potential risk of later disease 

development and risk of future MAP transmission occurring in the herd (Jungersen et 

al., 2002; Huda et al., 2003; Huda et al., 2004; Jungersen et al., 2012). Specifically, this 

assay identifies the host’s T cell recognition of antigens since the cows may not have 

been infected long enough to produce antibodies to MAP (Stabel and Whitlock, 2001; 

Nielsen and Toft, 2006; Zervens et al., 2013). Although earlier than other tests, IFN-γ 

detection of MAP may still lag by several months following infection (Chiodini, 1996). 

Although Begg et al. (2011) reported that in MAP-infected sheep different immune 

profiles may exist in early infection, for MAP-infected cows, the IFN-γ assay may have 

improved performance in MAP-infected cows less than three years of age, in 

comparison to antibody ELISA (Huda et al., 2004; Jungersen et al., 2012). 
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Unfortunately, this assay has never gained widespread use in Johne’s diagnostics 

due to two major disadvantages to the test that require further research to overcome. The 

primary disadvantage is the need to process fresh whole blood samples within 24 hours 

of collection in order to maintain white blood cell viability, with improved results for 

samples processed within eight hours of collection (Jungersen et al., 2002; Plain et al., 

2012). Furthermore, by sensitizing lymphocytes through the action of specific 

stimulation agents, the recall-response leads to the production of IFN-γ, which can be 

detected through cell-mediated assays. A common sensitization agent for this assay is 

Johnin, a protein-purified derivative antigen. However, the Se and Sp of the assay to 

identify the MAP-infected cow’s T cell recognition of antigens is often poor and quite 

variable, especially when using Johnin (Jungersen et al., 2012). With the potentiating 

effects of the pro-inflammatory cytokine IL-12 or of anti-IL-10 (an anti-inflammatory 

cytokine) antibodies added to the culture with a stimulation agent, a greater possible Se 

of the assay could be achieved (Jungersen et al., 2005; Mikkelsen et al., 2009; 

Mikkelsen et al., 2012). Detection of IFN-γ in exposed animals does not necessarily 

mean MAP infection will ensue, as the cell-mediated immunity may control the 

infection or the IFN-γ may be only detecting environmental mycobacteria, lowering test 

Sp, if the antigen selected is not highly MAP-specific (Jungersen et al., 2002; Huda et 

al., 2004; Jungersen et al., 2012). As cell-mediated responses are strong during early 

infection, IFN-γ testing could be used as a support mechanism to identify gaps in 

paratuberculosis management protocols that result in MAP exposure, especially for 

subclinical cows and calves (Collins, 1996; Kalis et al., 2003). 
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1.4 Johne’s Disease in Dairy Cows: Management and Control 

Even the best diagnostic test for paratuberculosis is likely to misdiagnose as false 

negative a large number of infected cows within a herd (Whitlock, 2009), which is one 

of the reasons eradication of paratuberculosis from a farm is so difficult (Collins et al., 

2010; Whitlock, 2010). For those cows correctly identified as MAP-positive, there is no 

currently effective treatment, cure, or vaccine available (Whitlock, 2010). Although 

some therapeutic agents have been shown to decrease clinical signs, they are not 

curative and not economically feasible for large-scale use, as they need to be 

administered for the life of the cow to be of benefit (Fecteau and Whitlock, 2011). 

Vaccines can be used concurrently with control measures, and in some cases, as for 

small ruminants, have been shown to be a cost-effective means for controlling clinical 

signs of Johne’s disease, especially decreased milk production (de Lisle, 2010). 

However, for bovine paratuberculosis, some problems still decrease the use of vaccines 

as part of control measures. In Canada, there is currently no approved paratuberculosis 

vaccine, primarily due to the interference with bovine tuberculosis skin testing (Patton, 

2011), as well as potential false positive results in paratuberculosis immune tests (de 

Lisle, 2010; Tewari et al., 2014). Approximately 5.0% of dairy herds in the United 

States incorporated vaccination in their Johne’s control programs in the National Animal 

Health Monitoring System study from 2007 (NAHMS, 2007). Furthermore, although 

vaccines can significantly delay and decrease clinical signs and fecal shedding (Tewari 

et al., 2014) and thereby synergistically benefit control programs, they do not prevent 

infection in herds and can cause the formation of large granuloma reactions at the 

inoculation sites (de Lisle, 2010).  
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Consequently, once MAP has been detected within a herd, management and 

biosecurity are currently the primary means of control. Likewise, screening and 

biosecurity are a priority for test-negative herds to maintain this status and prevent MAP 

from entering the herd (Whitlock, 2010; Garry, 2011). In this manner, the most cost-

effective approach to reduce herd prevalence and manage Johne’s infection within a 

herd is to identify where transmission is most likely occurring and interrupt this 

transmission of MAP through specific control protocols (Groenendaal et al., 2002; 

Kudahl et al., 2007; Nielsen et al., 2008). 

There are two main goals for management programs, namely: decreased 

transmission to calves and heifers, and prevention of disease introduction into herds 

(Whitlock, 2010). With regard to biosecurity, a closed herd is the best option. But if 

replacement heifers are purchased, then it is necessary for the replacements to come 

from herds that are serially test-negative. For a herd that is already infected with MAP, 

there can be several critical control points specific to that herd, including maternity pen 

management, as calves are at the highest risk for infection. Known MAP-positive or 

high risk cows should be segregated from the maternity area to avoid MAP-

contaminated feces in that environment. The maternity area should be kept clean and 

dry, and calves should be removed from dams immediately after birth (Whitlock, 2010). 

Calves should not be fed pooled colostrum, nor colostrum and waste milk from infected 

cows (Chiodini and Hermon-Taylor, 1993). In addition, young stock and heifers should 

also not be fed MAP-contaminated feed and water. Because fecal shedding and 

subsequent ingestion is a major transmission mode, manure management, particularly in 

the maternity pens and amongst dry cows, becomes a priority. Best management 
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practices, as suggested by the National Voluntary Bovine Johne’s Disease Control 

Program, should include education for the producer, preferably as part of a national or 

provincial voluntary control program, and the development of a risk assessment and 

management plan that is unique to each herd, followed by specific decisions for testing 

programs to detect and monitor MAP-positive cows. A cost-benefit analysis is often at 

the core of specific control objectives (Collins et al., 2011; Garry, 2011; Whitlock, 

2010). 

 

1.5 Research Limitations 

Current ante-mortem diagnostics are inadequate to meet the industry’s needs for 

efficient identification of preclinical stages, herd biosecurity, and identification of MAP 

transmission and transmission control efficacy (Nielsen and Toft, 2008). Difficulty due 

to inconsistent MAP detection can impair the biosecurity-based management programs 

implemented in a herd (Whitlock and Buergelt, 1996; Harris and Barletta, 2001; 

Bannantine et al., 2004). Although research into numerous facets of paratuberculosis is 

underway, knowledge gaps and limitations still exist, particularly in the diagnostic 

arena. One of the greatest limitations paratuberculosis research and diagnostic study 

faces is the lack of highly sensitive and reliable testing methods due to the nature of the 

disease (Nielsen and Toft, 2008; Whitlock, 2009). Being able to identify patterns in 

MAP shedding and factors affecting progression of the disease, and consequently 

increased MAP shedding, are important to implementing cost- and time-efficient and 

effective management and control programs at the cow and herd levels, while continued 

research into therapies and control measures are underway. The urgency of the need to 
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reach these goals is fuelled by the rising concern of a zoonotic link between bovine 

paratuberculosis and human Crohn’s disease, and the potential subsequent devastating 

effect on the dairy industry (Herman-Taylor and Bull, 2002; Gill et al., 2011; Chiodini et 

al., 2012; Serraino et al., 2014).  

Understanding patterns of MAP shedding detected by immune-based and bacterial 

detection assays can lead to more time- and cost-efficient diagnostic strategies. Little 

knowledge of any MAP shedding patterns over time, particularly at the cow-level, has 

been documented or developed. There is also a lack of comparable scientific research on 

MAP shedding and immune patterns during lactation and over seasons in dairy cows. 

This knowledge gap can impede advances in the appropriate use of diagnostic tests in 

current MAP control programs within the dairy industry. Such knowledge can assist in 

the creation of herd- and time-specific control programs. 

A second limitation lies in the current diagnostics’ inability to efficiently and 

reliably identify early MAP infection in order to decrease the number of cows silently 

transmitting MAP within a herd (Kalis et al., 2003). The imperfect and inconsistent 

detection abilities of the assays deter producers from readily participating in control 

programs. The more accurately and efficiently the test results can be obtained, the more 

producer involvement in early and continued control measures will likely improve. One 

of MAP’s hallmark survival mechanisms is to evade the host’s natural immune 

pathways, so the earlier the infection can be diagnosed, the sooner specific, efficient 

control mechanisms can be instigated (Stabel et al., 2007). Although research is ongoing 

in this area, the development of early and effective diagnostic assays is still required. 

Investigation for early and universally available MAP-specific proteins and antigens to 
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serve as reliable biomarkers of the disease (Bannantine et al., 2004) is an ongoing and 

necessary effort to characterize them as useful diagnostic tools and reagents.  

 

1.6 Thesis Objectives/Focus of Research 

The focus of this research was to improve MAP control and management programs 

through increased understanding of the diagnostic detection ability of common pathogen 

and antibody assays over seasons and lactation stages, as well as through the novel use 

of MAP-specific proteins and a cell-transport media for early diagnostic potential.   

Due to the imperfect reference standard of fecal culture for paratuberculosis, a clear 

description of the target condition and the purpose of testing are required to adequately 

interpret test results (Nielsen and Toft, 2006). For studies evaluating diagnostic tests, a 

case definition can practically define the target condition (Gardner et al., 2011). For 

Chapters 2 to 5, the target condition was a MAP-infectious cow. A case was defined as a 

cow that had detectable fecal shedding at least once, as determined in a companion study 

(Lavers et al., 2013), in a one-year period prior to the start of the study. Although 

defining the transition from infected to infectious stages can be ambiguous at times, for 

this research, MAP-infectious was chosen, following the guidelines suggested by 

Nielsen and Toft (2008) and Gardner et al. (2011). They define a MAP-infectious cow 

as one that is actively shedding MAP in a detectable amount, as identified by the test 

under evaluation, and in an amount that can transmit disease to a non-infected cow. 

Although MAP-infectious cows are a sub-group of MAP-infected cows, since we were 

concerned with the detection ability of various assays in known MAP-positive cows, a 

MAP-infectious definition fit within the bounds of our goals more constructively than 
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MAP-infected. The fecal pathogen detection method employed for case identification in 

our study (Chapters 2 to 5) was the method used for fecal culture identification, 

confirmed with acid fast stain and qPCR, as used in the study by Lavers et al. (2013).  

 

1.6.1 Patterns in Detecting MAP Shedding: Feces 

Efficient diagnostic strategies for identification of infected cows and monitoring 

of infectious and affected cows can enhance best management practices to reduce 

transmission of MAP (Nielsen and Toft, 2006), particularly in the maternity pens and 

amongst dry cows. However, difficulty with MAP detection due to imperfect assays can 

impair these biosecurity-based management programs. Understanding patterns of MAP 

shedding detected by the most commonly used diagnostic tests can lead to their use in a 

more time- and cost-efficient manner. Seasonal and lactation stage shedding patterns 

have been assessed previously, but infrequently and with conflicting results (Crossley et 

al., 2005; Strickland et al., 2005; Norton et al., 2010). This knowledge, however, is still 

important for the efficient use of fecal diagnostic tests for paratuberculosis detection by 

controlling for variations in fecal shedding patterns related to time factors. Therefore, 

the main objective of Chapter 2 was to determine the Se of three commonly used fecal 

diagnostic methods for paratuberculosis (solid culture, broth culture, and qPCR) and to 

assess the impact of season and lactation stage on MAP detection.  

 

1.6.2 Patterns in Detecting MAP Shedding: Milk and Colostrum 

As with other modes of transmission, milk and colostrum that are infected with 

MAP pose a threat to calves, which are at the highest risk for infection with Johne’s 
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disease (Lombard, 2011; Sweeney, 2011). A recent meta-analysis of MAP shedding 

through milk found an overall apparent MAP prevalence of 20% in individual milk 

samples, as detected with culture and PCR (Okura et al., 2012). Furthermore, a zoonotic 

concern for milk and its derivatives as a vehicle of MAP transmission to humans (Grant 

et al., 2002; Manning and Collins, 2010b; Van Brandt et al., 2011) necessitates 

diagnostic assays for detecting MAP in milk and colostrum as effectively and accurately 

as possible.  

Seasonal differences in MAP recovery from pasteurized milk samples have been 

reported (Ellingson et al., 2005), but limited information is available regarding the 

effects of stage of lactation and season on MAP detection in raw milk and colostrum 

samples (Millar et al., 1996; Grant et al., 2002; Bradner et al., 2013b; Cazer et al., 2013; 

Stabel et al., 2014). Therefore, understanding patterns of MAP shedding not just in feces 

but also in milk and colostrum can reveal more time-efficient and cost-efficient 

detection strategies that can benefit the dairy industry as a whole. The first objective of 

Chapter 3 was to assess MAP pathogen detection in milk and colostrum with three 

assays (solid culture, broth culture, and qPCR) and to compare their detection ability 

versus feces. The second objective was to identify any effects of season or lactation 

stage on MAP detection within milk and colostrum samples.  

 

1.6.3 Patterns in Detecting MAP Antibodies: Milk ELISA 

The presence of antibodies can be predictive of higher risk for MAP fecal 

shedding (Nielsen, 2008; Lavers et al., 2013). Antibody ELISA is a much more time- 

and cost-efficient assay than direct pathogen detection methods. However, Se of ELISA 
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is generally poor (29 to 61%), with Sp between 83 to 100% (Nielsen and Toft, 2008). 

Improved Se of ELISA should occur with increasing age or parity, as this would 

typically coincide with increased MAP shedding and clinical signs (Toft et al., 2005; 

Nielsen et al., 2013). Nielsen et al. (2002) found an increase in Se for milk ELISA at the 

beginning of lactation, but variation in Se related to lactation stage has to be carefully 

evaluated in light of Johne’s disease stage, the presence of nonspecific colostral 

antibodies, and milk dilution effects (Nielsen and Toft, 2012). A recent study by Cazer 

et al. (2013) assessed seasonal effects on bulk tank milk ELISA results and detected 

increased MAP antibodies in bulk tank milk during summer and a decrease during 

winter. This effect may be dependent upon seasonal calving or a humoral immunity peak 

in response to increased exposure to MAP during specific seasons (Collins et al., 2005). 

The objectives of Chapter 4 were to compare Se of milk ELISA with fecal diagnostic 

assays (solid and broth culture and qPCR) and to assess how detection of antibody 

concentrations in milk varies with changes in fecal shedding of MAP, host age or parity, 

lactation stage, and season. 

 

1.6.4 Novel Early Detection: MAP Specific Proteins 

The virulence activities of MAP stem from its ability to thwart immunological 

attempts to clear the host of the infection and to coordinate the alterations of these 

complex immune pathways to gain intracellular survival (Bannantine and Stabel, 2002). 

By secreting virulence proteins within macrophages, MAP is able to survive and 

replicate. Although the knowledge of which proteins the bacterium secretes is still 

incomplete, a few proteins have been identified that are secreted and used by MAP for 
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basic metabolism and survival (Bach et al., 2011). For example, PtpA of MAP, also 

known as low molecular weight MAP1985 (Li et al., 2005), is secreted early and 

continually from MAP upon uptake by phagosomes (Bach et al., 2006) and is actively 

involved in dephosphorylation of a vacuolar sorting protein that is required within 

macrophages for maturation of the phagosome-lysosome complex (Bach et al., 2008). 

Similarly, PknG, a eukaryotic-like serine/threonine kinase, is secreted within 

macrophages following uptake and acts in blocking phagosome-lysosome fusion, 

thereby preventing the destruction of MAP (Walburger et al., 2004). 

Previously, Bach et al. (2011) discovered that an ELISA utilizing PtpA antigen 

coating was more sensitive in serum of subclinical cows than a commercial antibody 

ELISA. Therefore, the first objective of Chapter 5 was to determine if this novel ELISA 

with PtpA or PknG antigen coatings could detect antibodies against paratuberculosis in 

milk and colostrum samples from the case group of MAP-infectious cows, and 

ultimately be used as an early cow-side detection method for MAP infection in milk and 

colostrum samples. This chapter represents the first attempt to assess this novel ELISA 

protocol on bovine milk and colostrum samples. 

Additionally, the cell-mediated IFN-γ assay that measures IFN-γ in serum utilizes 

antigens like the protein purified derivative Johnin to identify the host’s T cell 

recognition of antigens when cows have not been infected long enough to produce 

antibodies to MAP (Stabel and Whitlock, 2001; Nielsen and Toft, 2006; Zervens et al., 

2013). Because the proteins PtpA and PknG are secreted early, post-infection and within 

infected macrophages, our second objective for Chapter 5 focused on using these MAP-

specific proteins as an alternative to Johnin in IFN-γ assays, as Johnin has historically 
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shown quite variable activity. Furthermore, the use of specific antigens could increase 

the Se of the assay, leading to fewer false negative results (McDonald et al., 1999; 

Bannantine et al., 2004).  

 

1.6.5 Novel Early Detection: Cell Viability  

Because cell-mediated blood tests detect subclinically infected animals more 

readily when the Th1 immune response prevails, they can be sensitive tests for early 

Johne’s diagnostics and control efforts (Stabel, 1996). However, the IFN-γ assay 

requires processing of bovine blood samples within 24 hours of collection in order to 

maintain white blood cell viability (Plain et al., 2012). This has caused the test to be less 

utilized for Johne’s diagnostics, even though it is a test for detection of MAP exposure 

and the presence of IFN-γ in early infection. 

Keeping the white blood cells (WBC) viable is difficult as on-farm collection 

and transport to a diagnostic laboratory can often take longer than one day. In a study of 

Mycobacterium bovis stimulated blood, the number of WBCs isolated decreased sharply 

from fresh to two day old blood at greater or less than room temperature (Senogles et al., 

1978). Robbe-Austerman et al. (2006) recommended that for more accurate results, 

whole blood kept at room temperature should be processed within less than 12 hours of 

collection. In light of this, the objective for Chapter 6 was to evaluate if using a novel 

blood cell preservation media (SCSR™, NonInvasive Technologies), previously only 

used in human medicine, would be a practical method of extending the lifespan of 

WBCs in vitro and, when applied to paratuberculosis diagnostic measures, would allow 
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for extended whole blood sample transit-time. The benefits of this method could extend 

beyond paratuberculosis to a variety of other veterinary diagnostic applications.  

 

1.6.6 Summary of Objectives 

Overall, the objectives of this research were to determine the cow-level detection 

ability of four commonly used paratuberculosis diagnostic assays (solid culture, broth 

culture, qPCR, and ELISA) in cows previously determined to be MAP-infectious. This 

detection ability was evaluated monthly, over one year, to determine if there was any 

effect of time (season or lactation stage) on detectable MAP shedding. As early 

detection of MAP infection is vital to pursuing effective control of Johne’s disease 

within a herd, this research also assessed the use of two early secreted proteins from 

MAP (PtpA and PknG) as potential biomarkers of (1) MAP infected milk and colostrum, 

through a novel ELISA method, and (2) exposed or early-infected animals, through a 

novel IFN-γ method. Finally, to enhance the practicality of the early-use IFN-γ assay for 

paratuberculosis, a novel blood cell preservation method was evaluated as a means to 

preserve WBCs in vitro for up to eight days, to allow for extended travel times of whole 

blood samples from collection on-farm to processing in laboratories.  
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2.1 Abstract 

 

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of 

Johne’s disease. Although fecal cultures are considered the standard diagnostic test, the 

long incubation times, costs, and intermittent shedding of MAP hinder efficient 

screening programs.
 
The primary objectives of this study are to determine the detection 

ability of solid culture, broth culture, and real-time PCR (qPCR) for MAP in fecal 

samples and to assess how shedding patterns of MAP in feces may vary with lactation 

stage and season. This knowledge can improve the use of these diagnostic assays in 

Johne’s management programs. For this study, 51 MAP-infectious cows from seven 

Atlantic Canadian dairy farms had fecal samples collected monthly over a 12 month 

period. Samples were analyzed for MAP bacterial load via solid culture, broth culture, 

and qPCR. For all fecal samples, 46% (95% CI: 40 to 51%) were positive with solid 

culture, 55% (95% CI: 50 to 60%) with broth culture, and 78% (95% CI: 73 to 82%) 

with qPCR. Sensitivity of qPCR was numerically higher in the dry and postpartum 

periods, and qPCR detection in summer and fall was 85% of qPCR detection in winter 

and spring. Furthermore, culture-determined moderate or lighter shedding categories 

generally corresponded to qPCR cycle threshold (Ct) values <35, but heavy shedding 

categories corresponded with Ct <29. Direct fecal qPCR is a MAP detection method that 

is quick, less costly than culture techniques, and avoids the use of decontamination steps 

necessary for culture that can decrease bacterial numbers in a sample to below the 

detection limit. This study indicates that, for known MAP-positive cows, there was a 
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high sensitivity of MAP detection with fecal qPCR, thereby supporting the use of direct 

fecal qPCR as part of a Johne’s herd control program. 

 

 

2.2 Introduction 

 

In dairy cattle, Johne’s disease, or paratuberculosis, is an important production 

limiting disease leading to financial losses for dairy farmers. This economic impact is 

related to decreased milk production (Lombard et al., 2005), reproductive losses 

(Johnson-Ifearulundu et al., 2000), mortality, culling (Ott et al., 1999), and increased 

veterinary costs (Benedictus et al., 1987). Caused by the organism Mycobacterium 

avium subsp. paratuberculosis (MAP), the disease manifests as chronic enteritis, with 

an incubation period extending from two to ten years, depending on the infective dose 

(Whittington and Sergeant, 2001). During the preclinical stage, from initial infection 

typically as calves, to the time of manifested clinical signs most often as adults, bacteria 

can be intermittently shed from infected cows and silently spread throughout a farm 

(Fecteau and Whitlock, 2010). Adult cows with clinical symptoms of MAP can shed 10
6
 

to 10
8
 colony forming unit (CFU) per gram of feces (Jørgensen, 1982; Whittington et 

al., 2000). However, a calf can become infected with Johne’s disease by ingesting only 

50 to 10
3
 CFU per calf (Chiodini, 1996; Gilmour et al., 1965), making the volume of 

MAP-contaminated feces required to infect a calf extremely low.  

Johne’s disease status has commonly been tiered into three categories, namely 

cows that carry the MAP bacterium without detectable shedding (infected), cows that are 
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shedding at time of diagnostic testing (infectious), and cows that exhibit clinical signs of 

the disease (affected) (Nielsen and Toft, 2008). Efficient diagnostic strategies for 

identification of infected cows and monitoring of infectious and affected cows can 

enhance best management practices to reduce transmission of MAP (Nielsen and Toft, 

2006). Since asymptomatic MAP-infected cows can intermittently shed bacteria in their 

feces, a negative fecal detection test result does not imply that the cow is 

paratuberculosis free, but rather that the cow was not shedding the organism at the time 

of testing or that the concentration of bacteria in the sample was below the diagnostic 

detection limit. Stressful events, including parturition, can increase MAP shedding and 

precipitate the onset of clinical signs of Johne’s disease (Sweeney, 2011).  

Despite the intermittent shedding of MAP in preclinical phases of disease, fecal 

culture is often considered the primary reference standard (Bölske and Herthnek, 2010). 

Unfortunately, MAP culture incubation times can take up to seven weeks on broth media 

and 16 weeks on solid media. Furthermore, the slow growth of MAP necessitates the use 

of decontamination techniques, including antimicrobials, to decrease faster-growing, 

competitive bacteria and other organisms. Whereas growth in liquid media is quicker 

than on solid media, a disadvantage of this technique is that the results are only 

indirectly quantitative (Whittington, 2010). The TREK broth system (Thermo Scientific, 

Oakwood Village, Ohio) utilizes a pressure detection system to signal positivity, and the 

days to positive can be used as an estimate of MAP concentration in the fecal sample 

(Whittington, 2010). In comparison, solid media such as Herrold’s egg yolk media 

(HEYM) with mycobactin J, although requiring longer growth times and being more 

labor intensive, does allow for direct quantitation by a CFU count (Whittington, 2010). 
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Acid fast stain can be used to confirm that culture isolates have typical morphology. 

However, PCR of the isolated bacteria provides stronger evidence to confirm MAP over 

other mycobacteria.   

The PCR-based molecular techniques can detect MAP genetically, and the cycle 

threshold (Ct) values obtained can be used to estimate the quantity of MAP DNA 

present in the sample, with lower Ct values corresponding to higher MAP DNA 

concentration (Bölske and Herthnek, 2010). More recently, attempts have been made to 

categorize Ct values in reference to CFU counts obtained via solid culture techniques 

(Leite et al., 2013). Methods for direct PCR and culture isolate confirmation with PCR 

have been developed for feces, milk, colostrum, and tissue samples. For real-time PCR 

(qPCR) specifically, there are three main advantages for MAP detection. First, qPCR is 

very rapid compared to culture. Additionally, the method does not require 

decontamination steps, as required for culture methods, thereby avoiding any reduction 

in viable-MAP concentration caused by that process. Finally, qPCR can detect dead as 

well as viable bacteria, which is helpful when fresh samples cannot be processed 

immediately as some bacteria may be killed during freezing (Bölske and Herthnek, 

2010). Although the insertion element IS900 has classically been the most common 

sequence targeted, hspX gene is another sequence, a single copy gene, that is unique to 

MAP (Ellingson et al., 1998; Bölske and Herthnek, 2010) and is used in the Tetracore
 

Real-time PCR kit for Johne’s detection (Tetracore, Rockville, Maryland). By using a 

sequence unique for MAP, specificity (Sp) is comparable to culture techniques and can 

reach 100% (Leite et al., 2013). However, qPCR sensitivity (Se) for MAP is dependent 

upon additional factors including technique, bacterial concentration within the sample, 
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bacterial loss during processing or storage, and reference standard accuracy (Bölske and 

Herthnek, 2010).  

Because there is no current treatment or cure available for Johne’s disease 

(Whitlock, 2010), a management-based control program is important if a producer 

wishes to decrease the introduction and spread of MAP within a herd. There are two 

main goals for management programs, namely decreased transmission to calves and 

heifers within infected herds and prevention of disease introduction into herds 

(Whitlock, 2010). Vaccines can be used concurrently with control measures; and in 

some cases, particularly for small ruminants, have been shown to be a cost-effective 

means for controlling clinical signs of Johne’s disease, especially decreased milk 

production (de Lisle, 2010). However, in North America, use of the vaccine in dairy 

control programs is strictly controlled, primarily due to the interference with bovine 

tuberculosis skin testing (Patton, 2011), as well as potential false positive results in 

paratuberculosis immune tests (de Lisle, 2010; Tewari et al., 2014). Vaccines can benefit 

control programs by delaying and decreasing clinical signs and fecal shedding (Tewari 

et al., 2014). However, they do not prevent infection in herds and can cause the 

formation of large granuloma reactions at the inoculation sites (de Lisle, 2010). In the 

fourth National Animal Health Monitoring System study of the U.S. dairy industry 

(NAHMS, 2007), 5.0% of the dairy herds incorporated vaccination in their Johne’s 

control programs. 

Consequently, once MAP has been detected within a dairy herd, management 

and biosecurity are currently the primary means of control. Because fecal shedding and 

subsequent ingestion is a major transmission mode, manure management, particularly in 
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the maternity pens and among dry cows, becomes a priority. Pithua et al. (2013) 

observed that the use of individual calving pens in Midwestern US dairy herds reduced 

the subsequent risk of MAP infection for these calves as compared to those born in 

group calving pens, which underwent variable manure management protocols. Although 

this effect decreased over time, they recommended the use of individual calving pens, in 

which strict manure hygiene can be implemented. 

Unfortunately, difficulty in identifying MAP-positive cows can impair 

biosecurity based management programs. As a result, the use of more than one 

diagnostic method has often been suggested, particularly combining functional immune-

based assays and methods assessing MAP excretion into feces, as they are based on 

different target conditions (Pinedo et al., 2008). Understanding patterns of MAP 

shedding detected by the most commonly used diagnostic tests can lead to their use in a 

more time- and cost-efficient manner. Seasonal and lactation stage shedding patterns 

have been assessed previously but with conflicting results. One study did not find an 

association between ambient temperature (season) and detection of MAP by fecal 

culture (Strickland et al., 2005). However, in another study, increased MAP growth was 

detected in fecal samples collected during winter (November through March) (Crossley 

et al., 2005). A third study from New Zealand by Norton et al. (2010), found a higher 

fecal culture detection rate in spring (October). This corresponded with the calving 

period in that industry, so the effect of season could not be separated from a potential 

effect of stage of lactation. There is a knowledge gap regarding within-season and 

within-lactation fecal MAP shedding patterns for culture and molecular methods, 

especially broth culture and qPCR. However, this knowledge could enhance the efficient 
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use of fecal diagnostic tests for Johne’s disease detection by controlling for variations in 

fecal shedding patterns related to season or lactation stage.  

Therefore, the primary objectives of the study were to determine the Se of three 

fecal diagnostic methods (solid culture, broth culture, and qPCR) and to assess the 

impact of season and lactation stage on MAP detection. Secondary objectives included 

parallel Se usage, agreement evaluation among the diagnostic methods, and the 

association between Ct values for qPCR and shedding patterns determined by culture 

techniques. 

 

 

2.3 Materials and Methods 

2.3.1 Farm and Cow Selection 

 For this study, seven known MAP-positive dairy farms were purposively selected 

from a companion project assessing MAP herd prevalence in dairy farms in New 

Brunswick, Nova Scotia, and Prince Edward Island (Lavers et al., 2013). In that study, 

MAP culture-positive cows were identified following twice yearly herd monitoring with 

pooled fecal culture. Each pool was comprised of five cows, which were individually 

cultured if the pool was positive. The recruited farms for our study were selected based 

on the number of these MAP culture-positive cows as well as proximity to our 

laboratory to facilitate monthly sample collection. Three of the selected farms were 

located in Prince Edward Island and four farms were located in New Brunswick. Farm 

prevalence ranged from 3% to 15%, and herd size ranged from 83 to 490 cows per herd. 
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From the seven farms, 51 MAP-infectious Holstein cows were recruited in total, with a 

range of 2 to 15 cows recruited per farm.  

 

2.3.2 Target and Case Conditions 

For this study, the target condition was a MAP-infectious cow that was actively 

shedding the organism at the time of fecal testing. Cows were considered to be MAP-

infectious at the start of the study if they were fecal culture positive (confirmed with acid 

fast stain and qPCR) a minimum of one time within a one year period prior to the start of 

this study (case definition), as determined from the companion project. Therefore, for 

the remainder of this study, the term MAP-infectious is used to identify these cows. Age, 

parity, and lactation stage information was recorded for each cow at each sampling time.  

