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Abstract 

This paper addresses the economic impacts of growth variability on market timing decisions in 
an all-in, all-out production system.  Marketing decisions based on the pen average are 
determined to be different than those based on the entire distribution of output levels. A case 
study data set of 350 swine provides verification of our theoretical construct. 
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Introduction 
 

The notion that the output from a production process can vary is not a new one.  This is 

especially true as it applies to agricultural production where numerous factors such as weather 

and genetics jointly determine the final outcome.  Yield variations are especially pertinent in the 

livestock industry where we typically see entire pens of animals marketed at one time based on 

the average size in the pen.  Ideally, to be entirely confident about these marketing decisions, the 

entire range of the data should be understood (Pringle, 2000).  Averages mask this information.  

Information that might return more than it costs to collect.    

Previous research on the optimal slaughter weight of livestock has focused on feeding 

strategies, genetics, and pricing systems.  For instance, it has been shown that there are higher 

profits per hog for leaner gilts relative to the fatter barrows and that the gilts pay more marketed 

through a component pricing system while the barrows pay more in a live weight pricing system 

(Boland, Preckel, and Schinckel, 1993).  Other studies have shown that feed prices and animal 

replacement costs are important in determining the optimal market weight (Chavas, Kliebenstein, 

and Crenshaw, 1985), have examined how producers might modify their feeding decisions to 

best respond to changes in input and output prices (Crabtree, 1977), and used gain isoquants to 

establish decision rules for optimal rations through various growing phases (Heady, Sonka, and 

Dahm, 1976). 

In general, past research has focused on establishing decision rules based on a 

representative animal from the group.   This may be appropriate in industries like poultry where 

variability has been reduced to minimal levels in recent years.  However, these same decision 

rules may be sub-optimal for heterogeneous animals such as cattle, where there are frequent calls 

to improve quality and consistency (Smith et al. 1995 and NCBA).   Grid marketing and 
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complicated sorting systems (i.e. Brethour, 1989) that use ultrasound to identify individual 

animal traits show that the beef industry understands that economic losses can occur when pens 

are sold based on average animal traits.  

The objective of the present paper is to present a model that accounts for the distribution 

of the animals in the market timing decision.  For example, when a pen is marketed, variability in 

animal growth results in some animals being over-finished, while others have not yet reached 

their full economic potential.  The impact of this distribution on the optimality conditions is 

explored through a thorough analysis of the marginal curves resulting from the production 

process.   

Swine production provides the application focus of the present paper but the methods 

extend to other species.  By choosing swine as our application focus, we are able to utilize 

extensive data sets available from university researchers to test our model.  However, as it turns 

out, the market timing for swine within their production cycle places limits on the economic 

value associated with a full account of the output distribution.  The value of our model is not so 

much in its application to the swine industry as presented in the present paper as it is in the 

theoretical construct itself.  Specifically, the notion that decreasing marginal returns result in a 

situation where the average output level is not the basis from which to compute the average 

marginal value product for a group of animals.  A model accounting for the entire distribution of 

output levels provides a more accurate assessment of the marginal value associated with 

continuing to feed a pen of animals.  In doing so, this may lead to situations where market timing 

decisions based on the average output level are significantly less than optimal. 

This paper extends previous research in two ways.  First, whereas previous research has 

focused on decision rules as they pertain to a representative animal for a given group, we are 
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considering the entire distribution of animals.  Therefore, the decision rules developed in this 

paper are a better representation for the full economic potential of all-in, all-out pen marketing 

practices.  Second, by developing this model, we present a framework to explore the impact of 

production variability on any production situation characterized by a simultaneous termination of 

the production process across multiple producing units.  In doing so, we make it possible to 

better assess the impact of practices such as tightening the genetic line or employing a 

sophisticated sorting regime on the potential profits of an all-in, all-out production system. 

