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Abstract

We discuss how to measure allocative efficiency without presum-
ing technical efficiency. This is relevant when it is easier to introduce
reallocations than improvements of technical efficiency. We compare
the approach to the traditional one of assuming technical efficiency
before measuring allocative efficiency. In particular, we develop nec-
essary and sufficient conditions on the technology to ensure consistent
measures and we give dual organizational interpretations of the ap-
proaches.
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1 Introduction

In the production economic literature, the overall inefficiency of a production
plan is usually decomposed into technical and allocative efficiency in the
following manner: First, the plan is projected onto the efficient frontier and
some measure of the gains from moving from the original to the projected
plan is called the technical efficiency. Next, it is determined which plan is
optimal with the given prices and the gains from moving from the projected
to the optimal plan is called allocative efficiency. One can say that allocative
inefficiency is treated as the residual when evaluating the overall performance
- first it is determined what can be explained by technical inefficiency and the
rest is called allocative inefficiency. The usual justifications for this approach
is that the rate of substitution between the production factors is only well-
defined at the frontier.

We believe however that it is relevant to consider the other order of decom-
position - i.e. to first evaluate the allocative efficiency and next the technical
efficiency. In particular it is relevant to examine how such a decomposition
could be undertaken and when the two approaches lead to similar results.

First, from a conceptual point of view, we suggest that the interpreta-
tions associated with the notions of technical and allocative efficiency lack
a theoretical basis if the size of the effects are dependent of the order of
decomposition. In a hierarchical organization composed of several produc-
tion units, for example, technical inefficiency is interpreted as what could be
gained by intra-unit changes and allocative efficiency is interpreted as what
can be gained by inter-unit changes. Yet if the latter presumes the former, the
two concepts are dependent and not well-defined on their own. In particular,
if we change our measure of technical efficiency, say because certain reduc-
tions in the resource use may be more natural to consider given to the power
structure in the organization, we would also change the allocative efficiency.
This means that we can substitute between what we assign to technical and
allocative problems which in turn make the interpretations unclear. From a
theoretical perspective therefore it is interesting to determine under which
technological assumptions the decomposition is unique.

Secondly, from an organizational point of view, we suggest that the two
orders of calculations are both equally natural. We show that the tradi-
tional decomposition can be thought of in terms of an organization ”eating
input slacks” while the reversed decomposition we suggest corresponds to the
organization ”consuming output slack”.
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Thirdly, from a managerial point of view, it is relevant to determine the
allocative efficiency without presuming technical efficiency since it may be
relatively easy to reallocate resources within a hierarchy or a market and
relatively hard to actually change the production procedures (including the
culture, power configuration, incentive structure etc.) used in the individual
production units. We therefore need ways to estimate the potential gains
from the former without presuming that the latter has already been accom-
plished. Actually, since most economic productivity studies are relatively
aggregate and treat the production units more or less like black boxes, it
seems more appropriate in such studies to discuss what can be accomplished
by reallocating resources between the units than to examine what can be
accomplished by changes inside the units. It seems that latter is the area of
organizational specialist while the former is the area of economist in general.

This paper is organized as follows. In Section 2, we formalize some key
concepts about the technology. In Section 3, we discuss a general approach to
the estimation of allocative efficiency without presuming technical efficiency.
Some theoretical results on the consistency of the approach under different
technological assumptions are provided in Section 4. Organizational inter-
pretations are emphasized in Section 5, and final remarks are given in Section
6.

2 Technology

We consider the case where a production units has used inputs x ∈ Rp
+ to

produce outputs y ∈ Rq
+. The technology T is given by

T = {(x, y) ∈ Rp
+ ×Rq

+| x can produce y}

and assumed to satisfy the following standard assumptions, cf. e.g. Färe and
Primont(1995):

• T is closed

• Inputs and outputs are freely disposable: (x, y) ∈ T, x′ ≥ x, y′ ≤ y ⇒
(x′, y′) ∈ T

• T is convex

• {y|(x, y) ∈ T} is bounded for each x ∈ Rp
+.
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Classical measures of the distance between the production plan (x, y) and
the frontier of T is given by Shephard’s input and output distance functions