 

2.3.3 Sample Collection 

        All animal protocols were pre-approved by the Animal Care Committee at the 

University of Prince Edward Island. Individual fecal samples were collected from these 

51 MAP-infectious cows using individual, clean rectal sleeves without lubrication, and 

samples placed into individual, clean plastic specimen jars. Sampling was performed 

monthly for up to 12 consecutive months (during the period from July 2010 to 

December 2011) per cow or until removal from the herd. Postpartum fecal samples were 

collected by the farmers within 14 days of calving. All samples were frozen for long-

term storage at -80
o
C until processing could be completed at the Maritime Quality Milk 

laboratory (Charlottetown, Prince Edward Island, Canada), which is USDA-accredited 

for fecal culture and qPCR techniques. 
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2.3.4 Laboratory Procedures 

2.3.4.1 Solid Culture  

Solid cultures were performed on HEYM slants supplemented with mycobactin J 

and amphotericin B, nalidixic acid, and vancomycin (Becton, Dickinson, and Company, 

Sparks, Maryland), and quantitative CFU counts were performed on positive cultures. 

Procedures used followed methods described by Stabel (1997). Briefly, 3 g of thawed 

fecal sample were added to 30 mL of half-strength Brain Heart Infusion (BHI) with 

0.9% hexadecylpyridinium chloride monohydrate (HPC) and vortexed. The suspension 

was allowed to settle for 30 minutes at room temperature, after which 15 ml of the 

supernatant was transferred to a 50 ml polypropylene tube, then centrifuged at 1,700 x g 

for 20 minutes at room temperature. The supernatant was subsequently discarded. The 

remaining pellet was vortexed with 30 mL of the 0.9% HPC-BHI solution and then 

incubated overnight at 37˚C. The sample was subsequently centrifuged at 1,700 x g for 

20 minutes at room temperature, and the supernatant discarded. One hundred μL of 0.9% 

saline solution was added to the pellet, and the solution vortexed. One hundred μL of 

this decontaminated, re-suspended sample was inoculated onto the HEYM slant. The 

tube was incubated for 24 hours horizontally at a slight incline at 37˚C with the cap 

loose to allow for drying, after which the cap was secured tightly and the tube placed 

vertically in a rack. The tube was subsequently incubated at 37˚C for 84 days, with 

weekly examinations under a dissecting microscope for CFU counts until >100 CFU per 

tube was observed, or until growth of competitive organisms covered the media so that 
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no MAP colonies were distinguishable. At this point the sample was labelled as 

contaminated.  

 

2.3.4.2 Broth Culture 

Broth cultures were performed using the TREK ESP culture system II (Thermo 

Scientific, Oakwood Village, Ohio) to obtain quasi-quantitative days to positive counts. 

This is a pressure detection system in which MAP growth is signaled by decreased 

pressure in the media bottle. Briefly, 2 g of thawed fecal sample was placed in 35 mL of 

sterile water and placed on an automatic shaker for 10 minutes followed by 30 minutes 

of sedimentation at room temperature. Afterwards, 5 mL from the top one-third of the 

solution was placed in 25 mL of 0.9% HPC-BHI solution and incubated overnight at 

37˚C. The following day, the sample was centrifuged at 1,500 x g for 20 minutes and the 

supernatant discarded. One mL of an antibiotic brew consisting of 18.5 mg/mL BHI, 975 

μl/mL deionized water, 100 μg/mL vancomycin, 100 μg/mL nalidixic acid, and 50 

μg/mL amphotericin B was added to the pellet, vortexed, and again incubated overnight 

at 37˚C. Subsequently, 2.5 mL of a solution of the kit’s Growth Supplement (1 mL), Egg 

Yolk Supplement (1 mL), and Antibiotic Supplement (0.5 mL) was added to a Para-JEM
 

broth bottle (Thermo Scientific, Nepean, Ontario) along with 1 mL of the 

decontaminated sample. The bottle was then incubated in the TREK incubator a 

maximum of 49 days or until a positive pressure signal was detected and confirmed as 

described below.  

 

2.3.4.3 Direct qPCR 
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Direct qPCR methods followed the procedures listed for the VetAlert Johne’s 

Real-Time PCR kit (Tetracore, Rockville, Maryland), targeting the hspX gene. Briefly, 2 

g of thawed fecal sample was added to 35 mL of sterile distilled water, vortexed, placed 

on an automatic shaker for 15 minutes, and incubated at room temperature for 30 

minutes. The top 20 mL of the solution was placed in a new 50 mL centrifuge tube and 

centrifuged at 2,500 x g for 10 minutes at room temperature. The supernatant was 

discarded, and 1 mL of 1xTE buffer (10 mM Tris-HCl, pH 8.0; 1 mM EDTA) was added 

to re-suspend the pellet.  

DNA extraction was then performed as follows: 1 mL of the solution was added 

to a disruption tube containing sterile glass beads, vortexed, and bead-beat (Mini-Beater 

8, BioSpec Products, Bartlesville, Oklahoma) at 4,800 oscillations per minute for 5 

minutes. The sample was then centrifuged for 10 minutes at 16,000 x g, the supernatant 

transferred to a new 2 mL microcentrifuge tube, 100 μl Nucleic Acid Buffer (NAB™) 

Buffer added, and inverted 5 times to mix. The sample was then centrifuged at 1,200 x g 

for 3 minutes, the supernatant discarded, 560 μl of Binding Buffer added to re-suspend 

the pellet, and incubated at room temperature for 10 minutes. Subsequently, 560 μl of 

100% ethanol was added to the tube, which was then vortexed. Part of the sample (630 

μl) was added to a spin column placed in a new collection tube and centrifuged at 5,200 

x g for 1 minute. This same step was repeated with the remaining sample. For all the 

following steps involving the spin column, a new collection tube was used. Wash Buffer 

A (500 μl) was added and centrifuged at 5,200 x g for 1 minute. Then Wash Buffer B 

(500 μl) was added and centrifuged at 12,000 x g for 3 minutes followed by 

centrifugation at 16,000 x g for 1 minute without buffers. The spin column was then 
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placed into a microcentrifuge tube, 50 μl of deionized water added, and the sample left 

at room temperature for 1 minute. The sample was then centrifuged at 5,200 x g for 1 

minute, and the DNA elution saved at 4˚C for up to 48 hours or otherwise stored at  

-20˚C.  

For the qPCR fluorogenic probe hydrolysis assay procedure, 22.5 μl Master-mix 

was added to a thermocycler reaction tube. To each sample tube, 2.5 μl of the eluted 

DNA was also added. To another two tubes, the same amount of positive and negative 

control was added, respectively. The reaction tubes were then centrifuged for 

approximately 15 seconds and subsequently loaded into the Cepheid SmartCycler II 

Thermocycler (Cepheid, Sunnyvale, California). After an enzyme activation step at 

95˚C, a two-step cycling reaction at 95˚C and 62˚C was used. Results were recorded as 

Ct values, with values considered positive if <42 Ct; and the run was considered valid if 

the positive control values were between 20 and 26 Ct. 

 

2.3.4.4 Culture Confirmation 

All broth and solid culture results were confirmed by positive acid fast stain. Any 

acid fast positive results on either culture method were further confirmed with qPCR. 

For broth culture confirmation, the bottle was removed from the TREK incubator and 

placed in an automatic shaker for 5 minutes. One mL from the bottle was then placed in 

a disruption tube containing sterile glass beads, and the procedures followed for DNA 

extraction and qPCR test as outlined above under the direct qPCR procedures. For solid 

culture confirmation, the media tube was removed from the incubator, and 2 or 3 

colonies were collected with a sterile loop into a sterile centrifuge tube containing 1 mL 
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of sterile 0.9% saline and vortexed. One mL of this mixture was then added to the 

disruption tube containing sterile glass beads, and the DNA extraction and qPCR test 

procedures as outlined above were followed. 

 

2.3.5 Statistical Analysis  

Statistical analysis was performed using STATA/IC Version 12 (StataCorp LP, 

College Station, Texas, USA). A P-value of 0.05 was chosen as a cut-off for statistical 

significance. Proportions of positive culture results were analyzed overall and at 

categorized shedding levels. For solid culture, low shedding was set to <10 CFU per 

culture tube, moderate shedding from 10 to 50 CFU per tube, and high shedding >50 

CFU per tube (Crossley et al., 2005). For broth culture, high shedding was set to <21 

days to a positive change-in-pressure signal, moderate shedding between 21 and 28 

days, and low shedding >28 days (Shin et al., 2000, 2001).  

Population averaged cow-level generalized estimating equation logistic models 

(Dohoo et al., 2009) were used to analyze if season and lactation stage were predictive 

of solid culture, broth culture, or qPCR positivity. This approach, with an autoregressive 

(AR1) within-cow correlation structure (for the relationship between times within tests 

within cows) and robust standard errors was chosen in order to best handle the repeated 

samples per cow. Separate models were built for each of the three dichotomous 

outcomes (solid culture, broth culture, qPCR). The model structure was: 

logit(p) = intercept + season + lactation stage + farm + age 

where p is the probability for a cow to be test positive relative to the test under 

evaluation in that model; season is a categorical variable for the season of sample 
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collection; lactation stage is a categorical variable for the cow’s lactation stage at time of 

sample collection; and farm and age are categorical variables analyzed as possible 

confounders and referring to the respective farm for and age (years) of the cow at the 

time of sample collection. Seasons were set to be July through September for summer, 

October through December for fall, January through March for winter, and April 

through June for spring to correspond to local weather patterns. Lactation stages 

analyzed were categorized as follows: <60 days in milk (DIM), 60 to 99 DIM, 100 to 

239 DIM, ≥240 DIM, and dry. Contrasts and linear comparisons of all significant 

predictors and any interactions were analyzed using Bonferroni adjustments of P-values 

to account for multiple comparisons.  

Agreement between assays was calculated using the following tests: Cohen’s 

Kappa test for agreement beyond chance and McNemar’s exact test for differences 

(significant outcome) between proportions of positive results from the testing methods 

(Dohoo et al., 2009). Sensitivity, which is the proportion of positive results in the known 

MAP-positive group of cows, was recorded along with a 95% confidence interval. 

Conditional Se between tests was calculated, as well as parallel Se, when either or both 

of the tests being compared were positive (Dohoo et al., 2009).  

Finally, the relationship between shedding level from each culture method and 

qPCR Ct values was also assessed. An additional mixed linear regression model (Dohoo 

et al., 2009), with random effects at the cow-level, was built using qPCR results for the 

continuous outcome and using an autoregressive (AR1) within-cow correlation structure 

(for the relationship between times within tests within cows) and robust standard errors 

as follows: 
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Y = intercept + season + lactation stage + farm + age + u(cow) + ε 

where Y refers to the outcome of the positive (non-zero) qPCR Ct values; the 

predictors season, lactation stage, farm, and age are explained as for the previous 

models; and u and ε refer to the random effects. Transformations for the outcome were 

evaluated, but none were required for maintaining the assumption of linearity for the 

model. In addition, all relevant interactions for significant predictors were analyzed, as 

well as pairwise comparisons, using Bonferroni adjustments of P-values. 

 

 

2.4 Results 

2.4.1 Descriptive Data 

Samples from 51 cows from seven farms were used for this study. Cows ranged 

from two to nine years of age (mean = 4.5) and from first to seventh parity (mean = 2.9). 

A total of 395 samples were collected, with 13 of these samples from cows during their 

14-day postpartum period and 28 from cows during their dry period (from the time of 

milking cessation to parturition). Analysis was limited to data from cows with <400 

DIM (345 samples), to stay within a typical lactation length and because data were 

sparse above this threshold. Monthly variation in the detection ability of the three testing 

methods (solid culture, broth culture, and qPCR) for fecal samples from the MAP-

infectious cows is depicted in Appendix A. 

 

2.4.2 Sensitivity of Detection Methods 
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The Se for each of the three testing methods for the 51 MAP-infectious cows 

over the full collection, postpartum, and dry periods are listed in Table 2.1. For solid 

cultures, 32 of the 345 samples were contaminated (9.3% contamination rate), leaving 

313 samples available for analysis. For direct qPCR, one sample was lost, leaving 344 

samples. Predicted confidence intervals are included for overall data collection, but not 

for the postpartum and dry periods because sample numbers were too few. For all fecal 

samples collected, qPCR had a significantly higher Se than either broth or solid culture. 

Numerically, dry period samples had slightly higher Se than those in other periods, but 

numbers of samples available from dry cows was very limited. 

Shedding levels from the MAP-infectious cows are listed in Table 2.2. Because 

criteria for each shedding category differ by culture method, comparisons from the data 

were only made within culture methods rather than between culture methods. As a 

result, within solid culture results, more cows shedding >50 CFU were identified, but 

within broth culture results, fewer cows with heavy shedding were identified, as cultures 

typically required >21 days for a positive signal.  

 

2.4.3 Detection Patterns across Seasons and Lactation Stages 

The generalized estimating equation model analyses revealed no significant 

association between test Se (the probability of an average MAP infectious cow testing 

positive) and lactation stage with either culture technique. For direct qPCR, lactation 

stage was significantly associated (P < 0.01), especially with the inclusion of the dry 

period category, in which higher MAP detection was observed. Seasonal patterns in test 

Se results with direct qPCR were significant as an unconditional association (P < 0.05), 
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yet borderline significant (P = 0.09) when considering the confounding effects of 

lactation stage and farm. There were no statistically significant interactions between 

season and lactation stage. The probability of the test being positive in the summer and 

fall seasons was 85% of the probability of the test being positive in the winter and spring 

seasons. However, after Bonferroni adjustment of P-values due to multiple comparisons, 

there were no significant differences between seasons or lactation stages despite the raw 

data trends, as some categories had very low sample counts. Predicted probabilities for 

positive qPCR results within lactation stages by season are shown in Figure 2.1.  

For solid culture of MAP, increased failure of the decontamination procedures to 

eliminate competitive organisms on the media in the summer and fall months, led to 

more samples labelled as contaminated during those periods. The mean contamination 

rate was 12.5% within the total of 206 samples from the summer and fall seasons, as 

compared to 4.2% within 139 samples from the winter and spring seasons. However, the 

effects of season (P = 0.22) and lactation stages (P = 0.48) were non-significant for 

contaminated samples. 

 

2.4.4 Comparison among Detection Methods 

The McNemar exact test (Table 2.3) indicated that in all three test comparison 

combinations, proportions of positive results obtained were significantly different 

between tests, with qPCR being most sensitive and solid culture being least sensitive. 

Despite the higher Se of broth over solid culture, Kappa between the two culture 

methods was approximately twice as high as between qPCR and either culture method. 

Use of qPCR in parallel testing with culture techniques did not improve Se substantially 



64 

 

over use of qPCR alone. However, conditional Se (data not shown) of qPCR varied from 

58.1% if broth culture was negative to 93.7% if broth culture was positive, whereas the 

Se of broth culture varied from 15.6% to 66.3% if qPCR was negative or positive, 

respectively.  

 

2.4.5 Patterns in qPCR Values across Shedding Levels 

Mean Ct values were also noted according to the corresponding growth pattern in 

broth or solid media (Table 2.4). For all fecal samples in which either solid or broth 

culture as well as qPCR results were positive, our study indicated a decreasing trend in 

qPCR Ct value with increasing MAP shedding. More specifically, on average, a Ct value 

of <35 cycles was obtained when culture results were positive, with on average a Ct 

value of <29 cycles corresponding to heavy shedding levels with both culture 

techniques. In addition, the mean Ct value in summer was 31.3 (95% CI: 30.0 to 32.7) 

compared to 33.1 (31.9 to 34.2) in fall, 33.9 (32.7 to 35.1) in winter, and 33.8 (32.4 to 

35.3) in spring. Pairwise comparisons between seasons indicated that this trend was 

significant (using Bonferroni adjusted P-values) between summer and fall (P < 0.01) and 

between summer and winter (P = 0.01). All other season comparisons were non-

significant.  

 

 

2.5 Discussion 
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Understanding the ability to detect MAP in fecal samples with various testing 

methods as well as patterns in MAP shedding can lead to efficient testing of animals for 

enhanced control programs and prioritized management of high MAP-shedding cows. 

 

2.5.1 Sensitivity of Detection Methods  

The results of our study support the use of direct fecal qPCR as part of a Johne’s 

herd management program, particularly for known infected herds. Data analysis for 

pathogen detection revealed a higher Se for qPCR as compared to the Se of broth 

culture, with an even greater difference from solid culture, for fecal samples from MAP-

infectious cows (Table 2.1). This was in contrast to Alinovi et al. (2009), who previously 

reported qPCR (Tetracore, positive cut-off <38 Ct) Se of 60% and Sp of 97%. However, 

they reported qPCR accuracy (90%) comparable to the accuracy of solid (HEYM; 91%) 

and broth (TREK; 93%) culture results. The pattern observed in our data was most 

apparent in the qPCR results for feces collected during a cow’s dry period and post 

calving period. However, the numbers of observations during these time periods are 

relatively few, reducing the statistical power of these analyses. Therefore, additional 

research with larger sample sizes is recommended to confirm the apparent results in 

these time periods.  

 

2.5.2 Detection Patterns across Seasons and Lactation Stages 

An advantage to qPCR that may explain the improved Se is the absence of 

decontamination steps that could decrease low numbers of bacteria in a sample and 

hamper detection via culture techniques (Bölske and Herthnek, 2010). Also, qPCR is 
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able to detect MAP regardless of the presence of competing organisms, as it detects 

MAP by a different biological principle (genetically) as compared to culture methods.  

The presence of competing organisms can occasionally hinder the interpretation 

of culture results. Generally, a 5 to 15% contamination rate for fecal solid culture is 

expected (Collins and Manning, 2014). In our data, solid culture of MAP in feces 

showed a pattern of increased failure of the decontamination procedures to eliminate 

competitive organisms on the media, leading to more samples potentially being 

classified as contaminated in summer and fall (12.5%) as compared to winter and spring 

(4.2%). However, this rate can vary widely depending on the decontamination method 

used, type of media, and the number of media slants per sample (Whittington, 2010). 

Our overall contamination rate of 9.3% was within these bounds, as were the seasonal 

rates. However, the overall low numbers of contaminated samples may have led to the 

decrease in statistical power to report the seasonal effect for these samples. Using qPCR, 

particularly in summer and fall, may avoid the need for repetitive cultures to overcome 

decontamination failures, particularly for the identification of high shedding cows.  

In our data, apparent patterns across seasons and lactation stages were also 

observed for qPCR overall (Figure 2.1). Seasons with more similar climatic 

temperatures were also more similar in qPCR detection ability. In general, Se was higher 

in winter and spring, and Se was improved in the dry period. However, due to low 

numbers of observations within some of the categories for season and particularly 

lactation stage, statistically significant associations were not observed when accounting 

for multiple comparisons.  
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Although we did not find an association between season and culture detection of 

MAP, the association between season and qPCR detection of MAP agree with other 

studies looking at the effect of season on MAP growth in culture. Norton et al. (2010) 

observed higher MAP recovery in spring and indicated a potential correlation between 

season and lactation stage, in particular seasonal calving. Crossley et al. (2005) reported 

a higher CFU count (HEYM) during the winter months and in larger herd sizes. The 

authors of this study suggest stressors that could trigger increased MAP shedding in 

winter to include adverse weather conditions (Jørgensen, 1977), winter calving, herd 

management, and body condition. Although this study assessed culture detection of 

MAP, it is likely that some of these stressors could also explain the patterns seen within 

our data. However, differing protocols make comparisons between this and other 

research studies difficult due to varying definitions of herd or cow MAP status, MAP 

prevalence, test and decontamination protocols, sampling protocols, and herd sizes, 

among others. Therefore, further research is needed to assess seasonal patterns over a 

period of several years with more herds, in order to increase statistical power. In 

addition to this, other important factors to analyze regarding MAP fecal shedding 

include the impact of housing, dietary changes, and herd management practices that 

expose youngstock to the manure of adult cattle, from farms of various levels of MAP 

prevalence and from cows within the dry and postpartum periods of lactation.  

 

2.5.3 Comparison among Detection Methods 

The use of qPCR is based on a different biological principle (detection of the 

organism’s genetic material) than culture. Therefore, Pinedo et al. (2008) suggest that 
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parallel testing with both PCR and serum ELISA resulted in the best detection ability 

over other combinations of culture, PCR, and serum ELISA assays. Because of this, it 

was of interest to determine if the higher qPCR Se in our study was based on the 

detection of a different population of positive animals or better overall detection. To 

assess this, we examined parallel interpretation of the test with either culture method 

(Table 2.3). Parallel use did not improve Se substantially over qPCR alone, indicating 

that qPCR was most sensitive by identifying MAP in additional cows to those detected 

with culture assays. Kappa also indicated lesser agreement between qPCR and culture, 

but greater agreement between culture methods.  

 

2.5.4 Patterns in qPCR Values across Shedding Levels 

Comparison between solid and broth culture regarding degree of shedding is 

difficult, as criteria for each shedding category differ by culture method. Because qPCR 

Se was improved over culture Se in our data, especially in the dry period, it was also of 

interest to determine if a pattern in Ct ranges could be observed across shedding levels. 

As a benefit to control programs, the risk of environmental contamination and 

subsequent infection to calves could be indirectly calculated using qPCR Ct values as an 

indicator of the degree of fecal MAP shedding in dams without simultaneous culture 

testing. Our results (Table 2.4) indicated that if the sample yielded a positive broth or 

solid culture result, qPCR values were typically <35.0 Ct. Moderate and heavy shedding 

cows, as determined for each culture technique (>10 CFU for solid culture or <28 days 

to positive for broth culture) typically corresponded to <29.0 Ct.  
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In a recent study by Leite et al. (2013), a comparison was made between several 

different qPCR kits and gene sequences for MAP, including the Tetracore kit for both 

IS900 and the hspX genes. The authors found that qPCR Se and Sp depended on which 

kit was used and thereby the volume of DNA elution and which gene sequence was 

identified. For the Tetracore kit identifying the hspX gene, they found a Se of 57.1% for 

samples growing <10 CFU per PCR tube, and that these low shedders on average were 

detected with a Ct value of 36.2 (range 33.5 to 38.4). Heavy shedding, which they 

identified with >100 CFU per tube, had a Se of 100% for qPCR with an average Ct of 

29.9 (range 26.5 to 35.1). Although in our study we defined a heavy shedder as having 

>50 CFU per culture tube (Crossley et al., 2005), we did not find any difference in mean 

Ct value between the 74 observations >50 CFU (26.5 Ct), the 64 observations >100 CFU 

(26.5 Ct), and the ten observations between 50 and 100 CFU (27.0 Ct). 

 

2.5.5 Conclusion 

The primary objectives of our study were to assess the abilities of common fecal 

testing assays to accurately diagnose MAP-infectious cows and identify any patterns 

across seasons or lactation stages. Direct fecal qPCR is an invaluable MAP identification 

test, with higher Se, faster processing times, and lower laboratory costs, as compared to 

culture methods. Our study highlighted a potential seasonal pattern with increased qPCR 

Se in winter and spring, as well as an additional benefit to using qPCR in months where 

culture contamination is more likely (summer and fall). Consideration of Ct values 

further extends the application of qPCR within MAP control programs, as lower Ct 

values are indicative of greater MAP bacterial load in a cow’s feces. This allows for 
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prioritized management of high shedding cows, and could ultimately increase the 

success of herd MAP control programs. 
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Table 2.1. Sensitivity (%) of solid culture (Herrold’s egg yolk media with mycobactin J), 

broth culture (TREK ESP system; Thermo Scientific, Ohio), and real-time PCR (qPCR; 

VetAlert; Tetracore, Maryland) for fecal samples collected monthly over a 12 month 

period from 51 Mycobacterium avium subsp. paratuberculosis infectious cows from 

seven herds.  
 

 Solid culture Broth culture qPCR 

All samples 45.7 (40.1-51.2
a
) [313

b
] 54.8 (49.5-60.1) [345] 77.6 (73.2-82.0) [344] 

Postpartum
c 33.3 [18] 47.6 [21] 81.0 [21] 

Dry period 60.0 [11] 81.8 [11] 90.9 [11] 

 

a
95% confidence interval, listed if more than 40 observations available. 

b
Number of observations.  

c
Feces collected up to 14 days post-calving. 
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Table 2.2. Proportion (%) of solid culture (Herrold’s egg yolk media with mycobactin J) 

and broth culture (TREK ESP system; Thermo Scientific, Ohio) outcomes across 

shedding levels for fecal samples collected monthly over a 12 month period from 51 

Mycobacterium avium subsp. paratuberculosis infectious cows from seven herds. 
 

  Shedding Levels
 

 Negative Low Moderate Heavy 

Solid culture
a 

 
54.3 (170

c
) 15.0 (47) 7.0 (22) 23.6 (74) 

Broth culture
b 45.2 (156) 29.9 (103) 9.0 (31) 15.9 (55) 

 

a
Solid culture: low (<10 CFU per culture tube), moderate (10 to 50 CFU), high (>50 

CFU) (Crossley et al., 2005). 
b
Broth culture: low (>28 days to a positive signal), moderate (21 to 28 days), high (<21 

days) (Shin et al., 2000; Shin et al., 2001). 
c
Number of observations at the corresponding shedding level. 
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Table 2.3. Individual and parallel sensitivity comparisons and Cohen’s Kappa agreement 

between solid culture (Herrold’s egg yolk media with mycobactin J), broth culture 

(TREK ESP system; Thermo Scientific, Ohio), and real-time PCR (qPCR; VetAlert; 

Tetracore, Maryland) for fecal samples collected monthly over a 12 month period from 

51 Mycobacterium avium subsp. paratuberculosis infectious cows from seven herds.  
 

Test N
c 

Sensitivity (%) Kappa 

1 2  Test 1 Test2 Parallel  

Solid Broth 313 45.7
a 

56.9
b 

59.1 0.691 

qPCR Solid 312 78.8
a 

45.8
b 

80.1 0.321 

qPCR Broth 344 77.6
a 

54.9
b 

81.1 0.373 

 

a-b
Sensitivities within a row with different superscripts differ (P < 0.01) using the 

McNemar exact test. 
c
Number of observations when results from both tests were available concurrently.
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Table 2.4. Mean real-time PCR (qPCR; VetAlert; Tetracore, Maryland) cycle threshold 

values corresponding to bacterial growth patterns in solid culture (Herrold’s egg yolk 

media with mycobactin J) or broth culture (TREK ESP system; Thermo Scientific, Ohio) 

for fecal samples collected monthly over a 12 month period from 51 Mycobacterium 

avium subsp. paratuberculosis infectious cows from seven herds. 

 
 

  Shedding levels
 

 Negative Low Moderate High 

Solid
a
  36.4 (30.0-42.7

c
) 

[107
d
] 

 

34.5 (28.8-40.2) 

[44] 

32.1 (27.1-37.1) 

[21] 

26.5 (18.9-34.2) 

[74] 

Broth
b
  36.8 (29.7-43.9) 

[90] 

 

34.3 (28.8-39.9) 

[94] 

29.2 (20.7-37.7) 

[30] 

26.6 (17.3-36.0) 

[53] 

 

a
Solid culture: low (<10 CFU per culture tube), moderate (10 to 50 CFU), high (>50 

CFU) (Crossley et al., 2005).    
b
Broth culture: low (>28 days to a positive signal), moderate (21 to 28 days), high (<21 

days) (Shin et al., 2000; Shin et al., 2001). 
c
95% confidence interval. 

d
Number of observations.  
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Figure 2.1. Predicted probability (%) for positive direct real-time PCR (qPCR; VetAlert; 

Tetracore, Maryland) across lactation stage categories by season for fecal samples 

collected monthly over a 12 month period from 51 Mycobacterium avium subsp. 

paratuberculosis infectious cows from seven herds. 
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3.1 Abstract 

 

Mycobacterium avium subsp. paratuberculosis (MAP) can be shed not only in 

feces but also secreted in milk and colostrum. The goal of this study was to assess 

detection of MAP in milk and colostrum and any effect of lactation stage or season on 

the detection of MAP-shedding. This knowledge can improve our use of both culture 

and molecular methods for identification of MAP to assess risk of infection to calves. 

Forty-six previously confirmed MAP-positive cows from seven Atlantic Canadian dairy 

farms were identified for monthly sampling over a 12 month period. Samples were 

analyzed with solid culture, broth culture, and real-time PCR (qPCR). For any method 

used for MAP detection in milk or feces, the detection capacity for milk samples was on 

average 25% that for fecal samples. However, for colostrum, MAP detection ability 

depended on the method utilized. With qPCR, MAP detection ability within colostrum 

was approximately 46% of detection within feces. For both milk and colostrum, higher 

detection ability was observed with qPCR than with either culture method. Seasonal 

effects were observed for qPCR results in milk samples, with the highest sensitivity in 

summer. Summer was also the season when there was strongest agreement between milk 

and fecal samples collected within the same month. Although MAP presence was 

identified in milk and colostrum samples with all three pathogen detection methods, 

improved detection with direct qPCR could lead to more efficient identification of 
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MAP-infectious cows shedding the bacteria in milk and colostrum and, thereby, provide 

management information to help decrease the risk of exposure to calves.  

 

 

3.2 Introduction 

 

Johne’s disease, or paratuberculosis, is caused by Mycobacterium avium subsp. 

paratuberculosis (MAP), and is an incurable, production-limiting disease of dairy cattle. 

Although it manifests as chronic diarrhea in adult cows (affected cows), it has a 

characteristically long preclinical stage (infected cows), ranging from 2 to 10 years, 

during which infected cows can intermittently shed detectable bacteria (infectious cows) 

(Whittington and Sergeant, 2001; Nielsen and Toft, 2008). In addition to fecal shedding, 

MAP can also be shed via the mammary gland in milk and colostrum (Lombard, 2011). 