Theoretical Model 
 

The first step in developing the theoretical model is the determination of an appropriate 

production function.  The use of a Gompertz sigmoidal curve to describe potential growth in 

swine has proved useful (Whittemore, p. 56).  The curve to give weight Wt at time t is given by 

kt
be

t AeW
−

−= where A is the upper asymptotic weight, k is a growth constant, and b is a time 

scale parameter.  However, Parks (p. 35) points out that this form makes the determinations of A 

and k biased.  Therefore, we follow the suggestion of Parks and use the following modification 

of the Gompertz function as a model for potential growth. 

 
kte

o
t A

W
AW

−








=  (1) 

where oW  is defined to be the initial weight and t is defined to be the time that has elapsed since 

the initial weight was observed.  Then, as ∞→t , AWt →  and at 0=t , ot WW = .  The 

parameter k > 0 serves as a shape parameter that influences the slope, curvature, and point of 

inflection of the sigmoidal curve. 
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Given output as a function of time as described in equation (1), we can then derive the 

marginal physical product with respect to time as a function of time 
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or as a function of weight 
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Note that for all ∞<t , we have AWt <<0 .  Therefore, the MPP is always positive.  

Also, the second derivative 
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Therefore, the production function (1) is characterized by positive but diminishing marginal 

returns with respect to time whenever relationship (4) holds. 

Furthermore, to analyze the concavity of the MPP curve, we calculate 
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Therefore, under the assumption of a constant output price wP , the marginal value product curve 

given by 

 ( ) ( ) 





⋅⋅⋅−=⋅=

A
WWPkWPW t

twtwt lnMPPMVP  (6) 

is concave over the weight regions indicated by relationship (5) and convex otherwise. 

Jensen’s Inequality 

 To maximize profits from the production of a single animal, we simply feed the animal 

until the marginal value product equals the marginal cost.  Let the unit of time t be days and start 

with a simplified assumption that the marginal cost is represented by a constant δ  that captures 

the daily cost of feeding the animal.  Since Ostwald (1883), physicists and chemists have been 

studying differential equations of the type in equation (3) (Parks).  That is, the rate of change in 

output W with respect to the independent variable t is uniquely related to the value of W at that t.  

Nelder (1962) was among those to argue that this is more likely to lead to natural laws of nature 

than differential equations of the form expressed in equation (2).  The argument is that more 

fundamental information can be gained by comparing marginal products at the same value of 

output W than at the same value of input t.  We adopt this concept in using equation (3) together 

with a constant output price wP  to produce figure 1 where the marginal value product is 

expressed as a function of weight. 
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 For a single animal with the marginal curves depicted in figure 1, the profit maximizing 

weight to terminate production is represented by W* where MVP=MC.  Now, assume there are 

two animals in a pen that are to be marketed together.  Let their weights be represented by 1W  

and 2W  with ( ) 2* 21 WWW += .  By Jensen’s Inequality (Mittlehammer, p. 120), we know that 

the average of the marginal value products ( )aMVP  will be less than the marginal value product 

of the average weight ( )( )δ=*MVP W  over any concave region of the marginal value product 

curve.  In the case of maximizing profits for the pen marketed together, it is the average of the 

marginal value products that we wish to equate to the constant δ  representing the average of the 

marginal costs.  Therefore, as figure 1 indicates, with two animals in the pen, profits are 

maximized by shifting the market weight to the left.  The result is a lower market weight for each 

animal ( ′
1W  and ′

2W , respectively) and a lower average weight W**. 

Figure 1
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The magnitude of the shift and its subsequent effect on market timing decisions will be 

influenced by two things, the curvature of the marginal value product curve and the distribution 

of the animal weights. In (5), we determined that, under the assumption of a constant output 

price, the MVP curve (6) would be concave when the weight is between 0.0729A and 0.6825A.  

Whittemore (p. 6) points out that, “prime meat is found from pigs slaughtered between 30% and 

60% of mature size.”  One can conclude that, in the case of swine, it is likely that the MVP curve 

will be in the latter stages of concavity around the profit maximizing market weight. 

In terms of the effect of the distribution, we can expect all symmetric distributions lying 

within the concave region to behave similar to the two animals depicted in figure 1.  Obviously, 

the larger the standard deviation of the distribution, the larger the difference between δ and 

aMVP .  Thus, the degree of dispersion will affect the magnitude of the shift from W* to W**.  If 

the distribution is asymmetric, we can expect W* to lie closer to either 1W  or 2W  where 1W  and 

2W  represent the minimum and maximum weights, respectively, in the distribution.  Thus, an 

asymmetric distribution will likely decrease the difference between δ and aMVP .  If the 

distribution is not contained within the concave region of the MVP curve, then we can expect to 

see a further decrease in the difference between δ and aMVP  with the possibility existing that 

δ could be less than aMVP . 

Increasing Marginal Costs 

 With regards to marginal cost, we have limited ourselves to estimating the daily cost of 

feed.  In figure 1, we naively assumed this constant at δ.  This served its purpose as a simplifying 

assumption in the above exposition but, in reality, the daily cost of feeding an animal grows with 

the size of the animal.  One of the “laws of animal science” is the long held belief that to 
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maintain body weight, animals should be fed in proportion to their “metabolic” body size 75.0W  

(Parks; Kleiber).  Therefore, a function of the form 75.0aWF =  seems appropriate where F is 

daily feed intake, W is the weight of the animal, and a is some constant. 

Whittemore (p. 589) points out that most empirical estimates of feed intakes of pigs of 

various weights involve pigs growing positively.  He suggests a value for a between 0.09 and 

0.11 when the weight units are measured in kilograms and the pigs are being fed under 

commercial conditions.  Adopting the lower bound and converting to English units leaves us 

with a naive but practical formula  

 75.020.0 WF =  (7) 

to represent pounds of daily feed intake, F, as a function of weight, W.  If we assume a constant 

positive feed price fP  per pound of feed, then the marginal cost with respect to time, 

representing the cost of feeding the animal another day, can be written as a function of weight 

 ( ) 75.020.0MC tt WPFPW ff ⋅⋅=⋅= . (8) 

 Examining the characteristics of the marginal cost curve, we first note the obvious that 

(8) is positive for all positive values of tW .  Second, we note that the marginal cost with respect 

to time is monotonically increasing since 
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for all AWt <<0 .  Finally, we analyze the concavity of the marginal cost curve by calculating 
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which is positive when  
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−
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 Therefore, the marginal cost curve is convex whenever relationship (9) holds and 

concave otherwise.  Applying Whittemore’s observation from above, it is then likely that the 

marginal cost curve will be concave over the weight regions in which marketing of swine occurs.  

Jensen’s Inequality then presents us with a situation where we can expect the average of the 

marginal costs to be less than the marginal cost of the average. 

 Figure 2 depicts our situation with two animals weighing 1W  and 2W , respectively.  With 

both the MC and MVP curves being concave over the applicable region, we can expect to have a 

situation where ( )*MVP WMVPa <  and ( )*MC WMCa <  where  

( ) ( )21 MVP5.0MVP5.0 WWMVPa +=  

and 

( ) ( )21 MC5.0MC5.0 WWMCa += . 

The net effect this has on the marginal profit will be determined by the relative curvature of the 

two curves over the applicable region. 
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Figure 2
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Intuitively, we might expect the situation as it is depicted in figure 2 where the curvature 

of the MVP curve is more pronounced than that for the MC curve.  Then, the average marginal 

profit at W*,  

 aaa MCMVP −=π  (10) 

would be less than the marginal profit of the average,  

 ( ) ( ) ( )*MC*MVP* WWW −=π . (11) 

This would lead us to the conclusion that the average marginal profit would reach zero prior the 

weight W at which the marginal profit of the average is zero.  As in the case of constant marginal 

costs explored earlier, we can expect profits for this pen of two animals with increasing marginal 

costs to be maximized at an average market weight somewhere to the left of W.  However, the 

counter balancing effect of a concave marginal cost curve will make that shift less pronounced 

than the shift from W* to W** indicated in figure 1. 
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Empirical Application 

A panel data set consisting of twelve weight observations individually identified for 350 

hogs every 1-3 weeks from 14 days of age to 171 days of age was obtained from Purdue 

University.  The swine in the data set are all gilts taking part in a Purdue University study on 

antibiotic treatments.  Two different genotypes are represented in the data and the pigs are 

divided into 32 pens of approximately 10-12 pigs per pen.  At any point in time, each pen is 

receiving the same ration fed ad libitum.  Exactly half of the animals are given an antibiotic 

treatment.  However, the selection of the treatment animals is done by random draw at the 

beginning of the trial and again at the beginning of the finishing phase.  Therefore, the animals 

fall into one of four categories concerning antibiotic treatments:  (1) treatment in both the 

nursery and finishing phase, (2) treatment in the nursery and no treatment in finishing, (3) no 

treatment in the nursery and treatment in finishing, or (4) no treatment in either the nursery or 

finishing. 

The data set is first analyzed as if one growth path existed for the entire set of 350 hogs.  