Calves are the most susceptible to infection, with the highest risk in calves less than one 

month of age (Sweeney, 2011). Calves that have not become infected in utero are most 

likely to become infected after birth by ingesting MAP through directly infected or 

fecal-contaminated colostrum or milk, or by ingesting MAP-contaminated feces from 

the udder or environment (Sweeney, 2011). Affected cows and heavy-shedding 

infectious cows can shed large amounts of MAP in their milk (Sweeney et al., 1992; 

Whittington and Sergeant, 2001; Rademaker et al., 2007). A calf risks infection by 

ingesting as little as 50 colony forming units (CFU) of MAP (Chiodini, 1996). In a study 

by Streeter et al. (1995) of preclinical cows shedding MAP in their feces, three times as 

many of these cows had the bacterium isolated from their colostrum than from milk, and 
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approximately 22% of these preclinical cows were found to be shedding MAP in 

colostrum. Detection ability varies due to factors such as infection stage, assay type, and 

laboratory methods. A recent meta-analysis of MAP shedding through milk, as detected 

with culture and polymerase chain reaction (PCR), found an overall apparent MAP 

prevalence of 20% in individual milk samples (Okura et al., 2012). Stressful situations, 

including parturition, peak milk production, and environmental changes, can generate or 

increase clinical signs and subsequent MAP shedding (Sweeney, 2011; Bradner et al., 

2013a). In a literature review of the influence of stress on bacteria in animals, stress-

related hormones, particularly catecholamines, released from the sympathetic nervous 

system, and glucocorticoids, released from the hypothalamic-pituitary-adrenal axis, have 

been shown to affect not only the host’s immunity but also the bacteria directly 

(Dhabhar, 2009; Verbrugghe et al., 2012). In particular, these stress-hormones can 

down-regulate cell-mediated cytokines and immunity and up-regulate humoral immunity 

through directly influencing host-pathogen interactions (such as at enteromucosal sites), 

the growth and virulence of pathogens, and cytokine production and expression 

(Elenkov and Chrousos, 1999; Lyte, 2004; Verbrugghe et al., 2012). For MAP, the direct 

and chronic effect of stress-hormones on the macrophage-pathogen interplay can 

negatively impact disease resistance in the host and enhance disease progression and 

bacterial shedding (Verbrugghe et al., 2012). 

In much of the literature, culture has been used as the reference standard for 

direct bacterial identification (Bölske and Herthnek, 2010). Unfortunately, the slow 

growth rate of MAP requires culture incubation times of up to seven weeks on broth 

media and 16 weeks on solid media (Whittington, 2010). However, as MAP bacterial 
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numbers inherently tend to be much lower in milk and colostrum than in feces, 

additional sedimentation, centrifugation, and filtration steps can improve bacterial 

concentration, but subsequent decontamination with incubation in an antimicrobial brew 

can decrease viable bacterial load in the sample. In an effort to minimize this bacterial 

loss, it is now generally accepted that both the cream and pellet portions should be 

incorporated in the pre-culture steps, or even the DNA extraction steps, following 

centrifugation, for culture methods or molecular methods, respectively (Gao et al., 2005; 

Gao et al., 2009; Bradner et al., 2013a).  

Molecular testing via PCR methods has been developed for MAP detection 

directly or as culture confirmation. Real-time PCR (qPCR) is a rapid technique used to 

detect both viable and non-viable MAP compared to culture, and takes less than 48 

hours to obtain results. In addition, no decontamination techniques are required prior to 

DNA extraction (Bölske and Herthnek, 2010). Although the insertion element IS900 is 

the usual sequence targeted, other gene elements detected in milk and colostrum include 

F57 and ISMAP02 (Pithua et al., 2011a; Hanifian et al., 2013). The sequence hspX is 

another sequence that is unique to MAP (Ellingson et al., 1998; Bölske and Herthnek, 

2010) and is used in the Tetracore Real-time qPCR kit for Johne’s detection (Tetracore, 

Rockville, Maryland).  

The incurable nature and insidious preclinical phase of paratuberculosis require 

adequate identification of infected and infectious animals if a producer wishes to 

increase biosecurity, decrease transmission into and within the herd and, most 

importantly, decrease exposure of calves (Whitlock, 2010). Control of fecal 

contamination of the environment, particularly areas specified for parturient and dry 
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cows, and segregation of high-shedding cows becomes a priority (Pithua et al., 2013). 

Another priority involves feeding calves colostrum or waste milk that does not contain 

the organism (Diéguez et al., 2008; Pithua et al., 2011b). Pooled colostrum and 

colostrum or waste milk from MAP-infected cows should not be used. Rather, milk 

replacer, properly pasteurized waste milk, or milk from a single non-infected dam is 

recommended (Nielsen et al., 2008; Garry, 2011; Lombard, 2011). Despite these widely 

endorsed recommendations, there is conflicting evidence about their efficacy. In a recent 

study, MAP exposure via colostrum had no effect on subsequent MAP infection, 

although the authors advise that these results be cautiously interpreted (Pithua et al., 

2011a). Another study found that in an infected herd, more than 81% of the MAP-

positive colostrum or MAP-positive teat swabs came from potential environmental 

seeding of MAP rather than direct shedding (Pithua et al., 2011b). 

Because MAP has been identified from patients with Crohn’s disease, public 

health concerns of a zoonotic link between MAP and Crohn’s disease, a chronic enteritis 

in humans, spur ongoing research. The concerns also involve the possibility of milk and 

milk products as a vehicle for transmission to humans, particularly as research has 

shown that, to a certain extent, MAP can survive commercial high-temperature, short-

time pasteurization techniques for milk (Grant et al., 2002; Manning and Collins, 2010; 

Van Brandt et al., 2011). Of great concern are the recent findings of MAP presence in 

baby formulas. With both IS900 and F57 qPCR, Hruska et al. (2005, 2011) have 

reported MAP concentrations as high as 32,500 cells/g of some commercial baby 

formulas. 
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For producers, the ability of MAP to survive some pasteurization techniques also 

presents a further concern. Some producers rely on on-farm pasteurized colostrum and 

milk for their calves. Although most MAP can be killed in colostrum at 60˚C for 60 

minutes (a recommended protocol for on-farm pasteurization), the results are still 

variable and depend on the MAP load within the sample (Godden et al., 2006). 

Seasonal effects on MAP detection in pasteurized milk samples for retail sales 

have been reported (Ellingson et al., 2005): a British study looked at MAP transmission 

into retail milk and found increased MAP detection in samples between December and 

March (Millar et al., 1996; Grant et al., 2002); but limited information is available 

regarding effects of stage of lactation and season on MAP detection in milk and 

colostrum samples. In a study on bulk tank milk, MAP concentration was found to be 

potentially related to seasonal calving and stage of Johne’s disease (Cazer et al., 2013). 

As well, Bradner et al. (2013b) and Stabel et al. (2014) detected higher MAP shedding 

in colostrum and milk in more advanced disease stages and in early lactation periods.  

Understanding patterns of MAP shedding, not just in feces but also in milk and 

colostrum, can support development of more time-efficient and cost-efficient detection 

strategies. The first objective of our study was to assess MAP pathogen detection in milk 

and colostrum with three assays (solid culture, broth culture, and qPCR). In order to do 

so, MAP detection ability in milk and colostrum was assessed across assay-specific 

shedding categories, and detection ability within milk and colostrum samples was 

compared to that of fecal detection methods in previously determined MAP-infectious 

cows. A second objective was to identify any effects of season or lactation stage on 

MAP detection within milk and colostrum samples from the same group of MAP-
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infectious cows. This knowledge is important for enhancing the efficient use of 

diagnostic tests for MAP infection in milk and colostrum. Improved recommendations 

for control and monitoring of this disease within a herd can thereby decrease the risk of 

exposure and subsequent infection in calves. 

 

 

3.3 Materials and Methods 

3.3.1 Farm and Cow Selection 

From a companion project assessing MAP herd diagnostics in Atlantic Canadian 

dairy herds (Lavers et al., 2013), we purposively selected seven dairy farms: three from 

Prince Edward Island and four from New Brunswick, Canada.Within-herd MAP 

prevalence (as determined by pooled fecal culture, followed by individual fecal culture 

of positive pools and confirmed with acid fast staining and qPCR) in these MAP-

positive herds ranged from 3% to 15% in the previous year (C. Lavers; Atlantic 

Veterinary College, Charlottetown, PE, Canada, personal communication). Herd sizes 

ranged from 83 to 490 cows per herd. 

From these herds, a total of 46 MAP-infectious Holstein cows, actively shedding 

detectable MAP in their feces (target condition), were recruited, ranging between 2 to 15 

cows recruited per farm. A cow was labelled MAP-infectious if it was fecal culture 

positive (confirmed with acid fast stain and qPCR) at least once during a one year period 

prior to the start of the current study (case definition). At each sampling period, age, 

parity, and days in milk were also recorded for each cow.  
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3.3.2 Sample Collection 

Protocols were approved by the Animal Care Committee at the University of 

Prince Edward Island prior to the study. Fecal samples from each cow were collected 

monthly with clean, individual rectal sleeves, without lubrication, for up to 12 months 

(from July 2010 to December 2011), as long as the cow remained in the herd. From the 

46 MAP-infectious cows, 36 cows had colostrum samples collected by the farmer within 

24 hours of parturition. Clean milk samples were collected monthly either by the project 

personnel or by the farmers (these samples were subsequently stored on-farm at -20˚C), 

and all samples were transported, monthly, on ice to the Maritime Quality Milk 

Laboratory at the University of Prince Edward Island, Canada, where they were frozen 

at -80˚C until processing. The Maritime Quality Milk Laboratory is USDA proficiency 

tested for fecal culture and qPCR. 

 

3.3.3 Laboratory Procedures 

3.3.3.1 Fecal Solid Culture 

Solid cultures were performed on Herrold’s egg-yolk media (HEYM) slants 

supplemented with mycobactin J and amphotericin B, naladixic acid, and vancomycin 

(Becton, Dickinson, and Company, Sparks, Maryland). Procedures followed, in part, 

methods described by Stabel (1997). Briefly, 3 g of thawed fecal sample was added to 

30 ml of half-strength Brain Heart Infusion (BHI) with 0.9% hexadecylpyridinium 

chloride monohydrate (HPC; Sigma Chemical Company, St. Louis, MO). After sitting 

at room temperature for 30 minutes, 15 ml supernatant was transferred to a new 50 ml 
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polypropylene tube and centrifuged at 1,700 x g for 20 minutes at room temperature. 

The supernatant was then discarded. To the remaining pellet, 30 ml of the 0.9% HPC-

BHI solution was added, and the suspension was incubated overnight at 37˚C. The next 

day, the suspension was centrifuged at 1,700 x g (IEC CL31 Multispeed Centrifuge, 

Thermo Scientific, Oakwood Village, Ohio) for 20 minutes at room temperature, and the 

supernatant was subsequently discarded. To the remaining pellet, 100 μl of 0.9% saline 

solution was added. Then, 100 μl of the re-suspended sample was inoculated onto the 

HEYM slant, which was placed at a slight incline at 37˚C. After the inoculation dried, 

the cap was secured tightly and the tube placed vertically at 37˚C for 84 days. Cultures 

were examined weekly with the aid of a dissecting microscope, and CFU recorded until 

>100 CFU/tube was observed, or until growth of competitive bacteria and fungi covered 

any detectable MAP colonies. If this occurred, the sample was labelled as contaminated. 

All culture positive results were confirmed with acid fast stain and qPCR as described 

below. 

 

3.3.3.2 Milk and Colostrum Solid Culture 

Procedures followed methods described by Donaghy et al. (2008) for milk, by 

Godden et al. (2006) for colostrum. Because culture decontamination techniques can 

decrease MAP concentration, and MAP concentration was expected to be lower in milk 

and colostrum than feces, we followed the protocol described below, which includes 

modifications as a result of consultation with Dr. Mutharia (Ontario Veterinary College, 

Guelph, Ontario, personal communication), and Dr. DeBuck (University of Calgary, 

Alberta, personal communication). In brief, 30 ml of milk sample or colostrum sample 
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was centrifuged at 2,800 x g for 30 minutes at room temperature (21˚C), and the whey 

fraction discarded. The cream and pellet fractions were re-suspended completely in 30 

ml of 0.75% HPC. Following incubation at room temperature for 5 hours and re-

centrifugation at 2,800 x g for 30 minutes at room temperature, the pellet was diluted in 

100 μl of a 0.9% saline solution and vortexed to re-suspend. From this sample, 100 μl 

was inoculated onto the HEYM slant, placed at a slight incline at 37˚C until dry, after 

which the cap was secured tightly and the tube placed vertically at 37˚C for 84 days. 

Weekly examinations were performed, with the aid of a dissecting microscope, and CFU 

was recorded until >100 CFU/tube was observed, or until growth of competitive 

organisms covered any detectable MAP colonies. If this occurred, the sample was 

labelled as contaminated. All culture positive results were confirmed with acid fast stain 

and qPCR, as described below. 

 

3.3.3.3 Fecal Broth Culture 

The ESP culture system II (TREK Diagnostic Systems, Thermo Scientific, 

Oakwood Village, Ohio) was used in order to obtain quasi-quantitative days-to-positive 

counts. In this system, MAP growth is signaled by decreased pressure detected in the 

head space of the media bottle. As per the kit’s instructions, 2 g of thawed fecal sample 

in 35 ml of sterile water was shaken for 10 minutes on an automatic shaker (Mistrel 

Multi-Mixer 4600, Barnstead Lab-Line, Melrose Park, Illinois) and then allowed to 

settle for 30 minutes at room temperature. Five ml from the top one-third of the solution 

was then added to 25 ml of 0.9% HPC-BHI solution. This sample was incubated 

overnight at 36˚C, and then centrifuged at 1,500 x g for 20 minutes. One ml of an 
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antibiotic brew (18.5 mg/ml BHI, 975 μl/ml deionized water, 100 μg/ml vancomycin, 

100 μg/ml nalidixic acid, and 50 μg/ml amphotericin B) was added to the pellet and re-

suspended by vortexing, then incubated overnight at 36˚C. The following day, 2.5 ml of 

a solution comprising 1 ml of ESP Growth Supplement, 1 ml Egg Yolk Supplement, and 

0.5 ml Antibiotic Supplement was added to a Para-JEM broth mycobottle (Thermo 

Scientific, Nepean, ON, Canada), followed by the addition of 1 ml of the 

decontaminated sample. The culture was then incubated in the TREK incubator until 

growth was signaled, up to a maximum of 49 days or until a positive pressure signal was 

detected. All samples incubated to 49 days, and all positive samples were confirmed 

with acid fast stain. Any positive results on either broth culture or acid fast stain were 

confirmed with qPCR as described below. 

 

3.3.3.4 Milk and Colostrum Broth Culture 

Briefly, 30 ml of the milk or colostrum sample was centrifuged at 2,800 x g for 

30 minutes. The whey was decanted, and to the remaining cream and pellet, 30 ml of 

0.75% HPC was added. The suspension was then incubated for 4 hours at room 

temperature. Afterwards, the sample was centrifuged at 1,500 x g for 20 minutes and 

followed the remaining procedure for fecal broth culture described above.  

 

3.3.3.5 Fecal Direct qPCR 

Methods followed the procedures listed for the VetAlert Johne’s Real-Time PCR 

kit (Tetracore, Rockville, Maryland), targeting the hspX gene. Briefly, 2 g of thawed 

fecal sample was vortexed in 35 ml of DNase free water and shaken for 15 minutes on 
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an automatic shaker. The sample was then incubated for 30 minutes at room 

temperature. The top 20 ml of the solution was centrifuged at 2,500 x g for 10 minutes at 

room temperature. One ml of 1xTE buffer (10 mM Tris-HCl, pH 8.0; 1 mM EDTA) was 

used to re-suspend the pellet.  

DNA extraction was then performed as follows: 1 ml of the solution was added 

to a cell-disruption tube containing sterile glass beads and bead-beat (Mini-Beater 8, 

BioSpec Products, Bartlesville, Oklahoma) at 4,800 oscillations per minute for 5 

minutes, and then centrifuged for 10 minutes at 16,000 x g (IEC MicroCL 21R 

Microcentrifuge, Thermo Scientific, Oakwood Village, Ohio). To the decanted 

supernatant 100 μl Nucleic Acid (NAB™) Buffer was added, and it was then centrifuged 

at 1,200 x g for 3 minutes. The remaining pellet was re-suspended with 560 μl of 

Binding Buffer and incubated for 10 minutes at room temperature. Then, 560 μl of 100% 

ethanol was added, after which 630 μl of the sample was placed in a spin column and 

centrifuged at 5,200 x g for 1 minute. The remaining sample was added to the spin 

column and centrifuged at 5,200 x g for 1 minute. Next, 500 μl of Wash Buffer A was 

added to the spin column, which was then centrifuged at 5,200 x g for 1 minute, 

followed by the addition of 500 μl of Wash Buffer B to the spin column and 

centrifugation at 12,000 x g for 3 minutes and again at 16,000 x g for 1 minute without 

additional buffers. The spin column was placed into a microcentrifuge tube, 50 μl of 

deionized water was added, followed by 1 minute incubation at room temperature, and 

then centrifugation at 5,200 x g for 1 minute. The DNA elution was saved at 4˚C for up 

to 48 hours or at -20˚C for longer storage.  
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The qPCR procedure was a fluorogenic probe hydrolysis assay in which 22.5 μl 

thawed master-mix and 2.5 μl of the eluted DNA was added to a thermocycler reaction 

tube. For quality control, positive and negative control samples were included in each 

run of qPCR. The reaction tubes were centrifuged for approximately 15 seconds in a 

Cepheid microcentrifuge before being placed in the Cepheid SmartCycler II 

Thermocycler (Cepheid, Sunnyvale, California). After an enzyme activation step (95˚C), 

a two-step cycling reaction (95˚C and 62˚C) was used. Cut-off value for the positive 

control was set to between 20 to 26 cycle threshold values. Samples that showed positive 

within 42 cycles were called MAP-positive. 

 

3.3.3.6 Milk and Colostrum Direct qPCR 

Direct qPCR procedures followed a modified version of the method described by 

Gao et al. (2007). For milk, 30 ml of sample was heated in a water bath (95˚C) for 10 

minutes then cooled in ice water for 10 minutes. The milk sample was then centrifuged 

at 2,800 x g for 30 minutes at room temperature. The pellet and cream was re-suspended 

in 6 ml of 0.75% HPC and incubated for 30 minutes at room temperature. The sample 

was then centrifuged at 2,000 x g for 15 minutes at room temperature. The liquid phase 

and cream were decanted. The pellet was transferred to a 2 ml microcentrifuge tube, and 

1 ml TRIS (pH 8) and 20 μl protein kinase were added. The sample was transferred to a 

cell-disruption tube containing sterile glass beads and homogenized in the bead beater 

(Mini-Beater 8, BioSpec Products, Bartlesville, Oklahoma) at 4,800 oscillations per 

minute for 3 minutes, incubated in a water bath for 10 minutes at 56˚C, and then re-
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homogenized in the bead beater as before and cooled on ice. The steps to complete the 

extraction and qPCR reaction were performed as described above for fecal direct qPCR. 

For quality control, positive and negative control samples were also included in each run 

of qPCR. In order to limit the risk of false negative samples, an inhibition control was 

also added. 

Briefly for colostrum, 30 ml of sample was centrifuged at 2,800 x g for 30 

minutes at room temperature, and the whey and cream decanted. The pellet was 

transferred to a 2 ml microcentrifuge tube, and 1 ml TRIS (pH 8) was added. The sample 

was transferred to a cell-disruption tube containing sterile glass beads and homogenized 

in the bead beater (Mini-Beater 8, BioSpec Products, Bartlesville, Oklahoma) at 4,800 

oscillations per minute for 5 minutes. The further steps to complete the extraction and 

qPCR reaction were performed as described above for fecal direct qPCR. For quality 

control, positive and negative control samples were also included in each run of qPCR. 

In order to limit the risk of false negative samples, an inhibition control was also added. 

 

3.3.3.7 Culture Confirmation 

All broth and solid culture results were confirmed with acid fast stain, and any 

positive results on either culture or acid fast stain were further confirmed with qPCR. 

For broth culture confirmation, the bottle was placed in an automatic shaker for 5 

minutes. One ml of the broth culture was added to a cell-disruption tube containing 

sterile glass beads. The procedure then followed the DNA extraction and qPCR methods 

described above.  



95 

 

For solid culture confirmation, 2 or 3 colonies were collected from the media 

with a sterile loop and mixed with 1 ml of sterile 0.9% saline in a sterile centrifuge tube. 

One ml of the solution was then placed in a cell-disruption tube containing sterile glass 

beads, and again the DNA extraction and qPCR test procedures, as described above, 

were followed. 

 

3.3.4 Statistical Analysis  

Statistical analysis for test results was performed using STATA/IC 12 (StataCorp 

LP, College Station, Texas, USA), and statistical significance was set at a P-value of 

<0.05. Sensitivity (Se; proportion of positive results in previously determined MAP-

infectious cows) was recorded along with a 95% confidence interval (CI) for each 

testing method for all sample types over assay-specific shedding levels. For solid 

culture, low shedding was established as <10 CFU per culture tube, moderate shedding 

from 10 to 50 CFU per tube, and high shedding at >50 CFU per tube (Crossley et al., 

2005). For broth culture, high shedding was described as <21 days-to-positive, moderate 

shedding between 21 and 28 days, and low shedding between 29 and 49 days (Shin et 

al., 2000, 2001). Proportions of detectable MAP shedding in milk when there was 

concurrent fecal shedding per month were further assessed.  

Population averaged, cow-level, generalized estimating equation models were 

used for the milk analysis. This model structure, with an autoregressive (AR1) within-

cow correlation structure (for the relationship between times within tests within cows) 

and robust standard errors, best handled the repeated samples per cow due to the chronic 

nature of the disease, intermittent shedding of the bacteria, and possible disagreement 
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between fecal and milk shedding of the bacteria. Separate models were run for each of 

the dichotomous outcomes of solid culture, broth culture, and qPCR. Season 

(categorical) and lactation stage (categorical) were the main predictors of interest. Other 

predictors included farm (categorical) and age (categorical; years) to assess for 

confounding. Seasons were categorized as follows: July through September for summer, 

October through December for fall, January through March for winter, and April 

through June for spring. Lactation stages were divided as follows: <60 days in milk 

(DIM), 60 to 99 DIM, 100 to 239 DIM, and ≥240 DIM.  

Because there were no repeated samples, colostrum results were analyzed with 

simple logistic models (one for each of the 3 dichotomous outcomes of solid culture, 

broth culture, and qPCR), including the main categorical predictor of interest for season, 

and assessing any other potential categorical predictors for farm, age, or parity. Any 

predictors with P-values <0.2 in univariable models were further analyzed in 

multivariable models. 

 

 

3.4 Results 

3.4.1 Descriptive Data 

Cows ranged in age from two to eight years (median = four years) and from first 

to seventh parity (median = second). Because data were sparse above 400 DIM and in 

order to stay within a typical lactation length, analyses were limited to results below this 

threshold, resulting in 298 fecal samples and 304 milk samples for analysis. Thirty-

seven colostrum samples were collected from unique parturitions from 36 cows. There 
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were 296 occasions when milk and fecal samples were collected within the same 

months, and 37 occasions when colostrum and fecal samples were collected within the 

same months.  

For the fecal samples, 18 of 298 solid cultures were contaminated with 

overgrown fungal organisms (6.0% contamination rate), while for milk samples, 13 of 

304 solid cultures were contaminated (4.3% contamination rate). Contaminated solid 

cultures were removed from the analyses. In addition to these samples, one fecal sample 

for qPCR analysis was lost, and 31 milk samples and six colostrum samples had 

insufficient volume for testing with all three assays. 

Of the 46 cows in our case group, only 1 cow never shed detectable MAP in its 

feces during our study period, and this cow was culled after only 1 sampling. There was 

detectable fecal MAP shedding in 14 of these cows between 25% and 88% of their 

sampling times. Furthermore, of the same 46 cows in our case group, 10 cows never 

shed detectable MAP in their milk during the study period. On the other hand, 1 cow, 

with no detectable MAP in milk or feces at 1 sampling prior to detectable MAP-

shedding in colostrum, did have detectable shedding in both milk and feces during the 

sampling times after calving. 

Monthly variation in the detection ability of the three testing methods (solid 

culture, broth culture, and qPCR) for fecal and milk samples from the MAP-infectious 

cows is depicted in Appendix A. 

 

3.4.2 Detection Ability of Assays 
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Using history of MAP shedding in the previous year to establish the reference 

standard, overall Se values for each of the three testing methods within all samples are 

listed in Table 3.1. Predicted 95% CIs were included when there were more than 40 

observations per test available. There was superior detection ability for fecal samples, as 

compared to milk and colostrum samples. For all sample types, qPCR had the highest Se 

followed by broth culture and then solid culture.  

The shedding classification of sample outcome by solid culture (Crossley et al., 

2005) and by broth culture (Shin et al., 2000, 2001) for each sample type is presented in 

Table 3.2. Using broth cultures, high shedding cows were identified with neither 

colostrum nor milk sampling. Using solid culture results, high shedding cows were 

identified with both milk and colostrum samples.  

 

3.4.3 Concurrent Milk and Fecal Detection Patterns 

Table 3.3 shows further comparisons regarding detection of MAP in both milk 

and feces collected from the same cow during the same month. When MAP was detected 

in feces with any of the three pathogen detection methods, 36.5% of these cows were 

also found to be shedding MAP in their milk, with at least one of the three assays used. 

Using qPCR detection of MAP in milk, an average of 22.7% of those concurrently 

shedding MAP in feces was identified. Furthermore, 6.4% (95% CI: 2.3% to 10.4%) and 

9.2% (95% CI: 4.0% to 14.4%) of negative fecal solid and broth culture results, 

respectively, were identified as low shedding in milk, using the same culture method.  

 

3.4.4 Seasonal and Lactational Patterns in Detection Ability 
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The statistical models for milk and colostrum showed no significant associations 

between season and detection of MAP in colostrum with any of the three assays. 

However, power was limited by sample size. There was also no significant association 

between lactation stages and detection of MAP in milk with all three assays, although 

model analyses for direct qPCR results for milk samples showed a significant 

association with the categorical predictor for season (P < 0.005), with farm included as a 

potential confounding variable. Predicted probabilities (including predicted CI) for 

positive qPCR results within seasons are shown in Figure 3.1. Contrasts with Bonferroni 

adjustments for P-values due to multiple comparisons confirmed a significant difference 

between summer and fall (P < 0.005) and between summer and winter (P = 0.02). 

Contrasts were borderline significant between summer and spring (P = 0.07) and 

between winter and fall (P = 0.06). The probability of obtaining a positive qPCR result 

in milk samples during the fall, winter, and spring seasons was only 43.7% of the 

probability of the test being positive in summer.  

For culture of MAP in milk samples on solid media, there was a noticeable 

pattern of increased failure of the decontamination procedures to eliminate competitive 

organisms on the media (13 contaminated samples), leading to more samples being 

classified as contaminated in the summer (six samples from 65 total samples in the 

summer) and fall months (five samples from 77 samples), than in the winter (one sample 

from 45 samples) or spring (one sample from 57 samples).  

As season was a significant predictor of MAP shedding in milk, the least amount 

of MAP shedding in milk was detected during the fall season, when there was 
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concurrent detectable fecal shedding. In contrast, the best agreement between milk and 

fecal shedding was seen during the summer season.  

 

 

3.5 Discussion 

 

Johne’s disease is one of the animal health priorities in the Canadian dairy 

industry. The disease has worldwide distribution (Collins, 2003; Singh et al., 2013) and 

was listed as having serious economic and zoonotic concerns by the Office International 

Des Epizooties in 2004 (OIE, 2004). The greatest animal health concern of MAP-

infected milk and colostrum is an increased transmission of the disease to calves, which 

are at highest risk for infection (Sweeney, 2011). There is also a public health concern 

related to the possibility of MAP seeding into the milk supply (Sweeney, 2011; Van 

Brandt et al., 2011) These concerns have driven more research into efficient and 

effective methods of detection of the bacteria in milk and colostrum samples.  

 

3.5.1 Detection Ability of Assays 

Our study on the ability of the three pathogen detection methods to identify MAP 

had two main objectives. First, we looked at the overall detection abilities of the three 

assays to identify our target condition of MAP-infectious cows (Table 3.1). Second, the 

results within milk and colostrum samples were compared to the results obtained for 

concurrent fecal samples. However, comparisons of solid and broth culture outcomes 
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should be cautiously interpreted, because the assay specific shedding classifications may 

not be equivalent (Table 3.2). 

This study found that regardless of the assay chosen, when the same method was 

used for MAP detection in both milk and fecal samples, MAP detection ability within 

milk was, on average, 25% as effective as fecal detection methods. In contrast, MAP 

detection ability within colostrum was dependent on which assay was used. Using broth 

culture, detection ability within colostrum was approximately 19% of that within feces, 

as compared to 6% using solid culture and 46% using qPCR. It should be noted that 

sample size in the colostrum data is small, and results should be interpreted with caution. 

Overall, for all three sample types, qPCR identified the greatest proportion of 

MAP-infectious cows within our study group (Table 3.1). It is possible that low numbers 

of bacteria in the milk or colostrum samples or loss of viable cells via decontamination 

techniques may have led to no growth on culture media and, thereby, false negatives for 

low-shedding animals that could still be detected by qPCR. Culture of MAP in milk and 

colostrum can be difficult due to chemical inhibitors in the sample, the presence of low 

numbers of bacterial cells within the sample, or the clumping of bacterial cells (Gao et 

al., 2005; Pinedo et al., 2008). Detection by culture can also be hindered via loss of 

bacterial cells either through centrifugation, where cells may be fractionated into the 

whey portion, or through decontamination, where MAP bacteria may be killed (Gao et 

al., 2005; Pinedo et al., 2008). Therefore, our study supports the use of qPCR in Johne’s 

control programs. 

Exact comparisons of the Se of the pathogen detection assays for milk, 

colostrum, and feces between our study and other studies are difficult due to variations 
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in methodologies. These variations included culture techniques, media, PCR methods, 

and selection of the target gene. In addition, the disease stage of cows within study 

groups could affect the degree of bacterial shedding into milk or colostrum. For 

example, in recent studies in which milk samples from clinical cows were tested using a 

different liquid culture and decontamination protocol, MAP detection Se was 

approximately 9% with solid (HEYM) culture, 11% with broth (Bactec 12B) culture, 

and 39% with PCR (using IS900 gene target) (Bradner et al., 2012; Bradner et al., 

2013b). These culture Se values were substantially lower than those from our study. In 

contrast, a study by Gao et al. (2009) of 146 cows from 14 MAP-positive herds in 

southwestern Ontario compared solid culture and direct and nested PCR (using IS900 

gene target) in milk with solid fecal culture, and detected more positive samples than did 

the current study. However, the Se results for milk, from the study by Gao et al. (2009), 

may have been overestimated by using a reference standard of solid fecal culture, which 

is known to have low Se. From cows previously test-positive on fecal culture, milk 

enzyme linked immunosorbent assay (ELISA), or serum ELISA, they reported a Se of 

41.8% with fecal culture, 34.6% with milk culture, 28.4% with milk PCR, and 53.7% 

with milk nested PCR. In contrast, a study by Slana et al. (2008), found a Se of 35% 

with solid culture of milk and a maximum Se of 77.8% with milk qPCR. A recent study 

of Iranian farms found qPCR (using the F57 gene) to be 10 times more sensitive than 

culture (using Middlebrook 7H11 media) in detecting MAP in milk samples (Hanifian et 

al., 2013). Furthermore, previous studies have also found that infected cows may shed 

between 2 to 9 CFU MAP per 50 ml milk (Sweeney et al., 1992; Rademaker et al., 

2007), and that affected clinical cows shed up to 100 CFU per ml of milk (Giese and 



103 

 

Ahrens, 2000). Our Se estimates were within the range of other studies, possibly 

resulting from our choice of target condition and reference standard. 