Our data set was plagued by a common problem in animal growth modeling.  The fastest 

growing pigs were marketed prior to the twelfth weight observation resulting in a significant 

amount of missing data.  Including all twelve observations to estimate our model parameters 

would downwardly bias the peak of the sigmoidal growth curve (Craig and Schinkel).  

Therefore, the group average from observation twelve was not used in the growth curve 

estimation. 

Using the mean values for the entire group at each of the first eleven observations, we 

fitted a Gompertz growth curve (1) to the data.  This resulted in the model  
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as a representation of the growth path of the pen average.  The fitted curve from equation (1)' is 

graphed along with the actual data of mean weights in figure 3. 

Figure 3
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The growth curve parameters A = 370 and k = 0.0148 resulting from the estimation of 

(1)', combine to yield the marginal value product and marginal cost equations 

 ( ) 





⋅⋅−=

370
ln006512.0MVP t

tt
WWW  (6)' 

 ( ) 75.0012.0MC tt WW ⋅=  (8)' 

where the output price is assumed constant at wP = $0.44 per pound and the feed cost is assumed 

constant at fP = $0.06 per pound.  These are graphed in figure 4.  We can solve numerically for 
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their point of intersection at W = 230.58 which represents the profit maximizing market weight 

for a single average animal.  This corresponds to t = 132.96 or approximately 147 days of age. 

Figure 4
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 Our data set contains an observation of the actual weights at 146 days of age.  A Chi-

square analysis provides strong evidence that we cannot reject the null hypothesis that these 

weights are normally distributed (figure 5).  Analysis of weight data at 132 days of age and 153 

days of age provided similar evidence of normally distributed weights (p-values of 0.903 and 

0.174, respectively).  Therefore, we will optimize under the assumption that the animal weights 

are normally distributed with a mean weight of tW  determined by model equation (1)' and a 

standard deviation of 21.4. 
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Figure 5
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 Profit maximization occurs when the average marginal profit, aaa MCMVP −=π , is 

equal to zero.  In other words, the optimization problem is to determine the mean weight tW  

such that 

 ( ) ( ) 0,N =⋅= ∫
=

=

AW

WW
ta

o

dWWWW σππ  (10)′ 

where ( )σ,N tWW  is a normal probability distribution of W with a mean of tW  and a standard 

deviation of 4.21=σ .  Dillon and Anderson (p. 142) point out that only if the probability 

distribution is of simple form, such as discrete or triangular, is an algebraic expression such as 

(10)′ conveniently appraised.  We were able to appraise it using the symbolic computational 

package called Maple and numerically find the tW  that made equation (10)′  hold.  However, we 

found it easier to analysis and conduct a sensitivity analysis on our results by converting the 

normal distribution in (10)′  into a discrete distribution in an Excel spreadsheet.  The results were 

identical, to three decimal places, to those obtained in Maple.  The details of this conversion are 
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contained in Appendix A and the reader should assume that all results reported here are arrived 

at using the Premium Solver for Excel. 

Results 

Our results indicate that the optimum mean weight is indeed less than the 230.58 lbs. at 

which the marginal value product curve intersects the marginal cost curve.  Figure 4 shows the 

implied shift to the left from a mean weight of 230.58 to a mean weight of 229.56 lbs. that is 

necessary to optimize profits for this group of 350 swine sold as one unit.  We calculate 

MVP(230.58) = MC(230.58) = 0.7101, 7035.0=aMVP , and 7094.0=aMC  dollars per day at 

the point of intersection.  The relationship, 

 ( ) ( )58.230MC58.230MVP =<< aa MCMVP  (12) 

indicates the concavity of both marginal curves with the marginal value product curve slightly 

more concave than the marginal cost curve.  In fact, the closeness of aMC  to the value of 

MC(230.58) indicates that the marginal cost curve is nearly linear. Most importantly, however, 

relationship (12) indicates the nonoptimality of feeding to a mean weight of 230.58 lbs.  The fact 

that, at a mean weight of 230.58 lbs., we have aa MCMVP <  indicates that animals have been 

fed past the point of profit maximization.  How far past is determined by solving equation (10)′ 

for the optimum mean weight tW . 

When we solve equation (10)′, we determine an optimum mean weight of 229.56 lbs.  

This produces the calculated values 7070.0== aa MCMVP , ( ) 7077.056.229MC = , and  

( ) 7136.056.229MVP = .  Again, this indicates the relative concavity of the two curves.  

However, it also displays the difference between the actual marginal profit, 0=aπ , and the 
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perceived marginal profit, ( ) 0059.07077.07136.056.229 =−=π , indicated by the average 

animal. 

The final task is to determine what difference this approximately one pound difference in 

mean weight makes in the market timing decision.  Plugging a mean weight of 56.229=tW  into 

equation (1)′ and solving for t yields the optimal market timing of 33.132=t  days.  This 

represents an approximately seven-tenths of day difference in the market timing obtained at a 

mean weight of 230.58 lbs.  In other words, at 33.132=t  days, the marginal profit to be gained 

by feeding the pen of animals one more day is zero.  Obviously, we would not expect the seven-

tenths of a day difference between optimal market timing for the group and optimal market 

timing for the average animal to significantly impact profits.  However, one can envision where 

relaxation of some of the restrictions of this model as it pertains to swine could lead to situations 

where this gap is more significant. 

 

Sensitivity Analysis 

 Our baseline example for hogs turns out to show that market timing based on the average 

size is probably a sufficient decision rule.  However, how would the market timing change for a 

pen that is more heterogeneous such as we commonly see with cattle or with smaller operations?   

One way to represent more heterogeneity is by expanding the variance in our model.  In our hog 

example, we assumed the standard deviation was constant at 21.4.  Table 1 summarizes the 

results if we assume the standard deviation is held constant at 15, 20, 25 or 30 lbs. 

Table 1: 

Standard Deviation Optimal Mean Weight MVP a =Mc a t
15 230.076 0.7086 132.65
20 229.682 0.7075 132.41
25 229.229 0.7056 132.13
30 228.903 0.7018 131.93  
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Note that even with a standard deviation of 30 lbs., the difference in the optimal market 

timing of 93.131=t  and market timing determined by the average animal of 96.132=t  is only 

about a day.  Also, note that the change in optimal market timing as the standard deviation 

moves from 20 to 25 lbs. is greater than the change in optimal market timing as the standard 

deviation moves from 25 to 30 lbs.  This indicates the influence of the convex portion of the 

marginal value product curve as more of the weight distribution moves beyond 0.68A which is 

approximately 252 lbs.  As the distribution widens, weights distributed in the convex portion of 

the curve will counter balance the influence of the weights distributed in the concave portion of 

the curve.  This offsetting effect will limit the size of the downward shift made possible by an 

expanding standard deviation. 

 

Summary and Conclusions 

This research provides useful insight into the optimal market timing for pens of livestock.  

In the presence of decreasing marginal returns, the marginal value associated with the average 

output level is not representative of the average marginal value product for the pen.  The degree 

of this separation is dependent upon the degree of concavity in the marginal value product curve 

and the degree of dispersion associated with the distribution of output levels existing in the pen.  

This separation may be partially offset by an analogous concavity in the marginal cost curve 

associated with the decreasing marginal increase in the cost of feeding a growing animal.  The 

net effect can be expected to be such that the optimal market time for the pen taken as a whole 

arrives prior to the optimal market time for the average sized animal in the pen. 

Our empirical application to swine verified our theoretical construct but provided an 

insignificant difference in the optimal market timing.  Therefore, in the case of the swine 
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industry, one can conclude that marketing groups of hogs based on the group average appears to 

be an economically sound technique. 

The insignificance of the differential in market timing for our baseline case study data is 

not totally unexpected.  The swine industry has homogenized the genetics to the point that few 

distinguishable breeds exist in the feeding sector.  Therefore, one would expect the average pig 

to be very representative of the group.  Furthermore, the timing of the optimum market weight 

within the growth cycle of a pig is such that the concavity of the marginal curves is minimal.  

However, the theoretical construct of our model appears to be sound.  Future research applying 

the principals of our model to more diverse production populations may likely yield significant 

insights into market timing decisions. 

Appendix A 

 The normal distribution in equation (10)′ was converted into discrete form by calculating 

( ) ( )∫
+=

−=

=
5.0

5.0
,N,N

WW

WW
ttw dWWWW σσ  

for oWW =  to A.  Then the average of the marginal value products and marginal costs can be 

calculated as  

( ) ( ) ( )∑
=

=
⋅=
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twta

o
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with the marginal profit 

( ) ( ) ( )tatata WMCWMVPW −=π . 
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