Bradner et al. (2013b) stress that more MAP would be shed into milk and 

colostrum as the disease progresses in the infected cow. Because MAP is an intracellular 

bacterium, able to reside within macrophages and resist phagocytosis, a higher burden in 

colostrum may be possible (Streeter et al., 1995). In our study, only four of the 36 MAP-

infectious cows identified for colostrum sampling were culture-positive in colostrum, 

with three detected by broth culture and one by solid culture. Therefore, our improved 

Se with qPCR (approximately 35%) in colostrum was promising, as Pithua et al. (2011b) 

found that not using colostrum from infectious cows could lead to 18.2% lower risk of 

calves being exposed to MAP through colostrum. Additional research with larger sample 

sizes and, perhaps, comparisons of various techniques for detection of MAP in 

colostrum is recommended. 

The selection of our case definition was based only on cows that were shedding 

MAP in their feces at least once within a one year period prior to the start of this study. 

Using this criterion to label cows as MAP-infectious, a potential bias may have been 

introduced in our definition for the Se of the three assays. Possibly, some of these cows 

were labelled as infectious when they may have been only intermittent or passive 

shedders (Nielsen and Toft, 2008). As the majority of cows were shedding detectable 

amounts of MAP during the study period, our case and target conditions, using fecal 

pathogen detection methods, were reflective of MAP-infectious cows following the 

disease stage criteria of Nielsen and Toft (2008) and Gardner et al. (2011). 
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Furthermore, there are no standard shedding categories for milk and colostrum in 

the literature. It is possible that, due to the difficulty in culturing MAP in these samples 

as compared to fecal samples, as well as the inherent lower bacterial concentration in 

these samples, the shedding categories we chose are over-reaching. However, we used 

the same shedding category cut-points for milk and colostrum samples as for fecal 

samples in order to compare CFU and days-to positive counts with some measure of 

similarity. 

 

3.5.2 Concurrent Milk and Fecal Detection Patterns 

Overall, our study found that when milk and feces were sampled concurrently, 

approximately one-third of MAP detected in feces was simultaneously detected in milk, 

regardless of the assay used (Table 3.3). Again, literature results vary regarding milk and 

fecal agreement (Nielsen and Toft, 2008; Pinedo et al., 2008; Gao et al., 2009), as 

techniques and methods differ between studies. A recent study, by Khol et al. (2013), in 

a low prevalence herd (9.0%, as previously determined by fecal qPCR testing) employed 

ELISA testing of blood samples, qPCR testing of fecal samples, as well as ELISA and 

qPCR testing of individual and bulk tank milk samples. They reported a significant 

correlation between MAP shedding in milk and feces, yet warned that shedding into 

milk may only occur for a limited time and may often be too low for detection even with 

PCR. It has been suggested that an increase in detectable shedding of the bacterium into 

milk should correspond with the level of fecal shedding and, ultimately, the stage of 

disease (Sweeney et al., 1992; Streeter et al., 1995). In our data, few cows had a high 

concentration of detectable MAP in their milk. Gao et al. (2009) suggested that, because 
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shedding in milk and feces may not consistently coincide, both milk and fecal culture 

should be used concurrently to avoid incorrectly identifying low-shedding cows as MAP 

test-negative. In our data, approximately 10% of milk broth cultures detecting low MAP 

shedding was observed when concurrent fecal broth cultures were negative. Therefore, 

colostrum, milk, or waste milk from high-risk herds or known MAP-positive herds could 

be a means of MAP transmission to calves even when concurrent fecal testing of those 

cows is negative. In these cases, it may be warranted to include milk testing (particularly 

with qPCR) as part of the herd’s control program. 

 

3.5.3 Seasonal and Lactational Patterns in Detection Ability 

In our study of MAP-infectious cows, we did not find any significant 

associations between lactation stage and detection with any of the assays for milk 

samples. However, Bradner et al. (2013b) reported increased MAP detection in milk at 

the beginning of lactation (0 to 60 DIM) in affected Johne’s diseased cows, and Stabel et 

al. (2014) reported the same for subclinical and affected cows. For milk samples, our 

raw data showed higher qPCR sensitivity over both culture methods across the lactation 

stages. This difference was more pronounced after 100 DIM and particularly after 240 

DIM. Because of the long data collection period, DIM may have reflected progression of 

the disease within our study population of infectious cows.  

Our study noted that the greatest disagreement between simultaneous shedding in 

feces and in milk was seen in the fall months (Table 3.3). In contrast, the best agreement 

was seen in the summer months, when there was highest qPCR detection ability in milk 

but lower qPCR detection ability in feces (Chapter 2). Our results of a higher detection 
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of MAP in raw milk samples during summer (July through September), in Atlantic 

Canada (Figure 3.1), contradict the study from England and Wales by Millar et al. 

(1996) which found that seasonal patterns in MAP detection in retail milk occurred in 

the peak periods from September to November and January to March for their regions. 

Although seasonal patterns would depend on geographical location, results can be 

extrapolated to various locations with areas of similar weather patterns. Crossley et al. 

(2005) also stress that milk policy and financial reasons involving milk supply and 

demand can determine whether MAP-infectious cows are kept on farm during certain 

months rather than being culled, and this could bias seasonal results. Furthermore, 

increased stress levels due to crowding, increased milk production, calving, changes in 

feeding practices and herd management, changes in environment (pasture), adverse 

weather conditions, and body condition may also lead to seasonal trends (Jørgensen, 

1977; McKenna et al., 2004; Crossley et al., 2005). In addition to seasonal trends for 

MAP detection with qPCR in milk samples, our study also noted a trend for higher solid 

culture contamination in summer. Literature suggests that culture decontamination 

failures may be due to diet and farm location and, therefore, likely to be affected by 

clustering (Whitlock et al., 1989; Whittington, 2009). Little is still known about such 

possible causal factors for shedding and decontamination failure patterns, particularly 

for milk. However, this knowledge is important to enhance specific herd Johne’s disease 

control management and diagnostic protocols, and warrants further research. In our 

study, although the number of case cows selected per farm varied, the low number of 

farms recruited led us to including farm as a fixed predictor in the model to account for 

possible confounding, but the inclusion of farm did not affect the point estimates of the 
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predictor for season. Our study supports the use of milk and colostrum testing, 

particularly with qPCR methods, in seasons where a higher likelihood for individual and 

environmental stress may occur, as well as seasons where milk concentration is 

decreased. 

 

3.5.4 Conclusion 

As calves have the highest risk of infection, one of the key management 

strategies in a Johne’s control program is reduction of the spread of MAP by feces, milk, 

and colostrum. In this study, we analyzed milk and colostrum samples collected over a 

12 month period from a group of previously identified MAP-infectious dairy cows. 

Traditional culture methods can take from less than two months up to four months, 

depending on culture method, to obtain a result, which can be futile for decreasing calf 

exposure in the calving pen. In addition, results from samples collected several months 

earlier to calving are not necessarily indicative of those cows being infectious at calving, 

and negative fecal tests did not imply negative milk or colostrum assays and vice versa. 

Therefore, our data indicated that qPCR, which can provide a result within 24 hours if 

required, showed an improved sensitivity as compared to culture methods. Furthermore, 

qPCR could be used to test both fecal samples of dairy cows in the dry season prior to 

calving, to evaluate potential risk of MAP-shedding in feces, and to test colostrum and 

early lactation milk prior to use or prior to storage, to evaluate risk of MAP exposure to 

calves via these routes.  

Our study also highlighted a seasonal pattern for increased qPCR detection in 

milk samples collected during summer months, as well as more synchronization between 
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milk and fecal shedding in summer. Understanding patterns of detectable MAP shedding 

in milk and colostrum can reveal more efficient detection strategies for these samples. 

Future research should include repeating seasonal assessments on MAP detection ability 

over a several-year period, while monitoring other management and cow-level 

predictors, and using larger sample sizes, particularly for colostrum analyses. 
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Table 3.1. Sensitivity (%) of solid culture (Herrold’s egg yolk media with mycobactin J), 

broth culture (TREK ESP system; Thermo Scientific, Ohio), and real-time polymerase 

chain reaction (qPCR; VetAlert; Tetracore, Maryland) for fecal, milk, and colostrum 

samples collected monthly for a period of 12 months from 46 Mycobacterium avium 

subsp. paratuberculosis infectious cows from seven herds. 

 

 Solid culture Broth culture qPCR 

Feces 46.7 (40.7-52.7
a
)  

[270
b
] 

 

55.0 (49.3-60.7) 

[298] 

77.4 (72.7-82.2)  

[297] 

Milk 13.4 (9.5-17.3)  

[291] 

 

14.1 (9.9-18.4)  

[262] 

21.5 (16.8-26.2)  

[293] 

Colostrum 3.0 [33] 

 

10.7 [28] 35.3 [34] 

 

a
95% confidence interval, listed if more than 40 observations available. 

b
Number of observations.  
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Table 3.2. Percentage of solid culture (Herrold’s egg yolk media with mycobactin J) and 

broth culture (TREK ESP system; Thermo Scientific, Ohio) outcomes across shedding 

levels for fecal, milk, and colostrum samples collected monthly for a period of 12 

months from 46 Mycobacterium avium subsp. paratuberculosis infectious cows from 

seven herds. 

 

  Negative Low  

shedding 

Moderate 

shedding 

High 

shedding 

Solid 

culture
a
 

Feces 53.3 (45.3-59.3
c
) 

[144
d
] 

 

15.9 (11.5-20.3) 

[43] 

8.1  

[22] 

22.6 (17.6-27.6) 

[61] 

Milk 86.6 (82.7-90.5) 

[252] 

 

9.3  

[27] 

 

0.7  

[2] 

3.4  

[10] 

 Colostrum 97.0 [32] 

 

0 

 

0 

 

3.0 [1] 

 

Broth 

culture
b 

Feces 45.0 (39.3-50.6) 

[134] 

 

30.9 (25.6-36.1) 

[92] 

9.1  

[27] 

15.1 (11.0-19.2) 

[45] 

Milk 85.9 (81.6-90.1) 

[225] 

 

11.8  

[31] 

2.3  

[6] 

0 

 Colostrum 89.3 [25] 

 

10.7 [3] 0 0 

 

a
Solid culture: low (< 10 CFU per culture tube), moderate (10 to 50 CFU), and high (> 

50 CFU) (Crossley et al., 2005). 
b
Broth culture: low (> 28 days to a positive signal), moderate (21 to 28 days), high (< 21 

days) (Shin et al., 2000; Shin et al., 2001).  
c
95% confidence interval, listed if more than 40 observations available. 

d
Number of observations at the corresponding shedding level. 
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Table 3.3. Percentage of positive milk sample results obtained from solid culture 

(Herrold’s egg yolk media with mycobactin J), broth culture (TREK ESP system; 

Thermo Scientific, Ohio), and real-time polymerase chain reaction (qPCR; VetAlert; 

Tetracore, Maryland) when there was a concurrently positive fecal result, detected with 

one of the same three assay types, for samples collected over 12 months from 46 

Mycobacterium avium subsp. paratuberculosis infectious cows from seven herds. 

  

 All seasons Summer Fall Winter Spring 

Any milk  

test-positive
a 

36.5  

(30.4-42.5
b
) 

[244
c
] 

 

49.1  

(35.8-62.4) 

[57] 

28.9  

(18.5-39.3) 

[76] 

34.5  

(21.9-47.0) 

[58] 

35.8  

(22.6-49.1) 

[53] 

Milk qPCR+ 22.7  

(17.3-28.0) 

[238] 

48.2  

(34.8-61.6) 

[56] 

8.4  

(1.8-15.1) 

[71] 

24.1  

(12.8-35.4) 

[58] 

13.2  

(3.8-22.6) 

[53] 

 
 

a
Milk result classified as positive if there was a positive result on broth culture, solid 

culture, or qPCR assay.  
b
95% confidence interval. 

c
Total number of positive fecal results; fecal result classified as positive if there was a 

positive result on any one or more of broth culture, solid culture, or qPCR categories. 
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Figure 3.1. Predicted probability (%) with 95% confidence intervals for positive (+) 

direct real-time PCR (qPCR; VetAlert; Tetracore, Maryland) across seasons, for milk 

samples collected monthly over a period of 12 months from 46 Mycobacterium avium 

subsp. paratuberculosis infectious cows from seven herds. 
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4.1 Abstract 

 

Milk enzyme linked immunosorbent assays (ELISA) for Johne’s disease in dairy 

cows are commonly used due to their low cost and quick processing for large numbers 

of samples. However, low sensitivity and imperfect specificity of the assay can impede 

detection of early disease stages. The objectives of this study were: (1) to compare the 

sensitivity and specificity of a commercial milk ELISA with solid and broth fecal culture 

and real-time polymerase chain reaction (qPCR) assays; and (2) to assess how detection 

of antibody concentrations in milk varies with changes in fecal shedding of the causative 

bacterium Mycobacterium avium subspecies paratuberculosis, host age, days in milk, 

and season. Monthly milk and fecal samples were collected over one year from 46 

previously Johne’s infectious (shedding) cows and 52 previously test-negative cows. 

Sensitivity of milk ELISA was 29.9% (95% CI: 24.8% to 35.1%), compared to 46.7% 

(40.7% to 52.7%) for fecal solid culture, 55.0% (49.3% to 60.7%) for fecal broth culture, 

and 78.4% (73.3% to 83.1%) for fecal direct qPCR. Specificity of the milk ELISA was 

99.3% (97.5% to 99.9%). The milk ELISA sensitivity increased as fecal shedding 

increased and as host age increased. Furthermore, milk ELISA results both improved 

with increasing number of days in milk and were significantly higher in winter (January 

through March) than in summer (July through September). Improving the knowledge of 

factors affecting the interpretation of ELISA results could benefit Johne’s disease 

management programs.  
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4.2 Introduction 

 

Johne’s disease, or paratuberculosis, has spread worldwide and is now endemic 

in Europe and North America (Barkema et al., 2010). Considering this disease can be 

transmitted silently and is often undiagnosed, paratuberculosis can have long-term 

devastating effects within a herd. As a production-limiting disease of dairy cattle, 

Johne’s disease can have a substantial financial impact for dairy farmers (Tiwari et al., 

2006). Caused by the organism Mycobacterium avium subspecies paratuberculosis 

(MAP), Johne’s disease manifests clinically as chronic enteritis, including signs of 

diarrhea, weight loss despite a normal appetite, and decreased milk production (Fecteau 

and Whitlock, 2010). Paratuberculosis has a long incubation period, ranging from two to 

ten years, in which silent bacterial transmission can occur (Fecteau and Whitlock, 2010).
 

Nielsen and Toft (2008) described three general rankings for MAP-positive 

cows: MAP-infected cows that carry the organism; MAP-infectious cows that shed 

detectable amounts of the organism; and MAP-affected cows that present with clinical 

signs of the disease. MAP-infected cows can progress into MAP-infectious stages, often 

initially with intermittent bacterial shedding in feces, before becoming clinically MAP-

affected with increased bacterial shedding (2008). Some cows in the MAP-infected stage 

can have an antibody response (prior to fecal shedding and clinical signs) that can be 

detected via an enzyme linked immunosorbent assay (ELISA). Although MAP-

infectious cows may also have no detectable antibodies, ELISA sensitivity (Se) 

generally improves with increased bacterial shedding and clinical stages of disease 
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(Carpenter et al., 2004; Nielsen and Toft, 2006; Tiwari et al., 2006). The presence of 

antibodies can therefore be predictive of higher risk for MAP fecal shedding (Nielsen, 

2008; Lavers et al., 2014). However, determinants of when antibodies to MAP become 

detectable in an infected cow are not well understood. In one study, a humoral response 

could be detected an average of one year prior to confirmed fecal shedding (Nielsen, 

2008),
 
but this may be highly variable, and ELISA is known to have imperfect 

specificity for MAP infection (Nielsen and Toft, 2008). Consequently, ELISA results 

(milk or serum) should be evaluated carefully, and it is often recommended to confirm 

results with direct detection methods (Benedictus et al., 1987; Nielsen et al., 2002c; 

Nielsen, 2010). 

There are two broad categories of diagnostic tests available for Johne’s disease 

detection and monitoring: tests that detect the bacterium (culture) or the bacterial DNA 

(polymerase chain reaction), and tests that detect the host’s immune response to the 

bacterium (ELISA) (Tiwari et al., 2006).
 
Culture is often considered the reference 

standard detection method, particularly fecal culture, as tissue culture is more invasive 

and impractical for most research studies (Tiwari et al., 2006; Bölske and Herthnek, 

2010). However, cultures are dependent upon the characteristically slow growth for 

MAP, with incubation times ranging from seven weeks with liquid cultures to 16 weeks 

with solid cultures (Bölske and Herthnek, 2010). 

Antibody ELISA is a much more time-efficient, cost-effective assay than fecal 

culture methods. However, Se of ELISA is generally poor (29% to 61%), with imperfect 

specificity (Sp) from 83% to 100% (Nielsen and Toft, 2008). McKenna et al. (2005) 

reported Se <10% for absorbed serum ELISAs, with tissue culture as a reference 
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standard. Depending on the reference standard used (tissue culture, previous fecal 

culture, concurrent fecal culture, clinical disease), prevalence of MAP in a herd, and 

ELISA kit and methodology, Se can vary greatly (Lombard et al., 2006). Nielsen and 

Toft
 
(2006) also stressed the importance of relating the Se and Sp to the purpose of 

testing, and knowing whether infected, infectious, or affected cows are targeted for 

diagnosis. These targets correspond to the natural progression of the disease, and the 

inherent Se of all diagnostic modalities tends to improve as animals progress along the 

disease pathway.  

Generally, improved ELISA Se should occur with increasing age or increasing 

parity, as this should inherently coincide with increased MAP shedding and clinical 

signs (Toft et al., 2005; Nielsen et al., 2013). Nielsen et al. (2002a) found an increase in 

Se for milk ELISA at the beginning of lactation, as compared to an increase in Se for 

serum ELISA at the end of lactation. The increase in milk ELISA Se in very early 

lactation could be related to the presence of high amounts of colostral antibodies 

(Nielsen et al., 2002b; Nielsen and Toft, 2012). For MAP-infected cows, the presence of 

cell-mediated immunity may result in poor detection of a humoral result, as one study 

found low humoral antibodies detected at 60 days in milk (DIM) for MAP-infected 

cows (Nielsen et al., 2002a). Therefore, there is need to carefully assess how ELISA Se 

varies across lactation stages in light of Johne’s disease stage, the presence of 

nonspecific colostral antibodies, and milk dilution effects (Nielsen and Toft, 2012). A 

recent study by Cazer et al. (2013) assessed seasonal effects on bulk tank milk ELISA 

results and detected increased MAP antibodies in bulk tank milk during summer and a 

decrease during winter. This effect may be dependent upon seasonal calvings or a 
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humoral immunity peak in response to increased exposure to MAP during specific 

seasons (Collins et al., 2005). 

As management is the key to controlling Johne’s disease on a farm, adequate 

diagnostics are essential (Garry, 2011). Due to the inadequacies of current diagnostics 

and the intermittent bacterial shedding in subclinical Johne’s disease, the identification 

of any antibody detection pattern related to host-factors (age, parity, lactation stage) or 

environmental-factors (season) can be beneficial for the dairy industry when using 

ELISA assays. The need for continued research regarding Johne’s disease and finding 

more efficient diagnostic strategies for the dairy industry is fueled by the production-

limiting effects of this disease, as well as its status as an animal health priority and its 

potential zoonotic link to human Crohn’s disease (Barkema et al., 2010).  

Therefore, the objectives of this study were to compare Se of milk ELISA with 

solid and broth fecal culture and real-time polymerase chain reaction (qPCR) assays for 

MAP-infectious cows, and to assess how detection of antibody concentrations in milk 

varies with changes in fecal shedding of MAP, host age or parity, DIM, and time of year 

(season). 

 

 

4.3 Materials and Methods 

4.3.1 Farm and Cow Selection 

MAP-positive Holstein dairy herds in New Brunswick (four) and Prince Edward 

Island (three), Canada, were recruited for this study, with within-herd MAP prevalence 

for these farms (83 to 490 cows per herd) ranging from 3% to 15%  in the previous year 
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(C. Lavers; Atlantic Veterinary College (AVC), Charlottetown, PE, Canada, personal 

communication). For this study, the target condition was MAP-infectious as defined by 

fecal MAP shedding detected by culture methods (Nielsen and Toft, 2008). The case 

definition was any cow that was MAP-infectious at least once during a one year period 

prior to the start of this study, as determined from a companion study (Lavers et al., 

2013) in which MAP-positive cows were identified using pooled fecal broth culture 

confirmed with acid fast stain and qPCR. Any positive pools had individual fecal 

samples further cultured. The term MAP-infectious will continue to be used in the 

remainder of the text to describe these cows. A total of 46 MAP-infectious cows were 

identified for milk and fecal sampling for this study. 

To examine the milk ELISA Sp for Johne’s disease with the selected commercial 

ELISA for this study, a control group of cows from the same farms was identified for 

milk sampling. No feces were sampled for this group as the Sp for both fecal culture and 

qPCR was assumed to be 100%. The target condition for this group of 52 cows was a 

MAP test-negative herd-mate. The control group case definition was a herd-mate, 

matched as closely as possible by age, parity, DIM, and reproductive status to a MAP-

infectious cow. These cows were previously confirmed (Lavers et al., 2013) as 

repeatedly test-negative through fecal broth culture (confirmed with acid fast stain and 

qPCR), milk ELISA, and serum ELISA. If any of these cows showed a positive milk 

ELISA score during the study period, fecal broth culture was performed for three 

consecutive months. If the cow was subsequently confirmed as MAP-infectious by 

positive fecal culture results, then a new control cow was selected to replace it. 
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4.3.2 Sample Collection 

The Animal Care Committee (University of Prince Edward Island, 

Charlottetown, PE, Canada) approved all animal protocols prior to the start of this study. 

Milk and fecal samples were collected monthly, during lactation periods, for up to 12 

months or as long as the cows remained in the herds, from July 2010 to December 2011. 

Samples of feces were collected by the project personnel via rectal palpation, using 

individual, non-lubricated rectal sleeves. Clean milk samples were collected either by 

the project personnel or by the farmers. Until processing, all samples were frozen at  

-80°C in the USDA proficiency tested Maritime Quality Milk Laboratory (AVC, 

University of Prince Edward Island, Charlottetown, PE, Canada).  

 

4.3.3 Laboratory Procedures 

4.3.3.1 Fecal Solid Culture 

Herrold’s egg-yolk medium (HEYM) slants (Becton, Dickinson, and Company, 

Sparks, Maryland), supplemented with mycobactin J, amphotericin B, naladixic acid, 

and vancomycin, were used, following methods described by Stabel (1997) with 

modifications. In short, 30 mL of half-strength Brain Heart Infusion (BHI) with 0.9% 

hexadecylpyridinium chloride monohydrate (Sigma Chemical Company, St. Louis, 

Missouri) (HPC) was mixed with 3 g of feces and allowed to settle for 30 minutes at 

room temperature (21˚C). Subsequently, 15 ml of the supernatant (placed in a new 50 ml 

polypropylene tube) was centrifuged at 1,700 x g for 20 minutes at room temperature. 

After discarding the supernatant, the pellet was re-suspended with 30 mL of the 0.9% 

HPC-BHI solution and incubated overnight at 37˚C. After being centrifuged at 1,700 x g 
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for 20 minutes at room temperature and discarding the supernatant, the pellet was re-

suspended with 100 μL of 0.9% saline solution. The media was then inoculated with 100 

μL of the re-suspended sample, and the slant was placed at a slight incline at 37˚C. 

When the liquid dried, the cap was tightened, and the slant was placed vertically in a 

rack at 37˚C for 84 days. Weekly examinations using a dissecting microscope were 

performed, and the colony forming unit (CFU) recorded until >100 CFU per tube were 

observed, or until growth of competitive bacteria and fungi covered any detectable MAP 

colonies.  

 

4.3.3.2 Fecal Broth Culture 

With the TREK system (TREK ESP
®
 culture system II, Thermo Scientific, 

Oakwood Village, Ohio), MAP growth is recorded as a days-to-positive reading signaled 

by decreased pressure detected in the media bottle. In short, 2 g of thawed fecal sample 

was mixed with 35 mL of sterile water for 10 minutes on an automatic shaker (Mistrel 

Multi Mixer 4600, Barnstead Lab-Line, Melrose Park, Illinois) and incubated for 30 

minutes at room temperature. Five mL from the top one-third of the solution was mixed 

with 25 mL of 0.9%HPC-BHI solution and incubated overnight at 37˚C. After 

centrifugation at 1,500 x g for 20 minutes, the pellet was re-suspended with 1 mL of an 

antibiotic brew (18.5 mg/mL BHI, 975 μl/mL deionized water, 100 μg/mL vancomycin, 

100 μg/mL nalidixic acid, and 50 μg/mL amphotericin B) and incubated again overnight 

at 37˚C. Then in the mycobottle (Para-JEM
®
 broth bottle, Thermo Scientific, Nepean, 

Ontario, Canada), 1 mL of the decontaminated sample was mixed with 2.5 mL of a brew 

of 1 mL Growth Supplement (TREK ESP
®
 culture system II, Thermo Scientific, 
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Oakwood Village, Ohio), 1mL Egg Yolk Supplement (TREK ESP
®
 culture system II, 

Thermo Scientific, Oakwood Village, Ohio), and 1 mL Antibiotic Supplement (TREK 

ESP
®
 culture system II, Thermo Scientific, Oakwood Village, Ohio). The bottle was 

then placed in the TREK incubator until a positive signal was reached, up to a maximum 

of 49 days.  

 

4.3.3.3 Fecal Direct qPCR 

Procedures followed the recommendations of the Tetracore kit (VetAlert
TM

 

Johne’s Real-Time PCR kit, Tetracore
®
, Rockville, Maryland) targeting the hspX gene. 

Two g of fecal sample was mixed with 35 mL of sterile distilled water, placed on an 

automatic shaker for 15 minutes, and incubated for 30 minutes at room temperature. 

Then the top 20 mL of the solution was centrifuged at 2,500 x g for 10 minutes at room 

temperature, and the pellet was re-suspended with 1 mL of 1xTE buffer (10 mM Tris-

HCl, pH 8.0; 1 mM EDTA). For DNA extraction, 1 mL of the solution was bead-beat 

(Mini-Beater 8, BioSpec Products, Bartlesville, Oklahoma) in a cell-disruption tube 

containing sterile glass, for 5 minutes at 4,800 oscillations per minute, then centrifuged 

for 10 minutes at 16,000 x g. The supernatant was mixed with 100 μL Nucleic Acid 

(NAB™) Buffer and centrifuged at 1,200 x g for 3 minutes. The pellet was re-suspended 

with 560 μL of Binding Buffer, incubated for 10 minutes at room temperature, and 

mixed with 560 μL of 100% ethanol. Then, 630 μL of the sample at a time was placed in 

a spin column and centrifuged at 5,200 x g for 1 minute, followed by adding 500 μL of 

Wash Buffer A (centrifuged at 5,200 x g for 1 minute), 500 μL of Wash Buffer B 

(centrifuged at 12,000 x g for 3 minutes), and no buffers (centrifuged at 16,000 x g for 1 



129 

 

minute). Then 50 μL of deionized water was added, incubated for 1 minute at room 

temperature, and centrifuged at 5,200 x g for 1 minute to elute the DNA. For the 

fluorogenic probe hydrolysis assay, 22.5 μL Master-mix was mixed with 2.5 μL of the 

eluted DNA in a thermocycler reaction tube. Positive and negative control samples were 

also included in each qPCR run in the thermocycler (Cepheid SmartCycler
TM

 II 

Thermocycler, Cepheid, Sunnyvale, California). An enzyme activation step (95˚C) was 

followed by a two-step cycling reaction (95˚C and 62˚C). Positive control cut-off was 

set between 20 to 26 threshold cycles (Ct). Positive samples were <42 Ct. 

 

4.3.3.4 Culture Confirmation 

Acid fast stain was performed for all broth and solid cultures to confirm for 

positive MAP. Any positive culture or AFS positive samples were further confirmed 

with qPCR. For broth cultures, the bottle was placed in an automatic shaker for 5 

minutes and 1 mL of the culture was added to a cell-disruption tube. For solid cultures, 

two or three colonies were collected from the media with a sterile loop, mixed with 1 

mL of sterile 0.9% saline in a sterile centrifuge tube, with 1 mL of the re-suspended 

colonies subsequently placed in a cell-disruption tube. The methods described above for 

DNA elution and qPCR were then followed. 

 

4.3.3.5 Milk ELISA 

Procedures followed the recommendations of the Paracheck kit (PARACHEK
®
 2 

ELISA kit, Prionics AG, Schlieren-Zürich, Switzerland). This indirect ELISA includes 

an absorption phase with Mycobacterium phlei to eliminate any cross-reacting 
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antibodies to other mycobacteria that could result in false positives (Yokomizo et al., 

1985). As the kinetic detection method was used, the positive cut-off value was 

determined as the average value of the two negative control OD values plus 0.100. The 

adjusted score results (sample raw OD minus average of the two negative control OD 

values) were set at <0.07 as negative, 0.07 to 0.1 as suspicious, and >0.1 as positive. 

Any results within the suspicious category were re-run to classify as either positive or 

negative. If they stayed in the 0.07 to 0.1 range, they were classified as negative as per 

kit instructions. 

In each of the first two wells of a 1.2 mL dilution plate, 10 μL of negative control 

was added, followed by 10 μL of positive control in the next two wells, followed by 150 

μL of milk samples per each subsequent well. Then 190 μL of sample diluent (including 

Mycobacterium phlei) was mixed into each of the controls, and 150 μL of sample diluent 

was mixed with each sample. The plate was incubated at room temperature for 30 

minutes. From each well, 100 μL was transferred to the MAP antigen-coated ELISA 

microtitre plate. The covered plate was incubated at room temperature for 45 minutes to 

allow MAP-specific antibodies to bind to the MAP antigens coated on the plate, then 

washed six times with wash buffer (20x concentrate mixed with 19 parts distilled water) 

in the washer (BioTek
®
 ELx 405 ELISA Washer, Thermo Fisher Scientific, Waltham, 

Maine) to remove unbound proteins. Then 100 μL of conjugate (a secondary antibody 

conjugated to an enzyme that can produce a color signal), diluted 1:100 with conjugate 

diluent, was added to each well, followed by the covered plate being incubated at room 

temperature for 30 minutes, then washed again as above. Afterwards, 100 μL of enzyme 

substrate solution (in order for the enzyme to release the color signal) was added to each 
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well, and the plate placed in the plate reader (BioTek
®
 Power Wave XS ELISA Reader, 

Thermo Fisher Scientific, Waltham, Maine). The positive control absorbance was read at 

630 nm until it reached between 0.35 to 0.40 OD, using the ELISA analysis software 

(Gen5™ Data Analysis Software, BioTek, Winooski, Vermont). Then 50 μL stop 

solution was added to each well, and the absorbance of each well read at 450nm. For the 

results to be valid, negative controls had to be <0.200 OD and not vary by more than 

0.04 OD. The positive controls had to be between 0.900 to 1.200 OD and not deviate by 

more than 30%. 

 

4.3.4 Statistical Analysis 

Statistical analyses were done using STATA (STATA
®
/IC Version 12, StataCorp 

LP, College Station, Texas), Minitab (Minitab
®
 16.2.2, Minitab Inc., State College, 

Pennsylvania), and MLwiN (MLwiN
®
, Centre for Multilevel Modelling, Bristol, United 

Kingdom) software using a P-value <0.05 as a cut-off for statistical significance. 

Sensitivity (proportion of observations that were positive for the previously determined 

MAP-infectious cows) and Sp (proportion of observations that were negative for the 

previously determined MAP test-negative herd-mates) for ELISA results were recorded 

along with a 95% confidence interval (CI). Analysis was limited to data from cows with 

<400 DIM to stay within a typical lactation length and because data were sparse above 

this threshold. ELISA Se proportions were compared to Se of three fecal assays (solid 

and broth cultures and qPCR). Additionally, agreement analyses, using the Cohen’s 

Kappa and McNemar’s exact test (Dohoo et al., 2009), were calculated between 

dichotomous milk ELISA and fecal results. Continuous ELISA scores were also 



132 

 

compared to fecal shedding levels. For solid culture, low shedding related to <10 CFU 

per culture slant, moderate shedding from 10 to 50 CFU per slant, and high 

shedding >50 CFU per slant (Crossley et al., 2005). For broth culture, high shedding 

related to <20 days to positive, moderate shedding between 21 and 28 days, and low 

shedding between 29 and 49 days (Shin et al., 2000, 2001). For qPCR, high shedding 

related to <26 Ct, moderate shedding between 26 to 30 Ct, and low shedding between 30 

to 42 Ct, according to previous work (see Chapter 2).  

For milk samples, Se and score values were analyzed over age, parity, lactation 

stage, and season. A two-level (cow and farm) hierarchical mixed linear regression 

model for continuous ELISA scores was used for the analysis, using an autoregressive 

(AR1) residual correlation structure for the relationship between times within tests 

within cows. Univariate analysis was explored first, followed by the multivariable 

model, including any pertinent interaction terms. Analyzed predictors of interest were 

season (categorical), DIM (continuous), age (categorical), and parity (categorical). The 

collinear age and parity variables were analyzed in separate models. Parity was grouped 

into first, second, third, fourth, and >fifth parity. Age was categorized into ages two and 

three years, four years, five years, six years, and greater than seven years. Finally, 

season was categorized into July through September for summer, October through 

December for fall, January through March for winter, and April through June for spring. 

Contrasts were analyzed for any significant predictors and reported with Bonferroni-

adjusted P-values for multiple comparisons. 
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4.4 Results 

4.4.1 Descriptive Data 

For both infectious and test-negative groups, cows ranged in ages from two to 

nine years (median = four years) and from first to seventh parity (median = second 

parity). From the 46 MAP-infectious cows (range of one to eleven observations per cow 

over the study period), there were total observations of 304 milk ELISA, 270 fecal solid 

culture, 298 fecal broth culture, and 297 fecal qPCR. From the control group, there were 

327 milk ELISA observations. Table 4.1 shows the consistency of each methodology by 

the number of MAP-infectious cows in positive-result percentiles across each of the four 

testing methods. Of the 46 cows that were previously found to be infectious, only one 

cow had no shedding detected with a fecal pathogen detection method during the study 

period. This cow was only tested once and then culled. Of the remaining 45 cows, 14 

cows had detectable fecal MAP shedding from 25.0% to 87.8% of their sampling times. 

Kappa between milk ELISA and fecal culture techniques indicated moderate agreement, 

with 0.57 for solid culture (P<0.01) and 0.46 for broth culture (P<0.01); but there was 

poor agreement (0.19, P<0.01) with fecal direct qPCR. McNemar’s test was highly 

significant (P<0.01) for all of these assay comparisons for milk and fecal samples. 

Monthly variation in the detection ability of the ELISA for milk samples and of 

the three testing methods (solid culture, broth culture, and qPCR) for fecal samples from 

the MAP-infectious cows is depicted in Appendix A. 

 

4.4.2 Detection Ability of Assays 
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Overall Se values for milk ELISA, as well as for the three fecal diagnostic 

methods are listed in Table 4.2. One control cow was identified as a MAP-infectious 

cow after two consecutive milk ELISA observations confirmed with fecal culture and 

was subsequently removed from evaluation of milk ELISA Sp. Specificity was 

calculated from the test-negative group as 99.3% (95% CI: 97.5% to 99.9%). There were 

three cows with false positive results (three observations).  

 

4.4.3 Association with Fecal Shedding, Age, or Parity 

A higher proportion of positive results for milk ELISA was seen when fecal 

shedding was greater (Table 4.3). This trend was significant for high shedding detected 

with fecal solid culture (high versus negative, P < 0.01; high versus low, P<0.05; high 

versus moderate, P = 0.09) and qPCR (high versus negative, P<0.01; high versus low, 

P<0.01; moderate versus negative, P = 0.06). There was also a trend toward improved 

Se and greater mean ELISA scores with increasing age (Table 4.4). However, after 

Bonferroni corrections for multiple comparisons, this trend was not significant. A 

similar trend was also seen with increasing parity (data not shown).  

 

4.4.4 Seasonal and Lactational Patterns in Detection Ability 

Because the ELISA scores ranged from -0.17 to 2.42 and were highly right 

skewed (mean 0.157, median -0.06), the outcome for the mixed linear model was best 

transformed to the inverse square root for the regression analysis in order to meet the 

assumptions of the linear model. As the predictors for age and parity were highly 
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correlated (r = 0.85, P < 0.01), both variables were not analyzed in the same model. In 

the mixed linear regression model, predictors of ELISA score included age  

(P < 0.05), season (P < 0.05), and DIM (P < 0.01). The model with parity was similar 

(data not shown). Predicted back-transformed marginal scores (Figure 4.1) improved 

toward end of lactation and were more likely to cross the positive threshold (0.1) with 

increasing age. Scores were significantly higher for winter (P < 0.05) than for summer. 

Numerically, the changes in scores were often quite small and did not necessarily result 

in an increase in scores above the positive threshold due to few observations in some 

categories among season, age, and lactation stages.  

 

 

4.5 Discussion 

 

4.5.1 Detection Ability of Milk ELISA 

Milk ELISA for Johne’s disease has poor cow-level predictive values due to low 

Se and imperfect Sp, when combined with low within-herd prevalence (Tiwari et al., 

2006). The current analysis performed in lower MAP prevalence herds (3% to 15%) 

supports reports of lower milk ELISA Se than standard fecal diagnostics (Table 4.2), 

with a milk Se of approximately 30% and Sp of 99%. Similarly, a literature review by 

Nielsen and Toft
 
(2008) assessed the six milk antibody ELISA studies done up to that 

time, and found that most of those studies targeted MAP-infectious cows with Se 

ranging from 29% to 61% and Sp from 83% to 100%. A study by Slana et al. (2008) 
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found high Sp along with Se ranging between 21% and 67%, using the same ELISA kit 

as the current study on individual cow milk samples. A literature review by Tiwari et al. 

(2006) reported milk Se between 51% to 84% and Sp between 92 to 96%. However, 

many of the reviewed studies used concurrent high fecal shedding (>10 CFU) as a 

reference standard as well as sampling from higher prevalence herds (>25% prevalence). 

McKenna et al. (2005) observed that serum ELISA Se was approximately two times 

greater if estimated against a reference standard of positive fecal culture than against 

tissue culture.  

In the current Se study, only cows that were MAP-infectious the previous year 

were sampled, so the negative milk ELISA results were false negative under the case 

definition. It is possible that some of these cows may not have transitioned to a 

consistently detectable humoral immunity. Generally, ELISA Se should increase with 

each stage of disease and with increasing numbers of shed bacteria (Carpenter et al., 

2004), which we observed in this study. There were two confirmed positive milk ELISA 

results, within the 327 observations from the control cows. These results came from the 

same cow in two consecutive months, even though fecal testing of this cow prior to the 

study did not detect MAP. Concerning the three confirmed false positive cows in this 

group, the possibility exists that they may not have been truly false, but may rather have 

been an early humoral response prior to detectable intermittent shedding (Nielsen, 

2010). If these were true positives, then the Sp of the test approached 100%. Nielsen
 

(2008) suggests that the best time to confirm the ELISA with fecal culture could be six 

to nine months post-ELISA, but cautions that cows with repeated positive results on 

ELISA testing are at higher risk of becoming MAP-infectious; therefore, the use of 
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repeated ELISA samples was recommended (Nielsen et al., 2002b). Furthermore, 

Nielsen (2008) hypothesized that the ability of cows to become high bacterial shedders 

could be predicted by the onset of detectable MAP antibodies. 

Although it can be difficult to interpret Kappa in the presence of low prevalence 

(Byrt et al., 1993), this study found that there was only moderate agreement between 

milk ELISA and fecal culture tests, and slight agreement with the more sensitive fecal 

qPCR. These findings corresponded with the highly significant McNemar’s tests, which 

indicated that the proportion of positive results between milk ELISA and any of the 

three fecal assays was significantly different. Hendrick et al. (2005) found that, despite a 

non-significant Se difference between an indirect milk ELISA and fecal culture, their 

level of agreement was greater than that between serum ELISA and fecal culture.  

 

4.5.2 Association with Fecal Shedding, Age, or Parity 

When individual shedding categories for fecal cultures were assessed (Table 

4.3), there was a higher proportion of milk ELISA positive results and a 40% increase in 

the ELISA score for cows with concurrent heavy MAP shedding (>50 CFU on solid 

culture) than lighter shedding. Increased Se of ELISA with increased MAP shedding 

was also noted in a study of serum ELISA versus HEYM fecal culture and direct PCR 

(Clark et al., 2008). Although there are various studies done on comparisons between 

ELISA OD values and fecal shedding probabilities, the use of various study designs, 

target conditions, herd prevalence, and ELISA and culture methods makes comparison 

with these studies difficult (Lombard et al., 2006). 
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Increasing ELISA readings have been recorded over age and parity (Nielsen and 

Toft, 2002b; Toft et al., 2005). The current study did not detect any positive milk ELISA 

for two year old cows, and many scores were also negative in three year olds (Table 

4.4). This pattern was a result of study design, as fecal culture positivity within the 

previous year was used for the case definition. A trend towards higher Se was seen in 

infected cows greater than five years old and especially older than seven years old 

(Table 4.4), indicating that the change to humoral immunity is more detectable in older 

cows. In a recent study using IDVET ELISA and looking at MAP-infected cows only, 

the Se over age also increased, but was generally higher than the Se reported in the 

current study and other studies (Nielsen and Toft, 2013). Several studies report higher Se 

after three years of age (Huda et al., 2004; Nielsen and Ersbøll, 2006), which is 

consistent with the current study results. One study found milk ELISA Se of 6% and Sp 

of 99.7% at age two, and a Se of 50% and Sp of 93% at age five in MAP-infected cows, 

but found no change between these ages for MAP-infectious cows (Nielsen and Toft, 

2006). However, in the current study of MAP-infectious cows, just over 30% Se at age 

five was detected, and it did not exceed 50% until age seven. Nielsen and Toft (2006) 

also observed that the age of onset of shedding may be a better predictor of ELISA 

positivity than chronological age. 

 

4.5.3 Seasonal and Lactational Patterns in Detection Ability 

The present study detected improving milk ELISA scores in later lactation, and 

also found that the effect of lactation could not be separated from the effect of season, as 

the pattern predicted higher scores during winter months (Figure 4.1). However, the 
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variation in scores was sometimes numerically small and did not necessarily cross the 

positive threshold. In contrast, Nielsen et al. (2002a) found that milk ELISA Se 

increased at the beginning of lactation and serum ELISA at late lactation, but that study 

excluded cows greater than 290 DIM. An inherently higher presence of antibodies in 

colostrum could lead to higher antibody levels very early in lactation, even in non-

infectious cows (Nielsen and Toft, 2002b). Therefore, milk antibody concentration may 

be greater both in early (first to second weeks) and late ( greater than 45 weeks) lactation 

than in the third to twelfth weeks of lactation (Nielsen and Toft, 2002b; Lombard et al., 

2006) due to colostral antibody levels, milk dilution effects, and Johne’s disease stage 

(Nielsen and Toft, 2012).  

 

4.5.4 Conclusion 

Understanding patterns in MAP shedding and antibody concentration over time 

can lead to efficient testing of animals for enhanced control programs. Yet a lack of 

comparable scientific research on MAP shedding and immune patterns during lactation 

and over seasons in dairy cows could impede advances in the use of diagnostic tests in 

current MAP control programs within the dairy industry. The current study assessed 

seasonal and lactational patterns on MAP antibody concentrations in milk. However, our 

study was limited due to the choice of target and case conditions of MAP-infectious 

cows from the one year period prior to the present study. Milk ELISA results need to be 

cautiously interpreted relative to the target condition. Another limitation was the small 

sample size from low MAP prevalence farms, which may have resulted in low statistical 

power in some analyses.  
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Accurate knowledge of shedding and diagnostic patterns is vital for reducing 

MAP transmission risks and for development of improved diagnostic and screening 

protocols. The present data indicates overall milk ELISA Se of 30% and Sp of 99.3%, 

with increasing ELISA Se in relation to increased fecal shedding, increased age, and 

increased parity. Most notably, a significant effect for season (winter versus summer) 

and lactation stage (increasing DIM) on ELISA score values more clearly explains the 

variation over time and highlights areas that require further study in the understanding of 

this disease. 
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Table 4.1. Number of cows in each positive-result category (percentiles) for fecal solid 

culture (Herrold’s egg yolk media with mycobactin J), fecal broth culture (TREK ESP 

system; Thermo Scientific, Ohio), fecal real-time polymerase chain reaction (qPCR; 

VetAlert; Tetracore, Maryland), and milk ELISA (Paracheck; Prionics, Switzerland) for 

samples collected monthly over a 12 month period from a total of 46 Mycobacterium 

avium subsp. paratuberculosis infectious cows from seven herds.  

 

Proportion  

of samples  

Positive (%) 

 

Fecal 

Solid Culture 

 

Fecal 

Broth Culture 

 

Fecal 

qPCR
 

 

Milk  

ELISA 
0 14 8 3 19 

>0 to ≤25 6 7 1 6 

>25 to ≤50 4 3 6 4 

>50 to ≤75 3 3 7 3 

>75 to ≤99 2 6 3 3 

100 17 19 26 11 

N
a 

46 46 46 46 
 

a
Total number of observations. 
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Table 4.2. Overall and shedding-level stratified sensitivity (%) of fecal solid culture 

(Herrold’s egg yolk media with mycobactin J), fecal broth culture (TREK ESP system; 

Thermo Scientific, Ohio), fecal real-time polymerase chain reaction (qPCR; VetAlert; 

Tetracore, Maryland), and milk ELISA (Paracheck; Prionics, Switzerland) for 

concurrent samples collected monthly for 12 months from 46 Mycobacterium avium 

subsp. paratuberculosis infectious cows from seven herds.  

 

   Shedding levels 

 N
a
 Positive

b
 Low Moderate High 

Milk ELISA 

 

 

304 29.9 

(24.8-35.1
c
) 

   

Fecal solid 

culture
d 

 

270 46.7 

(40.7-52.7) 

15.9 

(11.5-20.3) 

8.1 

(4.9-11.4) 

22.6 

(17.6-27.6) 

Fecal broth 

culture
e 

298 55.0 

(49.3-60.7) 

30.9 

(25.6-36.1) 

9.1 

(5.8-12.3) 

15.1 

(11.0-19.2) 

Fecal direct 

qPCR
f 

 

297 77.4 

(72.7-82.2) 

58.2 

(52.6-63.9) 

10.1 

(6.6-13.5) 

9.1 

(5.8-12.4) 

 

a
Total number of observations. 

b
Overall sensitivity regardless of shedding levels. 

c
95% confidence interval. 

d
Shedding categories determined with solid culture: low (<10 CFU per culture tube), 

moderate (10 to 50 CFU), high (>50 CFU) (Crossley et al., 2005). 
e
Shedding categories determined with broth culture: low (>28 days to a positive signal), 

moderate (21 to 28 days), high (<21 days) (Shin et al., 2000; Shin et al., 2001). 
f
Shedding categories determined with qPCR: low (30 to 42 Ct), moderate (26-30 Ct), 

high (<26 Ct). 
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Table 4.3. Proportion (%) of positive milk ELISA results (Parachek; Prionics, 

Switzerland) within each shedding category for fecal solid culture (Herrold’s egg yolk 

media with mycobactin J), fecal broth culture (TREK ESP system; Thermo Scientific, 

Ohio), and fecal real-time polymerase chain reaction (qPCR; VetAlert; Tetracore, 

Maryland) for concurrent samples collected monthly over 12 months from 46 

Mycobacterium avium subsp. paratuberculosis infectious cows from seven herds.
a
  

 

 Shedding levels 

 Negative    Low Moderate High 

Fecal solid 

culture
f 

 

6.2 (144
d
) 

[2.3-10.2
e
]

a 
44.2 (43) 

[29.1-59.3]
a
 

45.4 (22) 

[24.1-66.8]
a
 

80.3 (61) 

[70.2-90.4]
b 

Fecal broth 

culture
g
 

3.7 (134) 

[0.0-7.0]
a
 

43.5 (92) 

[33.2-53.7]
a
 

51.8 (27) 

[32.6-71.1]
a
 

68.9 (45) 

[55.1-82.6]
a
 

Fecal direct 

qPCR
h
 

4.7 (67) 

[0.0-9.5]
a 

 

24.3 (173) 

[17.8-30.7]
ab

 

73.3 (30) 

[57.2-89.5]
bc 

85.1 (27) 

[71.5-98.9]
c
 

 

a-c
Significant differences between shedding levels per fecal assay (within same row) are 

represented by different superscript letters (P < 0.05). 
d
Total number of observations. 

e
95% confidence interval. 

f
Shedding categories determined with solid culture: low (<10 CFU per culture tube), 

moderate (10 to 50 CFU), high (>50 CFU) (Crossley et al., 2005). 
g
Shedding categories determined with broth culture: low (>28 days to a positive signal), 

moderate (21 to 28 days), high (<21 days) (Shin et al., 2000; Shin et al., 2001). 
h
Shedding categories determined with qPCR: low (30 to 42 Ct), moderate (26-30 Ct), 

high (<26 Ct). 
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Table 4.4. Sensitivity (%) and mean score results (%) of milk ELISA (Parachek; 

Prionics, Switzerland) within each age group for milk samples collected monthly over 

12 months from 46 Mycobacterium avium subsp. paratuberculosis infectious cows from 

seven herds.  

 

Age
 

(years) 

 N
a 

ELISA Sensitivity Mean Score 

2 and 3 90 25.6 (16.5-34.6
b
) 0.09 (0.35

c
) 

4 78 20.5 (11.5-29.6) 0.08 (0.41) 

5 51 33.3 (20.2-46.4) 0.23 (0.62) 

6 55 32.7 (20.2-45.3) 0.22 (0.48) 

>7 30 56.7 (38.6-74.8) 0.27 (0.50) 

 
a
Total number of observations.  

b
95% confidence interval. 

c
Standard deviation. 
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Figure 4.1. Predicted marginal adjusted scores for milk ELISA (Parachek; Prionics, 

Switzerland) across lactation months within each season for milk samples collected 

monthly over 12 months from 46 Mycobacterium avium subsp. paratuberculosis 

infectious cows from seven herds. Marginal scores were calculated on the mixed linear 

model with farm and cow level random effects and mean age (4.5 years). 
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USE OF SPECIFIC MYCOBACTERIUM AVIUM SUBSPECIES 
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5.1 Abstract 

 

Paratuberculosis, or Johne’s disease, is a chronic granulomatous enteritis of 

ruminants and a costly, production-limiting disease of dairy cattle caused by 

Mycobacterium avium subsp. paratuberculosis (MAP). To survive in the hostile 

environment within macrophages, MAP secretes a battery of proteins upon 

internalization to neutralize the immunological response of macrophages. One of the 

proteins important for the virulence of MAP is tyrosine phosphatase A (PtpA). MAP 

also possesses the protein tyrosine phosphatase B (PtpB), and the protein kinase G 

(PknG), both shown as ortholog virulent factors for the closely related bacterium, 

Mycobacterium tuberculosis. The PtpA inhibits phago-lysosome maturation and 

phagosome acidification in macrophages. Because colostrum is a macrophage-rich 

environment, it may be a risk of MAP infection for and transmission to calves and thus 

also a critical area to emphasize in farm control programs. Therefore, our objectives 

focused on developing cost-efficient, time-efficient, and effective early diagnostic tests 

based on these virulence proteins. This pilot effort looked first at modifying a novel 

enzyme linked immunosorbent assay (ELISA), particularly for colostrum, but also for 

milk and serum samples, and secondly modifying the cell-mediated interferon gamma 

(IFN-γ) assay for whole blood samples to identify the stimulation activity of MAP 

virulence proteins as specific antigens. Our efforts for developing the novel ELISA 

showed a response to PtpA especially in milk and to a cocktail of proteins, including 

PknG, for colostrum, but results were variable and not consistent. The production of 

IFN-γ was detected in IL-12 p40-potentiated PtpA and PknG whole blood samples. 
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However, due to inconsistent results in the adult infected and non-infected cows tested, 

coupled with a small sample size, results were not sufficient to determine the accurate 

effect of these virulence proteins. Nevertheless, this pilot study provides hopeful results, 

which are being further evaluated in ongoing work with both the novel ELISA and novel 

IFN-γ tests.  

 

 

5.2 Introduction 

 

The hallmark virulence activities of the bacteriological agent for paratuberculosis 

(Johne’s disease), Mycobacterium avium subsp. paratuberculosis (MAP), are founded 

on its ability to thwart immunological attempts to clear the host of the infection and to 

coordinate the alterations of these complex immune pathways to gain intracellular 

survival (Bannantine and Stabel, 2002). The four foremost methods of mycobacterial 

survivability in macrophages are the inhibition of: (1) phagosome-lysosome fusion, (2) 

inhibition of phagosome acidification, (3) inhibition of antigen presentation, and (4) 

apoptosis (Koul et al., 2004). By altering normal macrophage activity, MAP can inhibit 

normal antigen processing and presentation and alter innate interferon gamma (IFN-γ) 

immune activity (Bach et al., 2011; Sweeney, 2011; Verschoor et al., 2010). There is not 

a wealth of information available for Johne’s disease, regarding which proteins the 

bacterium secretes, so much information is translated from Mycobacterium tuberculosis 

research. The basic understanding is that a battery of proteins is secreted in order to 

orchestrate the immunological response elicited by macrophages upon infection, as well 
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as proteins necessary for the survival of the pathogen intracellularly, such as lipases that 

can be used by mycobacteria for basic metabolism and survival (Deb et al., 2006; Bach 

et al., 2011).  

The establishment of a successful infection by MAP may rely on the secretion 

and action of specific proteins. Protein tyrosine phosphatase A (PtpA) of MAP, also 

known as low molecular weight MAP1985 (Li et al., 2005), has been reported to be 

actively secreted in macrophages within the first 24 hours post-infection (Bach et al., 

2006) and actively involved in dephosphorylation of the host vacuolar sorting protein 

VPS33B, an essential protein required for phagosome-lysosome maturation (Bach et al., 

2008). It has been suggested that PtpA is continually secreted from MAP into the 

phagosome and then diffused into the cytoplasm of the infected macrophage (Bach et al, 

2006). Similarly, the protein kinase G (PknG) is secreted within macrophages following 

uptake, gaining access to the infected macrophage’s cytosol. It acts in blocking 

phagosome-lysosome fusion, thereby preventing the destruction of the pathogen by the 

lysosomes. This inhibition has been reported in other mycobacteria, such as M. 

tuberculosis, M. bovis, and M. smegmatis (Walburger et al., 2004).   

Traditionally, enzyme linked immunosorbent assays (ELISA) are a preferred test 

to diagnose Johne’s disease, mainly due to their benefits of time, cost, and technical 

ease. However, for preclinical cows that may not be producing sufficient antibodies yet 

and may still be low fecal shedders of the bacteria, serum ELISA has been shown to 

have poor sensitivity of less than 30% and specificity less than 100% (Collins et al., 

2006; Tiwari et al., 2006). Additionally, the cell-mediated interferon gamma assay, that 

measures IFN-γ in serum, utilizes specific antigens like protein-purified derivative 
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Johnin. This assay identifies the host’s T cell recognition of antigens since the animals 

may not have been infected long enough to produce antibodies to MAP. With the 

potentiating effect of interleukin 12 (IL-12) added to the stimulation agent, a greater 

sensitivity could possibly be achieved (Jungersen et al., 2005; Mikkelson et al., 2009). 

The efficiency of both types of assays depends on the stage of infection. In addition, for 

ELISA, the type of immunoglobulin (Ig) G targeted is also important, as IgG2 

predominates in pro-inflammatory immunity and is therefore indicative of early stage 

MAP infection or exposure with potential MAP infection. A switch to IgG1 occurs as 

humoral immunity takes over when cell-mediated control is lost (Koets et al., 2001; 

Sweeney, 2011). In comparison to antibody ELISAs, the IFN-γ assay performed 

significantly better in cows less than three years of age (Huda et al., 2004; Jungersen et 

al., 2012). However, responses with either assay can vary in infected cattle, and IFN-γ 

detection in exposed animals does not necessarily mean infection will ensue as the cell-

mediated immunity may control the infection or the IFN-γ may be only detecting 

environmental mycobacteria (Jungersen et al., 2002; Huda et al., 2004; Jungersen et al., 

2012). In order to address the last issue, the use of early MAP-specific proteins as 

antigen stimulation was assessed in our study, not only for the IFN-γ assay but also for a 

novel ELISA that could be used earlier than conventional ELISAs. Gurung et al. (2014) 

found a higher humoral immune response to PtpA in serum samples from MAP-infected 

sheep as compared to non-infected sheep, and found that PtpA was secreted throughout 

the stages of Johne’s disease in sheep. 

Because Bach et al. (2011) reported that the novel ELISA utilizing PtpA was more 

sensitive in serum of preclinical cows than a commercial antibody ELISA, we 
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hypothesized that (1) the novel ELISA would also be sensitive within milk and 

colostrum samples for early MAP detection due to an increase in immune cells within 

colostrum and early-lactation milk; and (2) these specific MAP proteins, namely PtpA 

and PknG, could be used as a sensitive alternative to Johnin in IFN-γ assays, as Johnin 

has historically shown quite variable activity.  

 

 

5.3 Materials and Methods 

5.3.1 Farm and Cow Selection 

5.3.1.1 Novel ELISA 

 For the development of the novel ELISA, we purposively selected seven Johne’s 

infected dairy farms, from a list comprised in a companion project (Lavers et al., 2013), 

with three farms from Prince Edward Island, and four from New Brunswick, Canada. 

MAP prevalence in these selected herds ranged from 3% to 15% as determined in the 

companion project through individual cow testing using fecal broth culture confirmed by 

acid fast stain and direct polymerase chain reaction (C. Lavers; University of Prince 

Edward Island, Charlottetown, PE, Canada, personal communication). Thirty-six MAP-

infectious cows were identified for colostrum sampling (as described in Chapter 3) and 

48 MAP-infectious Holstein cows were recruited for milk sampling (as described in 

Chapter 4), from herds ranging between 83 to 490 cows per herd, with a total of 2 to 15 

cows recruited per farm. Furthermore, a control group of 52 test negative herdmates was 

selected from the same farms (as described in Chapter 4). Inclusion criteria for the 

control group included a history of MAP-negative status on all fecal broth culture, fecal 
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real-time polymerase chain reaction, milk ELISA, and serum ELISA from the 

companion project.  

As described in the concurrent studies, the target condition was MAP-infectious. 

The case definition was a dairy cow that had detectable fecal MAP-shedding at least 

once during a one year period prior to the start of this study. The term MAP-infectious 

will continue to be used in the remainder of the text to describe these cows. For the 

control group, the target condition was a MAP test-negative herd-mate. The control 

group case definition was a herd-mate, matched as closely as possible by age, parity, 

DIM, and reproductive status to a MAP-infectious cow. These cows were previously 

confirmed in the companion project (Lavers et al., 2013) as test-negative through fecal 

broth culture (confirmed with acid fast stain and qPCR), milk ELISA, and serum 

ELISA. 

Because these test-negative cows came from MAP positive farms, they may have 

been exposed to MAP and therefore not truly negative, despite rigorous testing, but 

possibly very early preclinical cows. Since the novel tests under evaluation in the current 

study target very early stage Johne’s disease, another group of 47 cows from a 

consistently test-negative herd from Prince Edward Island was also selected for another 

negative control group.  

In addition, from a known test positive herd in Prince Edward Island, five 

strongly positive cows were identified for re-sampling from which a pooled sample 

could be created for a known positive control for the novel ELISA.   

 

5.3.1.2 Whole-blood IFN-γ Release Assay 
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 For the pilot IFN-γ study, four cows from two Prince Edward Island farms were 

identified. Two of these cows came from a consistently MAP test-negative herd as 

determined from the companion project (Lavers et al., 2013) and from the Atlantic 

Johne’s Disease Initiative study. The other two cows came from a MAP test-positive 

farm and had a history of moderate to high milk ELISA scores in the previous study.  

 

5.3.2 Sample Collection 

All sample collection protocols were first approved by the Animal Care 

Committee at the University of Prince Edward Island, Canada.  

 

5.3.2.1 Novel ELISA 

Subsequent to cow identification, milk samples were collected monthly from the 

test and control groups either by the project personnel or by the farmers from July 2010 

to December 2011, for a period of up to 12 months for each cow or for as long as the 

cow remained in the herd. Clean milk samples were taken either between or at regular 

milking times. Colostrum samples were collected by the farmer within 24 hours of the 

cow freshening. All milk samples were collected by the farmers the day prior to pick up 

and all colostrum samples were frozen on farm at -20
o
C until arrangements could be 

made for pick-up. Samples were transported on ice to the Maritime Quality Milk 

Laboratory (MQM; Charlottetown, Prince Edward Island), where all milk and colostrum 

samples were frozen at -80
o
C until processing.  

In addition to milk and colostrum samples, serum samples were collected once at 

the end of the sampling regime on all remaining cows in the test and control groups. 
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Whole blood was collected via coccygeal venipuncture into sterile, non-heparinized 

vacutainer tubes (10 ml; Kendall Monoject™ Blood collection tubes, Tyco Healthcare 

group LP, Mansfield, MA). Upon arrival at the laboratory, samples were centrifuged at 

1,500 x g for 10 minutes at room temperature. Subsequently, serum was harvested and 

stored at -20
o
C until processing or followed by long term storage at -80

o
C.  

Serum and milk samples were collected from the positive and negative control 

groups following the same procedures as above. From these, two strongly MAP positive 

samples were pooled for a positive control reservoir, while four confirmed negative 

samples were pooled for a negative control reservoir. This was done to address the 

issues observed during early experiments using reconstituted commercial skim-milk 

powder (Carnation
®
, Nestlé, Vevey, Switzerland) as a negative control for milk samples 

and fetal calf serum for serum samples.  

For milk and colostrum samples, 1.8 ml aliquots were shipped to Dr. Horacio 

Bach’s laboratory at the University of British Columbia (UBC) for processing, as well 

as between 0.5 to 1.8 ml aliquots of serum samples, depending on availability. 

 

5.3.2.2 Whole-blood IFN-γ Release Assay 

Whole blood samples were collected from the four cows for the IFN-γ study 

following the same procedure as above, except that approximately 30 ml whole blood 

was collected in sterile, heparinized vacutainer tubes (10 ml; BD Vacutainer® Lithium 

Heparin
N
, Becton Dickinson, Franklin Lakes, NJ, USA). These samples were then 

transported to the laboratory at ambient temperature, and all samples per cow were 
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pooled into respective 50 ml conical tubes, then immediately processed following the 

stimulation protocols as described below.  

 

5.3.3 Laboratory Procedures 

5.3.3.1 Novel ELISA 

The following protocol was executed at the MQM Laboratory. The same 

protocol was also used in Dr. Bach’s laboratory at UBC, unless noted otherwise. 

Initially, 25 plates were supplied, pre-coated with recombinant PtpA antigen (as per 

previously described PtpA production methods in Bach et al., 2006) from Dr. Horacio 

Bach’s Laboratory at UBC, as the antigen itself can become unstable during shipping. 

These plates were coated with a concentration of 1 μg/μl of PtpA. The total volume of 

coating was 50 μl. Two other sets of five plates were also sent, one set with 0.5 μg/μl 

PtpA in the coating, and the other set with 0.25 μg/μl PtpA in the coating. For these 

plates, the total volume of coating per plate was 100 μl. Another trial was also 

performed, changing the plate type from cell culture plates, which are not typically 

recommended for ELISA protocols as they bind larger weight molecules, to ELISA 

plates (Costar® EIA/RIA flat bottom 96-well plates, Corning Incorporated, Corning, 

NY). This protocol was also performed separately using PknG and lipase-like proteins in 

the antigen coating. 

Briefly, milk and control samples were diluted 1:1 in phosphate buffered saline 

(PBS) with 3% bovine serum albumin (MQM: Rockland Immunochemicals, Inc., 

Gilbertsville, PA; UBC: Thermo Fisher Scientific, Waltham, MA). Fifty μl of the diluted 

sample (from 1 ml solution) and controls incubated for 2 hours at room temperature and 



160 

 

then washed 3 times with PBS-0.05% Tween 20, using the BioTek
®
 ELx 405 ELISA 

Washer (BioTek Instruments, Winooski, VT, USA) in which the last wash of the cycle 

was left to soak for 2 minutes. Following, 50 μl Peroxidase-conjugated AffiniPure Goat 

Anti-Bovine IgG (H+L) (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) 

was added to each well, and the plate was incubated again for 1 hour at room 

temperature, followed by 3 washes as before. Then 50 μl of 3,3',5,5'-

tetramethylbenzidine developer (Pourquier ELISA, Institut Pourquier, France) was 

added to each well, and the plate incubated for 7 minutes before 25 μl of stop solution 

(Pourquier) was added to each well. The plate was then read at 450 nm absorbance in the 

BioTek
®
 Power Wave XS ELISA Reader (BioTek Instruments). For serum samples, the 

above protocol was followed except that 10 μl of serum samples were diluted in 190 μl 

(UBC: 10 μl of serum samples were diluted in 990 μl) of sample dilution buffer 

(Pourquier).  

 Three control methods were used. Initially, only a negative control of 

reconstituted commercial skim-milk powder for milk and colostrum assays, and fetal 

calf serum for serum assays were used. Second, the Pourquier kit controls were tried as 

well. Last, controls were then switched to the pooled samples of strong MAP positive 

cows and cows from a test-negative herd. Furthermore, several different dilution ratios 

of conjugate were used, namely 1:5,000 (with 6 washes), 1:20,000, 1:70,000 (with both 

3 washes and 6 washes), 1:85,000 (3 washes), 1:100,000 (3 washes). Furthermore, either 

duplicate or triplicate runs of the samples were performed and a final value was 

calculated as an average of the runs minus the negative control. After choosing the best 

conjugate dilution (1:70,000), an additional method of attempting to reduce plate-to-
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plate variability was included. In this method, an alternative final value was calculated 

from the average of the runs, minus the background value of the coating (a blank well), 

minus the negative control. Removal of background values from coated blank wells and 

negative control values was done to adjust for the possibility of IgG concentration within 

bovine serum albumin and dry milk powder, and to compensate for coating differences 

between plates. 

 

5.3.3.2 Whole-blood IFN-γ Release Assay 

For this pilot study, the response to several stimulation agents for IFN-γ 

production analysis was assessed. For positive stimulation agent controls, the 

nonspecific mitogens pokeweed (PWM; Sigma-Aldrich, St. Louis, MO, USA) or 

concanavalin A (ConA; Sigma-Aldrich, St. Louis, MO, USA), both in combination with 

recombinant bovine interleukin-12 p40 (IL-12 p40; KingfisherBiotech, St. Paμl, MN, 

USA) were used. Phosphate buffered saline (pH 7.4) was used as negative control. 

Against these controls, we assessed the traditional MAP-specific protein purified 

derivative Johnin (Brucella & Mycobacterium Reagents Team, National Veterinary 

Services Laboratory, USDA, Ames, IA), Johnin with IL-12 p40, and the novel 

recombinant proteins PtpA and PknG alone or potentiated with IL-12 p40. Table 5.1 

describes the antigens used. Stimulation concentrations for PWM, ConA, IL-12 p40, and 

Johnin were selected based on the studies of Stabel (1996), Jungersen et al. (2005), and 

Mikkelsen et al. (2009). For the endotoxin-purified recombinant proteins, three different 

protein samples were sent to the MQM laboratory post lyophilisation in order to avoid 

precipitation. Upon arrival, the proteins were reconstituted in 0.5 ml PBS. It was 
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suspected that some of the protein was lost during lyophilisation. Consequently, after 

reconstitution, protein concentration was determined using the Bradford standard 

protocol (Bradford, 1976) as 39.6 μg/ml PknG, 43.8 μg/ml PtpA, and 138.5 μg/ml PtpA. 

All of the proteins were tested alone and potentiated with IL-12 p40. Unfortunately, due 

to the loss in concentration from expected values, less protein was available for testing 

than expected. Therefore, we were only able to test PknG at a concentration of 2 μg/ml 

and PtpA at concentrations of 2 μg/ml and 5 μg/ml. The amounts of stimulation agents 

that were available are depicted in Table 5.1.  

The procedure for IFN-γ detection via ELISA followed a protocol assessed 

previously in our laboratory (data not shown). Briefly, 1 ml of whole blood from each 

cow was added to each of 11 wells per cow in flat-bottom 24-well tissue culture plates 

(Corning Incorporated, Corning, NY). Then to each respective well per cow, the 

following room-temperature solutions were added: 2 μl PBS, 10 μg/ml ConA + 10 U/ml 

IL-12 p40, 2 μg/ml PknG, 2μg/ml PknG + 10 U/ml IL-12 p40, 2 μg/ml PtpA, 2μg/ml 

PtpA + 10 U/ml IL-12 p40, 5 μg/ml PtpA, 5 μg/ml PtpA + 10 U/ml IL-12 p40, 10 μg/ml 

Johnin, 10 μg/ml Johnin+10 U/ml IL-12 p40, and 10 μg/ml PWM + 10 U/ml IL-12 p40. 

After a minimum of 18 hour incubation (overnight) at 37˚C in 5% CO2, the stimulated 

blood was transferred to 2 ml microcentrifuge tubes and centrifuged at 500 x g for 10 

minutes at room temperature. Supernatants were kept in new microcentrifuge tubes at 

-20˚C until ELISA testing.  

To assess IFN-γ production, a commercial sandwich ELISA (ID Screen
®
 

Ruminant IFN-γ kit, IDVET, Montpellier, France) was used following the kit protocol. 

Briefly, to the first 4 wells of a 96-well plate, 25 μl of Dilution Buffer 1 with 25 μl of 
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negative control and 25 μl of Dilution Buffer 1 with 25 μl of positive control were added 

to two wells each respectively. To each of the remaining wells, 90 μl of Dilution Buffer 

1 and 10 μl of sample were added. All wells were then transferred to an ELISA 

microplate coated with an anti-ruminant IFN-γ monoclonal antibody (IDVET). After 

agitation, the plate was incubated for 1 hour at 36
o
C, followed by 6 washes with 1x wash 

solution (20x wash concentrate (IDVET) mixed with 19 parts distilled water) in the 

BioTek
®
 ELx 405 ELISA Washer (BioTek Instruments) to remove unbound proteins. 

For the antibody-antigen-secondary antibody complex, 100 μl of 1x Anti-ruminant  

IFN-γ Concentrated HRP Conjugate (10x stock conjugate diluted 1/10 in Dilution Buffer 

1) was added to each well, followed by incubation and washing as previously described. 

Afterwards, 100 μl of Substrate Solution was added to each well, and the plate was 

incubated in the dark for 17 minutes at room temperature (21
o
C). Finally, 100 μl of Stop 

Solution was added to each well to stop the reaction, and the absorbance read at 450 nm 

in the BioTek
®
 Power Wave XS ELISA Reader (BioTek Instruments). According to the 

manufacturer’s instructions, the test was valid when the mean positive control was >0.5 

OD, with the ratio of the mean values of the positive and negative controls >3. Sample 

OD results were further interpreted as a sample to positive (S/P) ratio. This is the ratio of 

IFN-γ concentration to the positive control and calculated as: S/P (%) = [(OD activated 

sample – OD non-activated sample)/(OD mean positive control – OD mean negative 

control)]*100. Samples stimulated with PBS were used to calculate OD control. Positive 

cut-off for IFN-γ production required an S/P ratio >15%.  

 

5.3.4 Statistical Analysis 
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Statistical analysis was done using STATA
®
 12 (StataCorp LP, College Station, 

Texas, USA) and Excel 2010 (Microsoft, Mississauga, Ontario). Statistical significance 

was set at P < 0.05. 

For the novel ELISA, mean, median, and standard deviations were calculated on 

the final values from the three different sample types. Analyses for possible diagnostic 

utility of the novel ELISA were assessed via receiver operating curves (ROC) and cut 

point selections for best sensitivity and specificity outcomes (Dohoo et al., 2009). 

For the novel IFN-γ assay, mean, median, and standard deviations were 

calculated for infected and non-infected samples across stimulation types. Bar graphs 

were created to represent these results over infection status (average of cows per group) 

and also per cow to depict differences between cows. Due to the small sample size of 

this pilot study, the results focused on descriptive and univariate analyses. 

 

 

5.4 Results 

 

5.4.1 Novel ELISA 

5.4.1.1 Descriptive Data 

For the novel ELISA study, cows ranged from two to nine years (mean = 4.6 

years), and from first to seventh parity (mean = 2.8). There were a total of 187 milk, 44 

colostrum, and 56 serum samples from infected cows and 208 milk, 8 colostrum, and 42 

serum samples from non-infected cows, all from MAP-positive herds. From the MAP-

negative herd, 47 milk and serum samples were collected.  
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Variability was observed for the novel ELISA detecting early expressed PtpA 

and PknG proteins in both MAP-infected and non-infected cows from MAP test-positive 

and -negative herds. Results will be discussed in chronological order following the 

described improvements and variations adopted to the original design and protocol.  

 

5.4.1.2 First Control Set: Only Negative Controls 

At the UBC laboratory, positive and negative samples were analyzed initially on 

separate ELISA plates, and the operator was not blinded to the sample status. Initial 

results showed high variability in negative control values in the plates containing 

samples from MAP-infectious cows as compared to those in the plates containing 

samples from MAP test-negative cows.  

As indicated in Table 5.2, there was only a small difference between results for 

colostrum from known MAP-negative and MAP-positive cows, but a much greater 

difference overall in milk samples. Ranges showed much overlapping between MAP-

negative and MAP-positive sample outcomes for all three sample types. 

For the milk samples, a ROC curve analysis revealed an area under the curve of 

75.3% and indicated a possible cut-point of 0.3 to detect a positive cow. However, 

accurate comparison between plates was not possible as plates were segregated between 

negative and positive samples rather than mixed samples per plate. Furthermore, 

standard deviations were approximately 30% to 40% larger for positive cow results as 

compared to those from negative cows. 

 

5.4.1.3 Non-segregated Plates and Strong Positive and Negative Pools for Controls 
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Modification to the intial experimental design was made to avoid the difficult 

interpretation of plate-to-plate variation. Each plate included new positive and negative 

controls (from pooled samples from strong MAP-positive cows and from MAP-test 

negative cows from a test-negative herd), and with various dilutions of milk. Not much 

difference was noted between positive and negative milk samples on several trials. After 

these changes, best results for milk samples from MAP-positive cows had an average 

OD reading of 0.35, with OD values ranging from 0.047 to 1.945. For negative milk 

samples, however, the mean OD was 0.111, but the range was from 0.043 to 1.093, 

overlapping with positive cows. 

 

5.4.1.4 Alternate Coating-protein Concentrations 

We then assessed different coating concentrations as described above, but again 

not much difference was noted between MAP status samples. In general, 1:70,000 was 

most suitable with the highest positive readings. However, it did result in a negative 

control value of approximately 0.2 and higher blank well values. Nevertheless, this was 

corrected for in the final result as previously discussed.  

Samples were processed from a MAP test-negative herd as a true negative status 

and compared against an assortment of MAP positive and negative (exposed) samples 

from test-positive herds. Table 5.3 shows the results from two separate runs. 

Comparisons between plates could not be accurately assessed as the positive control we 

were using up to this point was not effective in these runs.  

 

5.4.1.5 Alternate Type of Plate 
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We then changed from cell culture plates to true ELISA plates, and we compared 

our results to an ELISA run that Dr. Bach performed at the UBC laboratory (using the 

same samples that we used in the MQM laboratory). This was done to compare the 

protocols, both for milk and serum samples. Results were not improved, as some 

comparisons were not much different between negative and positive samples. Overall, 

corrected average OD reading for positive versus negative samples were 0.249 (range: 

0.137 to 0.383, standard deviation: 0.74) and 0.168 (range: 0.097 to 0.2345, standard 

deviation: 0.056), respectively. As a result of so much overlap in the data, ROC curve 

analysis (data not shown) did not reaveal any meaningful Se and Sp cut point analysis. 

 

5.4.1.6 Alternate Coating-protein 

We speculated that the level of PtpA antibodies was too low to be detected by 

ELISA in colostrum and milk samples. Therefore, we tested new antigen by adsorbed 

ELISA using the same experimental sample panel. The new antigens included PknG and 

lipase-like proteins. Table 5.4 shows that milk diluted 1:1 with PBS had inconclusive 

results. Colostrum results were promising, with positive cows in positive herds giving 

the highest OD readings, as compared to MAP test-negative cows. However, these were 

based on single cows in each group. 

 

5.4.2 Whole-blood IFN-γ Release Assay 

Interferon gamma was detected with both PknG and PtpA (Figure 5.1), although 

results were variable among the four cows. In particular, the second negative cow 

unexpectedly showed very high positive results for samples stimulated with ConA + IL-
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12 p40 and PtpA alone and with IL-12 p40 (Figure 5.2). The effect of this may have 

caused higher than normal average negative-cow results, particularly for PtpA at 2 μg/ml 

with and without IL-12 p40. Due to missing values, not all categories have results from 

all four cows, making comparisons between groups difficult. Results for PWM + IL-12 

p40 were not included in both figures due to over-expression of IFN-γ. Both PknG + IL-

12 p40 and PtpA (5 μg/ml) + IL-12 p40 produced the best results, with a difference of 

63.9% and 17.2% S/P points between positive and negative cows, respectively. 

However, these results came from only one negative and one positive cow. For PtpA at  

2 μg/ml concentration, proportions were similar but opposite those for PtpA at 5 μg/ml. 

Finally, Johnin did not produce detectable IFN-γ at the cut-point designated by the 

commercial ELISA kit, regardless of MAP status in the cows.  

 

 

5.5 Discussion 

 

One of MAP’s hallmark survival mechanisms is to evade the host’s natural 

immune responses. Earlier infection diagnosis could lead to quicker instigation of 

specific, efficient control mechanisms (Stabel et al., 2007). However, current diagnostic 

tests are not reliable for early diagnosis of preclinical cows (Kalis et al., 2003). 

Therefore, the use of early MAP proteins, such as PknG and PtpA, as specific antigens 

in diagnostic tests, such as ELISA and IFN-γ, is a step towards developing a rapid, yet 

sensitive and specific early MAP identification tool. Since MAP proteins (PtpA, PtpB, 

and PknG) are secreted early in infection (upon phagocytosis) to block part of the 
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immunological response mounted by host macrophages (Bach et al., 2011), we 

hypothesized that these proteins can serve as part of an early diagnostic test. 

 

5.5.1 Novel ELISA 

It has been reported that IgG levels detected by an antibody-using ELISA are 

more likely to result in positive MAP detection during late lactation for serum and 

during either early or late lactation for milk of MAP-infected cows (Nielsen et al., 2002; 

Lombard et al., 2006). Colostrum samples and the first few days of milk production are 

suspected to have high levels of both IgG1 (humoral) and IgG2 (pro-inflammatory); and 

also the milk is less diluted at early and late lactation, resulting in a higher concentration 

of immunoglobulins and MAP antigen (Nielsen and Toft, 2012). Actually, the IgG2 

concentration in colostrum has been reported to be at a minimum of 30-fold increase 

compared to milk (Zervens et al., 2013). Therefore, the use of not only an ELISA for 

colostrum or early milk samples but also an ELISA that can be used for preclinical, early 

infection identification would be ideal. Our study aimed at addressing both these 

conditions through the use of early secreted proteins, like PtpA, in humoral immunity 

assays. With the novel protein acting as antigen, the ELISA therefore measures the 

presence of antibodies specific to these proteins. Although milk samples in early 

lactation could be more likely to identify IgG2 antibodies, the possibility of false 

positive results also exists. This possibility lies in the higher concentration of 

nonspecific proteins in these early lactation samples that could be falsely identified as a 

bound antibody in the ELISA (Nielsen and Toft, 2012). Nielsen and Toft (2012) 

recommend long-term follow-up, and suggest that the same response should be seen in 
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either high or low prevalence herds when there is nonspecific protein binding. However, 

Zervens et al. (2013) found that nonspecific ELISA reactions in colostrum were actually 

very small (3/365 samples) and that colostrum from the day of parturition was 130 times 

more likely to exhibit a positive response to an indirect commercial ELISA compared to 

milk samples from cows only four days in milk.  

In many of our runs, too much variation in negative controls made for too much 

uncertainty in validity of sample results. Initially, it is possible that there was some 

cross-contamination in positive non-segregated plates or overall that coating was 

variable. Another possibility lies in the fact that some of the negative cows may have 

had higher values because they were exposed cows from a MAP test-positive farm. 

Although our initial goals focused on the use of the test in colostrum only, the 

preliminary data shown in Table 5.2 indicates poor results for colostrum at this time, 

while results for milk were more promising. Although the last assays using PknG and 

lipase-like proteins showed potentially applicable results for colostrum in the future 

(Table 5.4), with regards to the milk ELISA protocol, these results may have been sub-

optimal as Dr. Bach often detected precipitation at the bottom of the wells using a 1:1 

milk dilution. Despite adjusting OD values by accounting for background values from 

the coating, the results may have misrepresented the actual protein concentration. 

Consequently, further analysis is currently being pursued.  

A large portion of the development for the novel ELISA included looking at 

different concentrations of antigen-protein coating, different dilution ratios, different 

negative controls, as well as use of negative cows from a MAP test-negative herd. Table 

5.3 showed results from samples from a test-negative herd. Some of the duplicates in 
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these runs were highly variable, which raised concerns about a possible issue with 

uneven coating across the plate, or perhaps somewhat partially desiccated coating during 

shipment and storage. Unfortunately, despite Dr. Bach’s attempts at overexpression of 

all three proteins, yield was very low and slow, making repeated attempts within a short 

period of time for a large amount of samples difficult. Therefore, further work is also 

being assessed for greater and more efficient in vitro production of these virulence 

proteins to enhance diagnostic test development assays. 

 

5.5.2 Whole-blood IFN-γ Release Assay 

By sensitizing the recall mechanism of lymphocytes through the action of 

specific stimulation agents, IFN-γ is produced and can be detected through cell-mediated 

assays. Although detection of specific antibodies via ELISA is ideal for identification of 

early infection or preclinical animals, detection of IFN-γ, although not necessarily 

always indicating infection, identifies exposure and thereby transmission occurring in 

the herd (Zervens et al., 2013). Since cell-mediated responses are strong during early 

infection, IFN-γ testing can be used as a support mechanism to identify gaps in Johne’s 

disease management protocols that could cause MAP exposure, especially for preclinical 

cows and calves (Collins, 1996; Kalis et al., 2003). In contrast, antibodies used in 

ELISAs are not efficient for cows under three years of age due to the lack of detectable 

humoral immune activity (Huda et al., 2004). Furthermore, antibodies may be at a low 

concentration during earlier stages of infection (Jungersen et al., 2012). Traditionally, 

the IFN-γ assay, using Johnin, is known for its low specificity (Mikkelsen et al., 2009) 

and high detection variability in young calves, particularly up to six months of age, with 
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better sensitivity for one to two year olds (Jungersen et al., 2002; Huda et al., 2003, 

2004; Jungersen et al., 2012). Our goal was to determine if the virulence proteins could 

be as effective as or even better than the effects of other protein purified derivatives, 

such as Johnin, for infected cows in comparison to non-infected cows. 

In our analysis, there was a lot of variation, unfortunately, between the two 

noninfected and two infected cows (Figure 5.1). Nevertheless, the strong response to 

ConA + IL-12 p40 indicated that viable lymphocytes were present in our samples and 

that there were no false negative reactors present because the non-stimulated samples 

did not show an increased IFN-γ level (Stabel and Whitlock, 2001). The lower response 

to ConA in the second MAP-infected cow (Figure 5.2) may be due to a waning cell-

mediated response known to occur in clinical cows (Stabel and Whitlock, 2001), 

although the clinical status of this cow was not recorded at the time of sampling. Even 

though degree of infection was not recorded for the positive cows, they were milk 

ELISA positive prior to this study. In preclinical Johne’s infected cows, Stabel et al. 

(2007) noted an increased IFN-γ response to ConA-stimulated blood as compared to 

PWM-stimulated blood following pre-sensitization with Johnin intradermally. However, 

as also seen in our study, Jungersen (2002) suggested that ConA may have a reduced 

effect when there is a positive humoral response to a mycobacterial antigen and during 

clinical phases of the disease. Verschoor et al. (2010) had also reported inconsistent 

assay results during clinical paratuberculosis. 

For both PtpA and PknG, IFN-γ was detected, with somewhat better results for 

PknG (Figure 5.1). Potentiation with IL-12 p40 increased the level of IFN-γ detection. 

Jungersen et al. (2005) warns that IL-12, although able to help rescue a weak immune 
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response, could potentially result in false positive results by simultaneously stimulating 

natural killer cells, rather than just lymphocytes, to produce IFN-γ, despite the fact that 

natural killer cells can also have memory function of previous disease exposure. There is 

a higher prevalence of natural killer cells in calves, therefore increasing a risk of false 

positives in younger cattle (Kulberg et al., 2004) especially those <15 months of age 

(Jungersen et al., 2002). In our study, we obtained blood samples from adult cows, and 

therefore the risk of false positives may be low, but the exact effect is unknown without 

concurrent analysis of the blood samples for proportion of specific immune cells present 

at the time of stimulation. Kalis et al. (2003), however, did not find an association 

between IFN-γ skin test assay specificity and age.  

It was unclear as to why PtpA at a 2 μg/ml concentration would detect more  

IFN-γ than at 5 μg/ml (Figure 5.1), with PtpA at 5 μg/ml producing only borderline 

results at the positive cut-off for IFN-γ detection. Also Johnin was least sensitive, but 

there was concern about the viability of the antigen batch within our laboratory, and it 

would be recommended to repeat the test with a new batch of Johnin antigen before 

speculating on these results. Nielsen and Toft (2008) have reported that for infectious 

cows, the sensitivity of IFN-γ assays varied between 13% and 85%, with specificity 

ranging between 88% and 94%. It has also been noted that greater than three year old 

cows or cows already in the humoral immunity status or even in the clinical stage of 

Johne’s disease likely show a reduced response to Johnin (Mikkelsen et al., 2009). This 

may have occurred in our study as we did not have any youngstock against which to 

compare the results. Furthermore, high variability within Johnin preparations from 
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various potencies and different source strains to a lack of standardization in its 

production makes comparison among studies difficult (Bannantine et al., 2010).  

 

5.5.3 Conclusion 

Although our results are still preliminary and not yet applicable for diagnostic 

test development, results indicated that PtpA and PknG, early MAP-virulence proteins, 

are detected as MAP antigens in milk, colostrum, and serum samples of MAP-infected 

cows with both ELISA and IFN-γ assays. The identification of highly specific antigens 

for MAP for either improved IFN-γ assay or a preclinical ELISA are imperative for 

developing a preclinical MAP-infection identification test or a highly reliable early-use 

decision-support assay for MAP control that can be used for calves or preclinical cows. 

Further work in analyzing these virulence proteins in not only infectious cows but also 

suspected exposed cows and calves from test-positive herds in comparison to test-

negative herds is underway. Further analyses include improvements to ELISA coating 

applications, including protein concentration and combinations to improve sensitivity 

and specificity of the assay, as well as improvements to the IFN-γ assay using larger 

sample sizes and samples from heifers and calves.  

 

  



175 

 

5.6 References 

 

Bach, H., K. Papavinasasundaram, D. Wong, Z. Hmama, and Y. Av-Gay. 2008.  

     Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of  

     Human VPS33B. Cell Host and Microbe 3:316-322. 

 

Bach, H., E. A. Raizman, P. Soto, R. Vanderwal, S. Thrasher, M. Chaffer, and G. Keefe.  

     2011. A novel ELISA test for diagnosis of Johne’s Disease. Pages 20-22 in  

     Proceedings of the 11
th

 International Colloquium on Paratuberculosis, Sydney,  

     Australia. 

 

Bach, H., J. Sun, Z. Hmama, and Y. Av-Gay. 2006. Mycobacterium avium ssp  

     paratuberculosis PtpA is an endogenous tyrosine phosphatase secreted during  

     infection. Infect. Immun. 74:6560-6566.  

 

Bannantine, J. P., M. L. Paustian, V. Kapur, and E. Shigetoshi. 2010. Proteome and  

     antigens of Mycobacterium avium subsp. paratuberculosis. Pages 94-108 in  

     Paratuberculosis: Organism, Disease, Control. M Behr and D. M. Collins, ed. CAB  

     International, Cambridge, MA. 

 

Bannantine, J. P., and J. R. Stabel. 2002. Killing of Mycobacterium avium  

     subspecies paratuberculosis within macrophages. BMC Microbiol. 2:2.  

 

Bradford, M.M. 1976. Rapid and sensitive method for the quantitation of microgram  

     quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem.  

     72:248-254. 

 

Collins, M. T. 1996. Diagnosis of paratuberculosis. Vet. Clin. N. Am. Food Anim. Pract.  

     2:357-372. 

 

Collins, M. T., S. J. Wells, K. R. Petrini, J. E. Collins, R. D. Schultz, and R. H.  

     Whitlock. 2006. Evaluation of five-antibody detection tests for diagnosis of bovine  

     paratuberculosis. Clin. Diagn. Lab. Immunol. 12:685-692. 

 

Deb, C., J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey, and P. E. Kolattukudy.  

     2006. A novel lipase belonging to the hormone-sensitive lipase family induced under 

     starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J. Biol.  

     Chem. 281(7):3866-3875. 

 

Dohoo, I. R., S. W. Martin, and H. Stryhn. 2009. Veterinary Epidemiologic Research.  

     2
nd

 ed. VER, Inc., Charlottetown, PE, Canada. 

 

Gurung, R. B., D. J. Begg, A. C. Purdie, H. Bach, and R. J. Whittington. 2014.  

     Immunoreactivity of protein tyrosine phosphatase A (PtpA) in sera from sheep  

     infected with Mycobacterium avium subspecies paratuberculosis. Vet. Immunol.  



176 

 

     Immunopathol. 160:129-132. 

 

Huda, A., G. Jungersen, and P. Lind. 2004. Longitudinal study of interferon-gamma,  

     serum antibody and milk antibody responses in cattle infected with Mycobacterium  

     avium subsp. paratuberculosis. Vet. Microbiol. 104:43-53. 

 

Huda, A., P. Lind, A. B. Christoffersen, and G. Jungersen. 2003. Analysis of repeated  

     tests for interferon-gamma (IFN-γ) response and faecal excretion for diagnosis of  

     preclinical paratuberculosis in Danish cattle. Vet. Immunol. Immunopathol. 94:95- 

     103. 

 

Jungersen, G., S. N. Grell, A. Clemensen, T. Roust, A. Huda, and C. J. Howard. 2005.  

     Interleukin-12 potentiation of the interferon-gamma test rescues day-old blood  

     samples for diagnosis of paratuberculosis PPD specific cellular mediated immune  

     response. Pages 501-506 in Proceedings of the Eighth International Colloquium on  

     Paratuberculosis, Copenhagen, Denmark. 

 

Jungersen, G., A. Huda, J. J. Hansen, and P. Lind. 2002. Interpretation of the gamma  

     interferon test for diagnosis of preclinical paratuberculosis in cattle. Clin. Diagn. Lab.  

     Immunol. 9:453-460. 

 

Jungersen, G., H. Mikkelsen, and S. N. Grell. 2012. Use of the johnin PPD interferon- 

     gamma assay in control of bovine paratuberculosis. Vet. Immunol. Immunopathol.  

     148:48-54. 

 

Kalis, C. H. J., M. T. Collins, J. W. Hesselink, and H. W. Barkema. 2003. Specificity of  

     two tests for the early diagnosis of bovine paratuberculosis based on cell-mediated  

     immunity: the Johnin skin test and the gamma interferon assay. Vet. Microbiol.  

     97:73-86. 

 

Koets, A. P., V. P. M. G. Rutten, M. de Boer, D. Bakker, P. Valentin-Weigand, and W.  

     van Eden. 2001. Differential changes in heat shock protein-, lipoarabinomannan-, and  

     purified protein derivative-specific immunoglobulin G1 and G2 isotype responses  

     during bovine Mycobacterium avium subsp. paratuberculosis infection. Infect.  

     Immun. 69:1492-1498. 

 

Koul, A., T. Herget, B. Klebl, and A. Ullrich. 2004. Interplay between mycobacteria and  

     host signalling pathways. Nat. Rev. Microbiol. 2:189-202.  

 

Kulberg, S., P. Boysen, and A. K. Storset. 2004. Reference values for relative numbers  

     of natural killer cells in cattle blood. Dev. Comp. Immunol. 28:941-948. 

 

Lavers, C. J., S. L. B. McKenna, I. R. Dohoo, H. W. Barkema, and G. P. Keefe. 2013.    

     Evaluation of environmental fecal culture for Mycobacterium avium subspecies  

     paratuberculosis detection in dairy herds and association with apparent within-herd  

     prevalence. Can. Vet. J. 54:1053-1060.  



177 

 

 

Li, L., J. P. Bannantine, Q. Zhang, A. Amonsin, B. J. May, D. Alt, N. Banerji, S.  

     Kanjilal, and V. Kapur. 2005. The complete genome sequence of Mycobacterium  

     avium subspecies paratuberculosis. Proc. Natl. Acad. Sci. USA 102:12344-12349. 

 

Lombard, J. E., T. M. Byrem, B. A. Wagner, and B. J. McCluskey. 2006. Comparison of  

     milk and serum enzyme-linked immunosorbent assys for diagnosis of Mycobacterium  

     avium subspecies paratuberculosis infection in dairy cattle. J. Vet. Diagn. Invest.  

     18:448-458. 

 

Mikkelsen, H., G. Jungersen, and S. S. Nielsen. 2009. Association between milk  

     antibody and interferon-gamma responses in cattle from Mycobacterium avium  

     subsp. paratuberculosis infected herds. Vet. Immunol. Immunopathol. 127:235-241. 

 

Nielsen, S. S., C. Enevoldsen, and Y. T. Grohn. 2002. The Mycobacterium avium subsp.  

     paratuberculosis ELISA response by parity and stage of lactation. Prev. Vet. Med.  

     54:1-10.  

 

Nielsen, S. S., and N. Toft. 2008. Ante mortem diagnosis of paratuberculosis: a review  

     of accuracies of ELISA, interferon-γ assay and faecal culture techniques. Vet.  

     Microbiol. 129:217-235. 

 

Nielsen, S. S., and N. Toft. 2012. Effect of days in milk and milk yield on testing  

     positive in milk antibody ELISA to Mycobacterium avium subsp. paratuberculosis in  

     dairy cattle. Vet. Immunol. Immunopathol. 149:6-10.  
 
Tiwari, A., J. A. VanLeeuwen, S. L. B. McKenna, G. P. Keefe, and H. Barkema. 2006.  

     Johne’s disease in Canada: Part 1 clinical symptoms, pathophysiology, diagnosis and  

     prevalence in dairy herds. Can. Vet. J. 47(9):874-882. 

 

Stabel, J. R., and R. H. Whitlock. 2001. An evaluation of a modified interferon-γ assay  

     for the detection of paratuberculosis in dairy herds. Vet. Immunol. Immunopathol.  

     79:69-81. 

 

Stabel, J. R., K. Kimura, and S. Robbe-Austerman. 2007. Augmentation of secreted and  

     intracellular gamma interferon following johnin purified protein derivative  

     sensitization of cows naturally infected with Mycobacterium avium subsp.  

     paratuberculosis. J. Vet. Diagn. Invest. 19:43-51. 

 

Sweeney, R. W. 2011. Pathogenesis of paratuberculosis. Vet. Clin. Food Anim. 27:537- 

     546. 

 

Verschoor, C. P., S. D. Pant, and N. A. Karrow. 2010. Unraveling the genetics of bovine  

     Johne’s disease: lessons learned from human inflammatory bowel disease. Pages 63- 

     97 in Veterinary Immunology and Immunopathology. L. Nermann and S. Meier, ed.  

     Nova Science Publishers, Inc., Hauppauge, NY. 



178 

 

 

Walburger, A., A. Koul, G. Ferrari, L. Nguyen, C. Prescianotto-Baschong, K. Huygen,  

     B. Klebl, C. Thompson, G. Bacher, and J. Pieters. 2004. Protein kinase G from  

     pathogenic mycobacteria promotes survival within macrophages. Science 304  

     (5678):1800-1804. 

 

Zervens, L. M-L., S. S. Nielsen, and G. Jungersen. 2013. Characterization of an ELISA  

     detecting immunoglobulin G to Mycobacterium avium subsp. paratuberculosis in  

     bovine colostrum. Vet. J. 197(3):889-891.  

  



179 

 

Table 5.1. Volume (microliters) of stimulation agents and negative and positive controls 

added to whole blood samples from two Mycobacterium avium subspecies 

paratuberculosis (MAP) infected cows and two non-infected cows. 

 

 Stimulation Agents
b 

  

 

Positive 

Controls
 

 

PknG
 

 

PtpA
 

 

Johnin
 

Cow
a 

PBS A
c 

B
c 

C D
c 

E F
c 

G H
c 

I J
c 

N 2
 

2
 

10 52 52 14.4 14.4 113 36 10 10 

N 2 2 10 0 0 14.4 14.4 0 0 10 10 

P 2 2 10 52 52 14.4 14.4 113 36 10 10 

P 2 2 10 <52 0 14.4 14.4 <100 0 10 10 
 

a
N = cows from a MAP-test-negative farm; P = cows with positive milk ELISA results 

from a MAP test positive farm.  
b
PBS = phosphate buffered saline as negative control; Positive controls (A = 

ConcanavalinA + interleukin-12p40, B = Pokeweed + interleukin-12p40); PknG = 

protein kinase G (C = PknG, D = Pkn G + interleukin-12p40); PtpA = protein tyrosine 

phosphatase A (E = PtpA at 2 μg/ml, F = PtpA at 2 μg/ml + interleukin-12p40, G = PtpA 

at 5 μg/ml, H = PtpA at 5 μg/ml + interleukin-12p40); Johnin purified protein derivative 

(I = Johnin, J = Johnin + interleukin-12p40). 
c
Samples from each cow in these columns had four microliters of interleukin-12 p40 

added to the listed volume of stimulation agent. When no stimulation agent was 

available for a sample, four microliters of interleukin-12 p40 alone was added. 
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Table 5.2. Quantification
 a
, by an adsorbed enzyme linked immunosorbent assay, of the 

presence of protein phosphatase A antibodies in milk, colostrum, and serum samples 

from known Mycobacterium avium subspecies paratuberculosis (MAP)-infected and 

non-infected cows.
 

 

 MAP 

status 

Total 

observations
 

Mean 

OD
 

Median 

OD 

Range  

OD 

Standard 

Deviation 

Milk Negative 208 0.028 0.002 (-0.075, 1.035) 0.090 

 Positive 187 0.240 0.082 (-0.061, 1.861) 0.383 

Colostrum Negative 8 0.097 0.081 (-0.014, 0.234) 0.092 

 Positive 44 0.103 0.036 (-0.043, 0.701) 0.158 

Serum Negative 42 0.053 0.001 (-0.018, 1.362) 0.214 

 Positive 56 0.100 0.046 (-0.018, 0.585) 0.130 

 
a
 Mean, median, range, and standard deviation of average enzyme linked immunosorbent 

assay optical density (OD) values from triplicate runs minus the negative control per 

plate (coated with MAP protein tyrosine phosphatase A antigen)
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Table 5.3. Corrected mean optical density (OD) readings
a
 from a Mycobacterium avium 

subspecies paratuberculosis (MAP) protein tyrosine phosphatase A antigen-coated 

enzyme linked immunosorbent assay for milk samples from a MAP test-negative herd as 

well as from infected and non-infected (exposed) cows from MAP test-positive herds. 

 

Status
b 

Total observations Run Corrected mean OD 

TN herd 40 1 0.20 

TP herd, positive 23 1 0.225 

TP herd, negative 22 1 0.20 

TN herd 54 2 0.08 

TP herd, positive 16 2 0.17 

TP herd, negative 20 2 0.008 
 

a
[raw value minus the background (blank-coated well) and negative control values] 

b
TN = MAP test-negative herd; TP = MAP test-positive herd from which there were 

positive (infected) and negative (non-infected) cows. 
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Table 5.4. Quantification
 a
, by an adsorbed enzyme linked immunosorbent assay, of the 

presence of protein kinase G and lipase-like protein antigens for milk and colostrum 

samples from known Mycobacterium avium subspecies paratuberculosis (MAP)-

infected and non-infected cows. 

 

 MAP status Total 

observations
 

Mean 

OD
 

Median 

OD 

Standard 

Deviation  Cow Herd 

Milk Negative Negative 10 0.029 0.008 0.040 

 Positive Positive 15 0.019 0.023 0.018 

Colostrum Negative Negative 1 0.170 0.170 n/a 

 Positive Positive 1 0.764 0.764 n/a 

 Negative Positive 13 0.271 0.247 0.177 
 

a
 Mean, median, and standard deviation of average optical density (OD) values from 

duplicate runs minus the background (blank-coated well) value from the adsorbed 

enzyme linked immunosorbent assay 
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Figure 5.1. In vitro interferon gamma production measured by whole-blood assay, 

exposed to different antigens or stimulation agents
a
, from two Johne’s infected and two 

non-infected cows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a
Stimulation agents: nonspecific mitogen concanavalinA (conA) at 10 μg/ml potentiated 

with interleukin-12p40 (IL12) at 10 U/ml; protein kinase G (pknG) at 2 μg/ml alone and 

with IL-12 p40; protein tyrosine phosphatase A (ptpA) at either 2 μg/ml or 5 μg/ml 

alone and with IL-12 p40; and protein purified derivative Johnin at 10 μg/ml alone and 

with IL-12 p40. 
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Figure 5.2. Interferon gamma production as measured by sample to positive ratio percent 

for whole blood samples, from two Johne’s infected and two non-infected cows, which 

were treated with nine stimulation agent variations
a
. 

 
 
 
 
 
 
 
 
a
Stimulation agents: nonspecific mitogen concanavalinA (conA) at 10 μg/ml potentiated 

with interleukin-12p40 (IL12) at 10 U/ml; protein kinase G (pknG) at 2 μg/ml alone and 

with IL-12 p40; protein tyrosine phosphatase A (ptpA) at either 2 μg/ml or 5 μg/ml 

alone and with IL-12 p40; and protein purified derivative Johnin at 10 μg/ml alone and 

with IL-12 p40.
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6.1 Abstract  

 

Cell-mediated immunity based diagnostics, particularly assays for pro-

inflammatory cytokines such as interferon gamma (IFN-γ), can be used for early 

detection of Johne’s disease. However, traditionally the IFN-γ test requires blood sample 

processing within 24 hours of collection to maintain white blood cell (WBC) viability. 

Therefore, to improve the utility of this test, the objective of this study was to assess the 

use of a novel WBC preservation technology in whole bovine blood. Blood samples 

from ten healthy cows were divided into an unpreserved control sample and a test 

sample preserved with transport medium (SCSR-T™, NonInvasive Technologies). 

Samples were maintained at room temperature and stimulated with the mitogens 

pokeweed or concanavalinA (ConA), as well as with interleukin-12 (IL-12 p40). 

Stimulation was completed on days 1, 5, and 8 post-sampling. Viability of WBCs was 

assessed through IFN-γ production determined with a commercial enzyme linked 

immunosorbent assay (ID Screen
®
, IDVET). In addition, mononuclear cell viability was 

assessed with propidium iodide flow cytometry. Peservation allowed for higher IFN-γ 

detection in ConA or ConA+IL-12 p40 stimulated blood days 5 and 8 post-collection. 

Additionally, viable mononuclear cells were still present at 8 days post-collection, with a 

significantly higher mean proportion detected at days 5 and 8 in preserved samples. This 

practical and simple method to extend in vitro WBC viability could allow for more 

efficient utilization of cell-based blood tests for Johne’s disease diagnostic and control 

programs. 

  



187 

 

 

6.2 Introduction 

 

Cell-mediated blood tests are sensitive tests for Johne’s disease diagnostics and 

control by more readily detecting preclinically infected animals when early immune 

responses prevail (Stabel, 1996). The first stage of infection with Mycobacterium avium 

subsp. paratuberculosis (MAP), the bacterial etiology for Johne’s disease or 

paratuberculosis, activates the innate immune system and adaptive immunity, 

particularly cell-mediated immunity, in susceptible hosts. As a chronic, production 

limiting disease in dairy cows, Johne’s disease is known for the hallmark ability of MAP 

to infect, reside and multiply within host macrophages (intracytoplasmatic infection) by 

avoiding and altering normal pathways of host immunity to clear the infection 

(Bannantine and Stabel, 2002).  

During the initial stages of infection, when antigen-presenting cells capture and 

process pathogens, a cell-mediated response is activated. During the pro-inflammatory 

stage of the disease, pro-inflammatory cytokines, such as interleukin (IL)-12, are 

released from those cells, polarizing naïve Th0 cells into Th1 cells that secrete interferon 

gamma (IFN-γ) and activate macrophages (Stabel 1996; Stabel, 2010). In addition, the 

presence of IFN-γ induces the production of immunoglobulin (Ig) isotype G2 and 

inhibits the secretion of IgG1 from activated plasma B cells. As the incubation period for 

the disease progresses and an anti-inflammatory state unfolds, the prevalence of anti-

inflammatory cytokines (for example, IL-10) leads to suppression of IFN-γ production 
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and a subsequent humoral response with the secretion of IgG1 antibodies (Nielsen and 

Toft, 2006; Stabel, 2010; Sweeney, 2011).  

Detection of this cell-mediated response to bacterial invasion in exposed and 

infected animals (Stabel, 1996) can be a practical tool to aid early control measures. The 

IFN-γ assay is a diagnostic tool for cell-mediated detection of Johne’s disease, 

measuring the animal’s exposure to MAP more effectively than humoral antibody 

ELISA (Stabel and Whitlock, 2001; Nielsen and Toft, 2006). However, traditionally, 

this test requires processing of bovine blood samples within 24 hours of collection in 

order to maintain white blood cell (WBC) viability (Plain et al., 2012). Consequently, 

this test has never gained widespread use in Johne’s disease diagnostics, despite the 

benefits of the IFN-γ assay.  

Because of challenges in identifying animals early in the MAP infection process, 

this study evaluated nonspecific mitogen effects on IFN-γ production with and without 

addition of a novel cell transport media. Stabel (1996) has reported similar IFN-γ 

responses with mitogen-stimulated blood samples from both non-infected and sub-

clinically infected cows. Therefore, nonspecific mitogens can be used to stimulate up to 

90% of lymphocyte blastogenic response, eliciting IFN-γ production regardless of MAP 

status. Commonly used mitogens, such as pokeweed (PWM) and concanavalinA 

(ConA), stimulate primarily B cells or T cells, respectively, and can thereby be used for 

general differentiation (Stabel, 1996; Gershwin et al., 2005, p. 105). Furthermore, the 

Th1 cytokine IL-12 promotes survival and growth of Th1 immunity, sustaining efficient 

numbers of memory or effector Th2 cells but inhibiting the formation of Th2 immunity. 

This cytokine can be used synergistically with mitogens due to its immunostimulatory 



189 

 

effects on T cells and natural killer (NK) cells to secrete IFN-γ (Vignali and Kuchroo, 

2012; Yim et al., 2013). Jungersen et al. (2002) stressed that although viable T cells and 

successful antigen presentation typically occurs within eight hours post-collection, IL-12 

potentiation could allow this time interval to be extended to 24 hours (Jungersen et al., 

2005). 

In addition to assessing cell viability through IFN-γ production, the presence of 

specific viable WBCs in a blood sample can be determined via flow cytometric analysis. 

It is expected that in vitro, T cells have a half-life of up to two days (Plain et al., 2012). 

In a study of Mycobacterium bovis stimulated blood, the amount of WBCs isolated 

decreased from fresh to two days old blood at temperatures greater or less than room 

temperature (Senogles et al., 1978). It is for this reason that cell-mediated blood tests 

have held to the protocol of processing samples within 24 hours of collection (Senogles 

et al., 1978). Indeed, Robbe-Austerman et al. (2006) recommended that whole blood 

kept at room temperature should be processed within 12 hours.  

Therefore, the goal of our study was to assess the use of a novel blood cell 

preservation media (SCSR-T™, NonInvasive Technologies) as a practical method of 

extending the lifespan of WBCs in vitro to allow for extended sample transit time. To 

evaluate this, both nonspecific stimulation of IFN-γ and flow cytometry were 

subsequently pursued to assess cell viability in preserved and unpreserved samples.  

 

 

6.3 Materials and Methods 
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6.3.1 Sample Collection 

Animal protocols were approved by the Animal Care Committee at the 

University of Prince Edward Island before commencement of the study. Ten healthy 

Holstein dairy cows were selected for participation from a farm in Prince Edward Island, 

Canada. Approximately 20 ml of blood was collected per cow by tail vein venipuncture 

into four heparinized vacutainer tubes (BD Vacutainer® Lithium Heparin
N
, Becton 

Dickinson, Franklin Lakes, NJ, USA). 

 

6.3.2 Sample Preparation 

Immediately upon arrival at the laboratory post-collection, all vacutainer tubes of 

whole blood samples were pooled into 50 ml polypropylene conical tubes per cow, after 

which, half of the volume for each was decanted into a second 50 ml conical tube. One 

tube per set was kept as an unpreserved control, while the whole blood in the other tube 

was preserved with 1:1 (v/v) ratio of transport medium (SCSR-T™ Biological Sample 

Preservation Medium, NonInvasive Technologies, Elkridge, MD, USA). All 20 tubes 

were then maintained bench-top at room temperature (21˚C) in the laboratory for eight 

days during the study. 

 

6.3.3 Stimulation Agents 

Stimulation agents for IFN-γ production and release analysis in this study 

included the mitogen PWM (Sigma-Aldrich, St. Louis, MO, USA), the mitogen ConA 

(Sigma-Aldrich, St. Louis, MO, USA), recombinant bovine IL-12 p40 

(KingfisherBiotech, St. Paul, MN, USA), and a combination of ConA and IL-12 p40. 
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Phosphate buffered saline (PBS; pH 7.4) was used as a negative control in both 

preserved and unpreserved whole blood samples. Stimulation agent concentrations, as 

described below, were selected based on the studies of Jungersen et al. (2005), 

Mikkelsen et al. (2009), and Stabel (1996). Furthermore, results of previous mitogen 

titration analyses performed in our laboratory (data not shown) guided our choice of 

dosages for PWM and ConA to avoid over-stimulation. 

 

6.3.4 Stimulation Method 

Methodology for transport medium use followed the foundational guidelines 

from NonInvasive Technologies (SCSR-T™ 2007 Instructions Pamphlet, 

www.noninvasivetech.com), where the media is used primarily for human intestinal 

epithelial cells (Nair et al., 2011). However, to facilitate its use for bovine whole blood, 

we used the following adapted protocol for the IFN-γ production and release analysis for 

this study. The stimulation was performed on both unpreserved and preserved samples 

of whole blood on days 0 (collection day), 4, and 7, with cells harvested on days 1, 5, 

and 8. Briefly, from unpreserved samples 1 ml of whole blood was added to each of 5 

wells per cow in flat-bottom 24-well tissue culture plates (Corning Incorporated, 

Corning, NY, USA). From preserved samples, 2 ml of diluted whole blood in transport 

medium as mentioned above, was placed into five corresponding 2 ml microcentrifuge 

tubes per cow and centrifuged at 500 x g for 10 minutes at room temperature. The 

supernatant was discarded, and the remaining pellets were re-suspended with Dubelccos’ 

Modified Eagle Medium (Sigma-Aldrich, St. Louis, MO, USA), supplemented with 10% 

fetal calf serum, to complete 1 ml per tube. The suspension was transferred to each of 
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another five wells per cow in the 24-well tissue culture plates. Then, to each respective 

set of two wells per cow (unpreserved whole blood and re-suspended pellet from 

preserved sample), the following room-temperature solutions were added, for a total of 

10 wells per cow: 2 μl PBS, 10 μl (10 μg/ml) PWM, 2 μl (10 μg/ml) ConA, 4 μl (10 

U/ml) IL-12 p40, and a combination of 2 μl (10 μg/ml) ConA plus 4 μl (10 U/ml) IL-12 

p40. The plates were then incubated overnight (approximately 18 hours) at 37˚C in an 

atmosphere supplemented with 5% CO2. After incubation, the content of each well was 

transferred to a respective 2 ml microcentrifuge tube and centrifuged at 500 x g for 10 

minutes at room temperature. The supernatants were transferred to new microcentrifuge 

tubes and frozen at -20˚C until ELISA assessment.  

 

6.3.5 Interferon Gamma Analysis with ELISA 

Assessment of IFN-γ concentration per sample was completed after the last 

stimulation day using a commercial sandwich ELISA (ID Screen
®
 Ruminant IFN-γ kit, 

IDVET, Montpellier, France), according to the manufacturer’s instructions. Briefly,  

25 μl of Dilution Buffer 1 and 25 μl of negative control were added to the first two wells 

of a 96-well plate, followed by 25 μl of Dilution Buffer 1 and 25μl of positive control to 

the next two wells. Then 90 μl of Dilution Buffer 1 and 10 μl of corresponding samples 

were added to the remaining wells. All of these were transferred to an ELISA microplate 

coated with an anti-ruminant IFN-γ monoclonal antibody, and the plate was agitated 

followed by incubation for one hour at approximately 36˚C. After incubation, the plate 

was washed six times with 1x wash solution (20x concentrate mixed with 19 parts 

distilled water) in the BioTek
®
 ELx 405 ELISA Washer (BioTek Instruments, Winooski, 
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Vt, USA) to remove unbound proteins. Then 100 μl of 1x Anti-ruminant IFN-γ 

concentrated Horse Radish Peroxidase (HRP) Conjugate (10x stock conjugate diluted 

1/10 in Dilution Buffer 1) was added to each well to form an antibody-antigen-

secondary antibody complex. The secondary antibody is conjugated to the enzyme HRP 

that can produce a color signal. The plate was then incubated again and washed as 

before. Then 100 μl of Substrate Solution was added to each well, the plate was 

incubated for 17 minutes at room temperature in the dark and 100 μl of Stop Solution 

added to each well to stop the reaction. The plate was then placed in the BioTek
®
 Power 

Wave XS ELISA Reader (BioTek Instruments, Winooski, VT, USA). The absorbance 

was read at 450 nm. According to the procedure protocol, the test is valid if the mean 

optical density (OD) of the positive control is >0.5 and the ratio of the mean values of 

the positive and negative controls is >3. The results for each sample were interpreted as 

a sample to positive (S/P) ratio, or a ratio of IFN-γ concentration to the positive control 

using the following formula: S/P (%) = [(OD activated sample – OD control 

sample)/(OD mean positive control – OD mean negative control)]*100. For both the 

preserved and unpreserved samples, the OD for the control sample was determined from 

the samples with only PBS added. According to procedure protocol, samples with S/P 

ratio >15% were considered positive for IFN-γ production.  

  

6.3.6 Cell Viability Analysis with Flow Cytometry 

White blood cell viability was assessed via propidium iodide flow cytometry 

over time (Davey and Kell, 1996). After incubation of samples and removal of 

supernatant as described above, the remaining pellet was re-suspended in PBS to a final 
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volume of 1 ml. Then 200 μl of each sample was transferred to respective flow 

cytometry tubes. To each flow tube, 5 μl (10 μg/ml) propidium iodide (Sigma-Aldrich, 

Co., St. Louis, MO) in PBS (Thermo Scientific™ HyClone™, Fisher Scientific Co., 

Ottawa, ON, Canada) and 2 ml of 1x lysis buffer (10 ml of 10x BD Pharm Lyse™ Stock 

(BD Biosciences, Mississauga, ON, Canada) with 90 ml distilled, deionized water) was 

added, and the tubes vortexed to immediately lyse the red blood cells (RBCs). By lysing 

the RBCs, the number of remaining WBCs could be accurately determined. The tubes 

were then incubated at room temperature in the dark for 15 minutes, followed by 

centrifugation at 200 x g for 5 minutes at room temperature. The supernatant was 

subsequently aspirated without disturbing the cell pellet. Then 2 ml of 1x PBS with 1% 

fetal bovine serum (VWR International, Mississauga, ON, Canada) and 0.1% sodium 

azide (Fisher Scientific Co., Ottawa, ON, Canada) was added to the pellets, which was 

centrifuged at 200 x g for 5 minutes at room temperature, and the supernatants 

discarded. The pellets were then re-suspended in 0.5 ml of 1x PBS with 2% 

formaldehyde (Fisher Scientific Co., Ottawa, ON, Canada) to fix the cells, which were 

then kept at 4˚C until flow cytometric analysis after the last stimulation day.  

 For flow cytometry, the samples were processed through the BD FACSCalibur™ 

Flow Cytometer (BD Biosciences, Mississauga, ON, Canada). To calculate cell 

percentages, 10,000 events per sample were read. Propidium iodide dye is excited at 488 

nm. The resultant WBC concentration was gated into respective live and dead 

mononuclear cell (monocytes, T cells, B cells, and NK cells) percentage and live and 

dead polymorphonuclear cell (eosinophils, basophils, neutrophils) percentage, as the dye 

penetrates the cells with damaged membranes (Davey and Kell, 1996). 
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6.3.7 Statistical Analysis 

Statistical analysis was done using STATA
®
 12 (StataCorp LP, College Station, 

Texas, USA) and SAS (SAS Institute Inc., Cary, North Carolina, USA). Statistical 

significance was set at P < 0.05. For the outcomes defined below, two mixed regression 

model structures (Dohoo et al., 2009) with random effects at the cow, day , and 

preservation levels were built including any two- and three-way interaction terms of 

predictors as explained below. Univariable models were assessed, and any predictors 

with P < 0.20 were further analyzed in multivariable models. Back-transformed 

marginal predictions and pairwise comparisons, as well as contrasts with Bonferroni 

corrections of P-values for multiple comparisons, were also analyzed for each model 

where indicated.  

The first model used a log transformed S/P ratio as the outcome for IFN-γ 

production analysis. The model included variables for transport media (dichotomous), 

treatment (five categories), and day (three categories). Treatment categories included 

PBS (base value), PWM, ConA, ConA + IL-12 p40, and IL-12 p40. Day categories were 

labelled as day 1, 5, and 8 to represent the days when cells were harvested after 

stimulation.  

The second model used percent of mononuclear cell viability as the outcome for 

cell viability analysis. This percent was defined as the percent of total cells counted by 

flow cytometry that were viable mononuclear cells. Total cells counted (equivalent to 

100%) included dead and viable mononuclear cells, as well as dead and viable 

polymorphonuclear cells. No transformation was required for this outcome in the 
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regression analysis. The same predictors were included as described for the first model. 

No other cow- or herd-level factor information was collected at the time of sampling, 

and therefore, no other predictors were available to be included in the models. 

 

 

6.4 Results 

 

6.4.1 Descriptive Data 

There were a total of 300 observations, corresponding to whole blood samples 

from the ten cows. Five treatments were performed on each of unpreserved and 

preserved samples, on each of three time periods. There were 14 missing S/P ratio 

results and two missing flow cytometry results due to hemolyzed samples (no pellet-

serum delineation) or due to ELISA OD results that exceeded the recordable limit. 

 

6.4.2 Stimulation Effect and IFN-γ Production 

For the 286 observations from the ten healthy cows, untransformed S/P ratios 

ranged from -9.8% to 468.1%, with a mean of 20.4% and a median of 1.3%. This highly 

right skewed outcome was therefore adjusted to be greater than zero by adding ten units 

to every value followed by a log transformation for regression analysis.  

 

6.4.2.1 Multivariable Analysis 

Overall, in pairwise comparison analyses, PWM and ConA stimulation effect 

was significantly different from no stimulation (PBS control) (P < 0.01), but IL-12 p40 
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alone was never significantly different from PBS. Furthermore, there was an overall 

significant effect of time (day) (P < 0.01). The three-way interaction among time (day), 

stimulation method, and use of transport medium was significant (P < 0.01) (Table 6.1). 

Pokeweed had a strong stimulating effect (Figure 6.1), particularly on day 1, but this 

effect in unpreserved samples was calculated with only six samples as the other four 

samples were over-stimulated beyond the maximum detection abilities of the ELISA. In 

addition, among preserved samples alone, the use of any one of the three stimulants was 

significantly different (P < 0.01) from the PBS control on both days 1 and 5. Although 

ConA and ConA + Il-12 p40 produced very similar results (Figure 6.2), only stimulation 

with ConA alone in preserved samples on day 5 continued to produce IFN-γ above the 

positive cut-point (S/P = 15%) for the ELISA kit. 

Table 6.2 depicts the difference in S/P ratios for each stimulation treatment as 

compared to the control (PBS) over time (days) for unpreserved samples and samples 

preserved with transport media, by showing the proportion of the contrast outcome 

(difference) in S/P ratios within each of the three stimulation methods on day 5 or day 8, 

as compared to the results on day 1. Numerically, IFN-γ production was generally higher 

on days 5 and 8 in preserved samples as compared to unpreserved samples. However, 

using Bonferroni corrections, only the combination of ConA + IL-12 p40 showed 

statistically significant stimulation of IFN-γ production on day 8 in preserved samples as 

compared to unpreserved samples (P < 0.05).  

 

6.4.3 Mononuclear Cell Viability 
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For the 298 observations from ten healthy cows, percent of viable mononuclear 

cells ranged from 7.7% to 81.8%, with a mean of 50.2% and median of 54.9%. No 

transformation was required for regression analysis. 

 

6.4.3.1 Univariable Analysis 

Univariable regression models showed highly significant day effect (P < 0.01) 

and transport medium effect (P < 0.01) on the percentage of live mononuclear cells 

counted by flow cytometry. Stimulant use, however, had no significant effect, and was 

subsequently not included in the multivariable model, after checking for confounding 

effects and model testing with and without this parameter.  

 

6.4.3.2 Multivariable Analysis 

The final mixed linear multivariable regression model showed a highly 

significant interaction (P < 0.01) between day and transport medium parameters. When 

comparing preserved and unpreserved samples (Figure 6.3), the proportion of mean live 

mononuclear cells present in unpreserved samples on day 8 was 45.3% of the mean 

amount present on day 1. However, in samples preserved with the transport media, 

76.4% of those present on day 1 were still viable on day 8. 

The mean mononuclear cell viability was 7.9% higher (95% CI: -5.9% to 21.7%) 

(P = 0.04) for preserved samples versus unpreserved samples on day 5 (as compared to 

day 1). This difference was 16.6% (95% CI: 2.8% to 30.5%) on day 8 (as compared to 

day 1) in favor of preserved samples (P < 0.02). Within day 8 there was also 

significantly more viable cells in preserved samples (P < 0.01).  
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6.5 Discussion 

 

The practical application of a cell viability transport medium would allow for 

more efficient utilization of blood diagnostic tests, such as the cell-mediated IFN-γ 

assay, in veterinary medicine applications. In particular, the use of such a transport 

medium would be highly beneficial to an increased application of the IFN-γ assay as 

part of Johne’s disease control programs. This study assessed the use of the SCSR-T™ 

transport media in bovine whole blood samples. For this assessment, an evaluation was 

performed using nonspecific mitogens, prior to evaluating the effects with specific MAP 

antigens. Overall, our results point to a benefit for incorporating a cell transport medium 

in whole blood samples to allow for longer travel times from on-farm collection to 

processing in an appropriate laboratory.  

 

6.5.1 Stimulation Effects and IFN-γ Production: 

As one method for detecting cell viability over time, stimulation of IFN-γ 

production assessment indicated better long-term results with preserved blood samples. 

Nonspecific stimulation was noted with both PWM and ConA, indicating that viable B 

and T cells were present over time (Table 6.2). The benefit of the transport media for 

IFN-γ production in our study was observed with ConA and ConA + IL-12 p40 

stimulation on day 5 post-collection.  
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As nonspecific mitogens can be used for positive controls in the IFN-γ assay, a 

positive response to the mitogens indicates that viable and healthy immune cells are 

present in the sample at the time of testing (Stabel and Whitlock, 2001). By extending 

cell life, the actions of these nonspecific mitogens can also be more accurately assessed 

over time, thereby aiding their use as appropriate reference standards against which the 

actions of specific antigens could be evaluated over time.   

In our study, PWM overstimulated IFN-γ expression on day 1, particularly for 

unpreserved samples. This overstimulation with PWM has been documented in the 

literature (Plain et al., 2012; Stabel, 1996), where some of this effect may be due to the 

action of PWM on primarily B cells in addition to T cells (Gershwin et al., 2005, p. 105; 

Stabel, 1996), indicating in our study a greater presence of B cells on day 1. In contrast, 

ConA acts solely on T cells (Gershwin et al., 2005, p. 105; Stabel, 1996). Therefore, 

Stabel (1996) suggests that ConA would be a better stimulation agent in cell-mediated 

assays for samples from preclinical Johne’s diseased animals. Stabel (1996) had also 

observed an increased IFN-γ production by non-stimulated WBCs after two incubation 

days, suggesting that this occurrence could stem from a possible spontaneous secretion 

of some T cell activating factors from the mononuclear cells in vitro.  

It was difficult to accurately compare the results of our study to others analyzing 

the effects of mitogens, as there are no standard concentration and incubation methods 

throughout the literature. However, in an effort to maintain some similarity, we used the 

more frequently reported dosage of 10 μg/ml for each of the mitogens (Robbe-

Austerman et al., 2006; Stabel, 1996), even though previous work in our laboratory 

showed that a lower dosage of 5 μg/ml may also be generally effective (data not shown). 
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In contrast, a previous veterinary clinical immunology study suggested an optimal 

concentration of 15 μg/ml for ConA and only 5 μg/ml for PWM (Barta and Oyekan, 

1981). 

 Furthermore, many of the studies found in the literature analyzing IFN-γ 

production either use heparinized blood or do not report the use of heparinized tubes 

during blood collection. Again, to maintain some similarity, we chose to use heparinized 

vacutainer tubes for blood collection. However, it has been previously noted that heparin 

can have a lymphocytolytic effect due to a subsequent increase of free fatty acid 

concentration in heparinized plasma (Klein et al., 1991). This effect may be 

inconsequential if lymphocytes are isolated within 48 hours of blood sample collection 

(Klein et al., 1991). Despite this potential negative effect of heparin, our cell populations 

still showed healthy activity and viability during our study period, particularly for blood 

preserved with the transport medium.  

Although there is little information in the literature, the pro-inflammatory 

cytokine IL-12 seems to act as an inductor, polarizing Th1 immune responses (Stabel, 

1996; Stabel, 2010). Specifically, IL-12 synergistically with IL-18 induces cell-mediated 

immunity against mycobacteria by promoting the release of IFN-γ through the activation 

of Th1 cells and NK cells (Price et al., 2006; Stabel, 2010). When IL-12 and IFN-γ 

production was negatively regulated by the increased presence of anti-inflammatory 

cytokines, such as IL-10, a Th2 immune response can develop (Stabel, 2010).  

Jungersen et al. (2005) recommends the addition of IL-12 within 20 hours of 

blood collection in order to aid in bolstering a weaker WBC response. In our study,  
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IL-12 p40 alone was unable to elicit detectable IFN-γ production above the cut-off for a 

positive result, but it was able to augment the effect of ConA. It would, therefore, be 

recommended to further evaluate this effect over time with a larger sample size, as very 

little information is available in the Johne’s disease literature aside from IL-12’s co-

stimulatory effect with specific mitogens (Mikkelsen et al., 2009).  

 

6.5.2 Mononuclear Cell Viability  

The results of our study indicated an advantage to incorporating a transport 

media at time of collection, as viable mononuclear cells were still present at eight days 

post-collection as determined with flow cytometry (Figure 6.3). 

Knowledge of mononuclear cell viability over time in both preserved and 

unpreserved whole blood samples can enhance our understanding of the results expected 

with IFN-γ assays post-blood collection over time. A simple method to assess viability 

in vitro involves the utilization of propidium iodide dye (Davey and Kell, 1996). In our 

study, we had lysed the RBCs and used gating and propidium iodide dye in the flow 

cytometric analysis to separate viable and non-viable mononuclear and 

polymorphonuclear cells. We maintained a standard of 10,000 events each time in order 

to accurately compare percent of viable mononuclear cells among the three time points. 

Other options for cell marking for use with flow cytometry include trypan blue dye 

(Kristensen et al., 1982) or specific immune markers for T cell subpopulations with 

Ficoll fractionation (Kristensen et al., 1982; Price et al., 2006).  

 Furthermore, several cow-level, environmental, and laboratory factors can lead 

to variation in assay results within individual cows. In particular, cow-level factors 
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include age, stress, health conditions, nutrition, and pregnancy. In addition, laboratory 

factors can make comparison between studies difficult. Some of these factors include not 

only methodology and mitogen concentrations, but also incubation periods, temperature 

variations, type of culture media, fetal calf serum use, and presence of possible 

inhibitors (Kristensen et al., 1982). 

 

6.5.3 Conclusion 

Through examining the use of blood cell preservation with transport media in 

bovine whole blood samples, this study’s objective was to analyze the cell preservation 

capabilities of the media with regards to lifespan of mononuclear cells and stimulation of 

IFN-γ non-specifically. Our results show that cell preservation with a transport medium 

allowed for extended cell viability up to eight days post-collection, with optimum cell 

preservation effects at five days post-collection. Therefore, a benefit to incorporating a 

cell transport medium in whole blood samples was observed, which would subsequently 

enhance the potential use of IFN-γ assays. The benefits are not exclusive to Johne’s 

disease, but extend to any assay that requires whole blood, cell-based diagnostics. 
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Table 6.1: Interferon gamma release analysis model estimates and P-values of the 

predictors for treatment (TX), preservation (TM), and day; the two- and three-way 

interactions; and the variances for all random effects on the log-transformed sample to 

positive ratio outcome.  

 

Factor or Effect Range of LSM
a
 or Estimate P-value 

  TM = 0 TM = 1  

TX PBS (control) 0
b 

0 <0.0001
c 

 Pokeweed 2.1519-5.6697 2.7792-4.6615  

 Concanavalin A 2.0956-3.5527 2.7380-3.6065  

 Concanavalin A 

+ Interleukin-12 

1.8612-3.5215 2.8275-3.6958  

 Interleukin-12 2.0731-2.3551 2.2055-2.3654  

TM   0.0385 

Day   <0.0001 

Interaction tx*tm  0.0003 

 tm*day  0.0099 

 tx*day  <0.0001 

 tx*tm*day  0.0048 

Variance Between cow 0.1157 (30.3%
d
)  

 Between day 0.0151 (4.0%)  

 Between TM 0.0678 (17.8%)  

 Residual  0.1830 (47.9%)  
 

a 
Estimates for treatments presented as a range of least squares means (LSM) over time. 

Individual estimates for preservation and day are not presented, as both factors are 

involved in the interaction with treatments.  
b 

ELISA results (n=60) for all the control treatments over time in both preserved and 

unpreserved samples were consistently zero and therefore not included in this model.  
c 
P-value for complete treatment factor 

d 
Proportion of total unexplained variance 
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Table 6.2: Change in sample to positive ratios of interferon gamma production by using 

a stimulant (pokeweed mitogen, PWM; concanavalin A, ConA; or interleukin-12 p40 

potentiated ConA, ConA + IL-12 p40; or IL-12 p40 alone) versus no stimulation 

(phosphate buffered saline) over time (days), for white blood cells unpreserved or 

preserved with a transport medium (SCSR-T™; NonInvasive Technologies, Maryland) 

supplemented in whole blood samples from ten healthy cows. 

 

 Blood Alone Blood with Transport Medium 

 Day Day 

 1 5 8 1 5 8 

PWM 265.2
a 
(6

c
) 

[98.4-432.2]
b 

 

23.0
a
 (9) 

[6.4-39.5] 

{8.7}
d 

-1.4 (9) 

[-7.1-4.4] 

{-0.5} 

95.8
a 
(10) 

[44.3-147.3] 

 

19.9
a
 (10) 

[5.4-34.4] 

{20.8} 

6.1 (10) 

[-2.1-14.3] 

{6.4} 

ConA 24.9 (10) 

[8.2-41.6]
 a
 

 

6.9 (9) 

[-2.0-15.8] 

{27.7} 

-1.8 (9) 

[-7.4-3.7] 

{-7.3} 

26.8
a
 (10) 

[9.2-44.5] 

 

15.9
 a
 (10) 

[3.2-28.6] 

{59.3} 

5.5 (10) 

[-2.5-13.4] 

{20.3} 

ConA             

+ 

IL-12 

p40 

23.8
a
 (10) 

[7.6-40.1] 

 

6.5 (9) 

[-2.2-15.2] 

{27.4} 

-3.6 (8) 

[-8.9-1.6] 

{-15.3} 

30.3
a
 (10) 

[11.0-49.6] 

 

13.5
a
 (10) 

[1.9-25.2] 

{44.8} 

6.9 (10) 

[-1.6-15.4] 

{22.8} 

IL-12 

p40 

-2.0 (10) 

[-7.4-3.3] 

-0.4 (9) 

[-6.4-5.5] 

0.4 (8) 

[-6.1-6.9] 

-0.9 (10) 

[-6.6-4.8] 

0.1 (10) 

[-6.3-6.5] 

0.6 (10) 

[-5.5-6.8] 

 

a 
Significantly different (P < 0.01) sample to positive ratio compared to no stimulation 

(phosphate buffered saline) as determined by Bonferroni corrections of P-values for 

multiple comparisons. 
b 

95% confidence interval 
c
 Total number of observations 

d
 Proportion (%) of the contrast outcome (difference) in sample to positive ratio values 

by using a stimulant (pokeweed mitogen, PWM; concanavalin A, ConA; or interleukin-

12 p40 potentiated ConA, ConA + IL-12 p40) over no stimulation (phosphate buffered 

saline) on day 5 or day 8 as compared to the results on day 1. 
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Figure 6.1: Predicted sample to positive ratios (with 95% confidence intervals) of 

interferon gamma production through stimulation with pokeweed mitogen over time 

(days), for whole blood samples, either unpreserved or preserved with a transport 

medium (SCSR-T, NonInvasive Technologies), that were collected from ten healthy 

cows. 
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Figure 6.2: Predicted sample to positive ratios (with 95% confidence intervals) of 

interferon gamma production through stimulation with concanavalin A or interleukin-12 

potentiated-concanavalin A over time (days), for whole blood samples, either 

unpreserved or preserved with a transport medium (SCSR-T, NonInvasive 

Technologies), that were collected from ten healthy cows. 
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Figure 6.3: Predicted average proportion of mononuclear cell viability (with 95% 

confidence intervals) over time (days), for whole blood samples, either unpreserved or 

preserved with a transport medium (SCSR-T, NonInvasive Technologies), that were 

collected from ten healthy cows. 
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CHAPTER 7. SUMMARIZING CONCLUSIONS 

  

Paratuberculosis, or Johne’s disease, is a serious production-limiting disease of 

dairy cattle (Lombard et al., 2005) worldwide (Collins, 2003; Singh et al., 2013) that is 

difficult to diagnose due to the imperfect assays at our disposal (Nielsen and Toft, 2008; 

Whitlock, 2009). Because there is no treatment or vaccine available for dairy cows to 

cure or prevent infection with the causative organism Mycobacterium avium subsp. 

paratuberculosis (MAP) (Whitlock, 2010), adequate diagnostic tests become essential to 

implement the Johne’s control and management programs necessary to minimize the 

effect of the disease within a herd (Whitlock, 2010; Garry, 2011). Furthermore, rising 

concerns about milk as a MAP transmission mode to humans, and subsequent 

hypothesized zoonotic risks for Crohn’s disease (Herman-Taylor and Bull, 2002; Gill et 

al., 2011; Chiodini et al., 2012; Serraino et al., 2014), highlight the need for more 

effective diagnostic tests, particularly for milk samples. Unreliable test results, due to 

variation with the commonly used pathogen and antibody detection methods (culture, 

real-time polymerase chain reaction (qPCR), and enzyme linked immunosorbent assay 

(ELISA)) for paratuberculosis (Appendix A shows the monthly variation observed in 

our data), can lead to producer nonparticipation in Johne’s control programs. 

Consequently, being able to identify patterns in MAP shedding and factors influencing 

MAP detection are important to implementing effective management and control 

programs in a cost- and time-efficient manner for producers. 
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 The ability to detect MAP-shedding was a common facet to the majority of this 

research. The target condition for Chapters 2 to 4 was a MAP-infectious cow, or a cow 

with detectable shedding (Nielsen and Toft, 2008). Chapter 2 focused on fecal shedding 

of MAP, Chapter 3 on milk and colostrum shedding of MAP, and Chapter 4 on detecting 

antibodies to MAP in milk samples. For the remaining chapters, the focus shifted to 

developing novel methods of early MAP detection for the benefit of identifying MAP-

infected and MAP-infectious cows as early as possible in order to gain the maximum 

benefit from control and management programs. Therefore, the individual cows 

identified to contribute to the sampling data for this analysis were purposively selected 

as known to be shedding MAP in their feces, as consistently test-negative on all previous 

testing from test-positive herds, or as healthy from test-negative herds.  

 

 

7.1 Patterns in Detecting MAP Shedding: Feces 

  

The focus for Chapter 2 was to assess the detection ability of three commonly 

used fecal pathogen detection methods (solid culture, broth culture, and qPCR) and 

determine the effect of time (season and lactation stage) on detectable MAP shedding 

over the course of one year of monthly sampling from 51 MAP-infectious cows. Of the 

three assays evaluated, qPCR had superior sensitivity (Se), particularly in the dry and 

post-partum periods, although sample numbers were low for these periods. This 

contrasted with previous reports of lower qPCR Se from a study utilizing the same 

qPCR kit as employed in our research (Alinovi et al., 2009). An advantage of using 
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qPCR, particularly in known low-prevalence herds, is that the genetic detection of MAP 

can occur from both viable and nonviable bacteria and happens in the absence of 

decontamination steps that could further decrease low numbers of viable bacteria within 

a sample. In comparison, culture methods are dependent on the presence of live bacterial 

cells within the sample, and enumeration of viable cells is negatively affected by 

decontamination protocols and the presence of faster-growing competitive organisms 

(Bölske and Herthnek, 2010).  

 Although statistically significant associations between season, lactation stage and 

MAP recovery were not identified when accounting for multiple comparisons due to low 

numbers of samples in some categories, apparent patterns were observed for qPCR 

results. Additionally there was a seasonal pattern related to failure of solid culture 

decontamination methods. In general, seasons with more similar climatic temperatures 

were also more similar in qPCR detection ability, with improved Se in colder months. 

Although we did not find an association between season and culture detection of MAP, 

the association between season and qPCR MAP detection agree with other studies that 

looked at the effect of season on MAP growth in culture (Crossley et al., 2005; Norton et 

al., 2010).  

 As a benefit to control programs, the risk of environmental contamination and 

subsequent infection of calves could be indirectly calculated using qPCR cycle threshold 

(Ct) values (using the same kit) as an indicator of the degree of fecal MAP shedding in 

dams without simultaneous culture testing. Our results indicated that positive shedding 

(culture reference standard) corresponded to <35.0 Ct and heavy shedding to <29.0 Ct, 

which was similar to the results obtained by Leite et al. (2013), using the same kit.  
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7.1.1 Conclusions 

The results of Chapter 2 support the use of direct fecal qPCR as part of a Johne’s 

herd management program, particularly for known infected herds. This chapter also 

highlighted benefits to using qPCR in months where culture contamination is more 

likely. Consideration of Ct values further extends the application of qPCR within MAP 

control programs, as lower Ct values are indicative of greater MAP bacterial load in a 

cow’s feces. This allows for prioritized management of high shedding cows, and could 

ultimately increase the success of herd MAP control programs. 

 

 

7.2 Patterns in Detecting MAP Shedding: Milk and Colostrum 

 

The focus of Chapter 3 was to assess the detection of MAP in milk and 

colostrum samples using the same three assays (solid culture, broth culture, and qPCR) 

and to compare with results obtained from fecal samples. Any effects of season and 

lactation stage that could benefit improved monitoring of infection risk to calves and 

improved detection of MAP within milk samples for public health concerns were 

considered. Overall, regardless of concurrency of testing, results indicated that it was 

approximately four times more likely to detect MAP within feces than milk from the 

cows, when using the same molecular detection method, while just under half of the 

MAP detected in feces was also detected in colostrum, using qPCR. For MAP-infectious 
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cows, qPCR had the best detection ability, particularly for milk samples collected during 

summer in Atlantic Canada. 

It is possible that low numbers of bacteria in the milk or colostrum samples, or 

loss of viable cells via decontamination techniques, may have led to no growth on 

culture media and, thereby, false negatives for low-shedding animals that could still be 

detected by qPCR. Traditionally, MAP growth on cultures of milk and colostrum 

samples is difficult for a variety of reasons, but due mainly to an inherently lower MAP 

concentration in these samples (Gao et al., 2005; Pinedo et al., 2008). In addition, the 

disease stage of cows within study groups could affect the degree of bacterial shedding 

into milk or colostrum (Bradner et al., 2013). Therefore, there is a lot of variation in the 

literature regarding Se of pathogen detection methods for paratuberculosis in these 

samples (Slana et al., 2008; Gao et al., 2009; Bradner et al., 2012; Bradner et al., 2013). 

Our results were within the bounds of those reported by others, perhaps due to our 

choice of target condition. Furthermore, shedding in milk and feces may not consistently 

coincide (Gao et al., 2009), as seen in our analyses (see also Appendix A) with 

approximately one-third of the MAP detected in feces concurrently detected in milk, 

regardless of testing method. More specifically, when solely using qPCR testing, MAP 

was approximately five times more likely to be identified in feces than in milk.  

 

7.2.1 Conclusions 

 The results of Chapter 3 identify qPCR as an improved MAP identification test, 

as compared to traditional culture methods, for milk and colostrum. This chapter also 

highlighted a seasonal pattern for increased qPCR detection of MAP in milk samples 
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during summer, and an improved harmony between milk and fecal shedding in summer. 

Understanding patterns of detectable MAP shedding in milk and colostrum can reveal 

more efficient detection strategies for these samples. 

 

 

7.3 Patterns in Detecting MAP Antibodies: Milk ELISA 

 

 The focus of Chapter 4 was to assess the variation in MAP antibody detection 

using a commercial ELISA kit for milk samples over time (season and lactation stage), 

and compare results with fecal test results in MAP-infectious cows. The analysis 

performed in lower MAP prevalence herds (3% to 15%) supports reports of lower milk 

ELISA Se than standard fecal diagnostics, with a milk Se of approximately 30% and 

specificity (Sp) of 99%. In comparison, Slana et al. (2008) also found higher Sp along 

with Se ranging between 21% and 67%, using the same commercial ELISA kit on 

individual cow milk samples. Comparisons among milk or even serum ELISA studies 

for Johne’s disease can be difficult due to the range of study types, case and target 

definitions, and kit and methodology employed. For example, McKenna et al. (2005) 

observed that serum ELISA Se was approximately twice as high if estimated against a 

reference standard of positive fecal culture, versus tissue culture. As expected, our data 

analyses revealed improved milk ELISA detection ability in MAP-infectious cows with 

increased MAP shedding. 

Generally, ELISA Se should increase with each stage of disease, with increasing 

numbers of shed bacteria (Carpenter et al., 2004; Clark et al., 2008), and with increasing 
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age or parity (Toft et al., 2005). This chapter also highlighted higher milk ELISA 

numeric results in later lactation, in contrast to a study by Nielsen et al. (2002) that 

found increased ELISA Se at the beginning of lactation. Milk antibody concentration 

may be greater both in early (first and second weeks) and late (greater than 45 weeks) 

lactation than in the third to twelfth weeks of lactation (Nielsen et al., 2002; Lombard et 

al., 2006) due to colostral antibody levels, milk dilution effects, and Johne’s disease 

stage (Nielsen and Toft, 2012). In addition, our analyses found that the effect of lactation 

was affected by season, with higher results during winter months. However, the 

variation in scores was sometimes numerically small and did not necessarily cross the 

positive threshold. 

 

7.3.1 Conclusions 

The results of Chapter 4 indicate overall milk ELISA Se of 30% and Sp of 

99.3%, with increasing ELISA Se in relation to increased fecal shedding, age, or parity. 

In addition, there was a significant effect for season (winter versus summer) and 

lactation stage (increasing days in milk) on ELISA continuous results that more clearly 

explains the variation over time. Again, accurate knowledge of shedding and diagnostic 

patterns is vital for reducing MAP transmission risks and for development of improved 

diagnostic and screening protocols.  

 

 

7.4 Novel Early Detection: MAP Specific Proteins 
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 The focus of Chapter 5 was two-fold. The first focus was to determine if a novel 

ELISA method, using an antigen coating incorporating early-secreted MAP protein 

tyrosine phosphatase A (PtpA) or protein kinase G (PknG) and lipase-like proteins, 

could be used as an early ELISA detection method in bovine milk, colostrum, or serum 

samples. The earlier the infection can be diagnosed, the sooner specific, efficient control 

mechanisms can be instigated (Bannantine et al., 2004; Stabel et al., 2007). With the 

novel protein acting as antigen, the novel ELISA could potentially measure antibodies 

specific to these proteins secreted at early-stage MAP infection for subclinical detection. 

However, in many of our runs, too much variation in negative controls made for too 

much uncertainty in the validity of sample results for diagnostic purposes. A large 

portion of Chapter 5 included looking at different concentrations of antigen-protein 

coating, different dilution ratios, and different negative controls, as well as comparison 

to samples from a MAP test-negative herd. One of the primary difficulties encountered 

was the very small and slow yield from protein overexpression attempts, making 

repeated attempts of the ELISA within a short period of time and for a large number of 

samples quite difficult. There was promise for the use of PknG and lipase-like proteins, 

but further research is required.  

 The second focus for Chapter 5 was evaluating the use of these two proteins as 

MAP-specific alternatives to the commonly used, protein-purified derivative Johnin as a 

stimulation antigen in the early-use interferon gamma (IFN-γ) assay. Detection of  

IFN-γ, although not necessarily indicating infection, identifies exposure and the 

potential for transmission in the herd (Zervens et al., 2013). Due to a limited time and 

budget for this portion of the research, only a very small sample size and few repetitions 
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were available for this pilot run. Unfortunately, a lot of variation was observed in our 

results. Nevertheless, the strong response to interleukin (IL)-12 p40 potentiated 

concanavalin A (ConA) stimulation indicated that viable lymphocytes were present in 

our samples and that there were no false-negative reactors present (Stabel and Whitlock, 

2001). Interferon gamma was detected for both virulence proteins, especially when using 

IL-12 p40 potentiated PknG and PtpA. 

 

7.4.1 Conclusions 

Although the results presented in Chapter 5 are preliminary and not yet 

applicable for diagnostic test development, they indicate that PtpA or PknG and lipase-

like proteins, as early MAP virulence proteins, are detected as MAP antigens in milk, 

colostrum, and serum samples of infected cows by both ELISA and IFN-γ assays. The 

identification of highly specific antigens for MAP for either improved IFN-γ assay or an 

early-use ELISA are imperative for developing an early MAP infection identification 

test or a highly reliable early-use, decision-support assay for MAP control, in calves or 

subclinical cows.   

 

 

7.5 Novel Early Detection: Cell Viability 

 

 The focus of Chapter 6 was to assess the novel application of a human cell 

transport media in bovine whole blood samples to allow for longer sample transport 

times and, thereby, more efficient and practical utilization of blood diagnostic tests, such 
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as the early cell-mediated IFN-γ assay. Results indicated that cell preservation with a 

transport medium significantly increased mononuclear cell viability and IFN-γ response 

to IL-12 p40 potentiated ConA stimulation up to eight days post collection, with 

maximum benefit of live and healthy cells on day five, post collection.  

An alternate method of assessing cell viability in preserved whole blood samples 

was to assess mononuclear cell viability with flow cytometry, as these cells are involved 

in IFN-γ production in cell-mediated immunity (Kristensen et al., 1982). Furthermore, 

dead cells were identified separately from live cells with the addition of propidium 

iodide dye.  

 

7.5.1 Conclusions 

 The results of Chapter 6 revealed that cell preservation with the transport 

medium allowed for extended cell viability up to eight days post collection, with best 

results at five days post collection. This novel method can benefit the use of diagnostic 

assays requiring fresh whole blood samples, such as the early IFN-γ assay for 

paratuberculosis, by allowing for longer sample transit times.  

 

 

7.6 Future Research Directions 

 

 The shedding patterns, novel early-secreted MAP protein use, and cell viability 

aspects of this research all provide new information for understanding and utilizing 

common, cow-level diagnostic strategies for paratuberculosis management. Every new 
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piece of information gleaned in paratuberculosis research adds another piece to the 

puzzle of how this complex and oft-times frustrating disease can be managed, to 

decrease the serious effects it has within the dairy industry. However, every new piece 

of information also uncovers more questions for further research directions.  

 Chapters 2 to 4 identified patterns of detecting MAP shedding over time, whether 

over season or over lactation. It would be of benefit to assess these patterns over a 

several year period, with a much larger sample size in cows of various MAP stages and 

herds of different MAP prevalence. In addition to this, other important factors to analyze 

include the impact of herd management, housing, and dietary changes on MAP fecal 

shedding, especially for cows within the dry and postpartum periods of lactation that are 

at greater risk of transmitting MAP to the highly susceptible calves. It has been 

suggested that increased stress levels, such as those produced by crowding, increased 

milk production and calving, changes in feeding practices and herd management, 

changes in environment (pasture), adverse weather conditions, and poor body condition, 

may also lead to seasonal trends (Jørgensen, 1977; McKenna et al., 2004; Crossley et al., 

2005). Further investigation into the seasonal patterns of culture decontamination 

failures would also be of benefit. Literature suggests that culture decontamination 

failures may be due to diet and farm location, and are, therefore, likely to be affected by 

clustering (Whitlock et al., 1989; Whittington, 2009). Little is known about such 

possible causal factors for shedding and decontamination failure patterns, particularly 

for milk. However, this knowledge is important to enhance specific herd Johne’s disease 

control management and diagnostic protocols, and warrants further research. 
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Unfortunately, current diagnostic tests are not reliable for early diagnosis of 

subclinical cows (Kalis et al., 2003). Therefore, the use of early MAP proteins, such as 

PknG and PtpA, as specific antigens and proteins in diagnostic tests, such as ELISA and 

IFN-γ, may be a step towards developing a rapid, yet sensitive and specific, early MAP 

identification tool. Further work in analyzing these virulence proteins in not only MAP-

infectious cows but also in suspected exposed cows and calves from test-positive herds 

in comparison to test-negative herds, is required. Further research goals involve 

improvements to ELISA coating applications, including protein concentration and 

combinations, to improve sensitivity and specificity of the assay, as well as 

improvements to the IFN-γ assay using larger sample sizes and samples from heifers and 

calves.  

Since cell-mediated responses are strong during early infection, IFN-γ testing can 

be used as a support mechanism to identify gaps in paratuberculosis management 

protocols that permit MAP exposure, especially for subclinical cows and calves (Collins, 

1996; Kalis et al., 2003). Two preliminary methods evaluated in Chapter 6 to assess 

white blood cell viability over time to benefit IFN-γ testing included the nonspecific 

stimulation of IFN-γ and propidium iodide flow cytometric analysis. Further evaluation 

of these methods with MAP-specific antigens, as well as the ability of IL-12 to augment 

ConA stimulation ability, would be beneficial. Jungersen et al. (2005) recommends the 

addition of IL-12 within 20 hours of blood collection in order to aid in bolstering a 

weaker white blood cell response, and cautions that additional IFN-γ production by 

natural killer cells (Olsen et al., 2005) in younger animals could potentially elicit false 

positive results. It would be useful to further evaluate this effect over time with a larger 
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sample size to increase statistical power and decrease variability, as very little 

information is available in the Johne’s literature, aside from IL-12’s co-stimulatory 

effect with specific mitogens (Price et al., 2007; Mikkelsen et al., 2009; Plain et al., 

2012). Larger sample sizes can also increase statistical power in evaluating causes of 

variability in results obtained. Some factors which can result in variability in 

mononuclear cell viability and stimulation assay results among individual cows include 

cow-level, environmental, and laboratory conditions (Kristensen et al., 1982). This 

knowledge can further improve the efficient use of this assay for paratuberculosis 

management and control programs. 
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