Di(y, x) = sup
λ
{λ > 0|(x/λ, y) ∈ T}

Do(x, y) = inf
θ
{θ > 0|(x, y/θ) ∈ T}

which measures the largest radial contraction of the input vector and the
largest radial expansion of the output vector that are feasible in T , cf. Shep-
ard(1953,70). Note that each of these functions give a complete characteri-
zation of the technology T since

Di(y, x) ≥ 1 ⇔ (x, y) ∈ T
Do(x, y) ≤ 1 ⇔ (x, y) ∈ T

We are going to stage most of our discussions in the input space. We note
however that a parallel discussion is possible in the output space or even in
the full input-output space.

The input requirement set L(y) is defined as the set of inputs that can
produce output y,

L(y) = {x ∈ Rp
+| (x, y) ∈ T}

and the input isoquant Isoq L(y) is the sub-set hereof where it is not possible
to save on all inputs

Isoq L(y) = {x ∈ L(y)|ε < 1 ⇒ εx /∈ L(y)}

The cost function C(y, ω) is defined as the minimal cost of producing y when
input prices are ω ∈ Rp

+

C(y, ω) = min
x

{ω · x|x ∈ L(y)}

Note that by the assumed convexity, there is a dual relationship between the
costs and the input distance function in the sense that

C(y, ω) = min
x

{
ωx

Di(y, x)

}

Di(y, x) = inf
ω

{
ωx

C(y, ω)

}

see Färe and Primont(1995,p.48).
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Two properties of the technology will ease the development of alternative
decompositions. We say that the technology T is input-homothetic if the
input sets for different output levels are ”parallel”, i.e.

L(y) = H(y) · L(1)

Equivalently this means that the cost function can be written as

C(y, ω) = H(y) · C̄(ω)

or that the input distance function equals

Di(y, x) = D̄(x)/H(y)

Similarly, we say that the technology T is input ray-homothetic if the
input sets for different output vectors with the same direction are ”parallel”

L(y) =
G(y)

G(y/||y||) · L(
y

||y||)

where || · || denote the norm in Rq
+. Equivalently this means that the cost

function can be written as

C(y, ω) =
G(y)

G(y/||y||) · C(
y

||y|| , ω)

or that the distance function equals

Di(y, x) =
G(y/||y||)

G(y)
· Di(

y

||y|| , x)

3 Efficiency

In the following, we evaluate the production plan (x, y) relative to the tech-
nology T and input prices ω. The efficiency indices therefore depends on
(x, y), T and ω. To simplify the exposition, however, we do not show this
dependence in our notation.

The overall efficiency OE of production plan (x, y) in the technology T
when input prices are ω is defined as the minimal costs of producing y relative
to the actual costs ωx, i.e.

OE =
C(y, ω)

ωx

The standard Farrell approach views the overall (in)efficiency as originat-
ing from two sources, viz.
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• technical (in)efficiency, which corresponds to a proportional reduction:
x → x/Di(y, x) and

• allocative (in)efficiency, which corresponds to the an adjustment to the
cost minimal input combination: x/Di(y, x) → x∗(y, ω) ∈ arg minx′∈L(y) ωx′

This leads to the a decomposition of the overall efficiency into allocative
efficiency AE and technical efficiency TE as follows

OE =
C(y, ω)

ωx

=
C(y, ω)

ω
(

x
Di(y,x)

) · 1

Di(y, x)

= AE · TE

We propose here to supplement this standard approach by what we will
call a reverse Farrell approach. In this we first correct for allocative efficiency
and next for technical efficiency:

• allocative (in)efficiency, which corresponds to the an adjustment of the
input to a cost minimal input combination: x → x∗(ŷ, ω) ∈ arg minx′∈L(by) ωx′

where ŷ is a reference output vector such that x ∈ Isoq L(ŷ), and

• technical (in)efficiency, which corresponds to a proportional reduction:
x∗(ŷ, ω) → x∗(ŷ, ω)/Di(y, x∗(ŷ, ω))

Taking this perspective, we get the following reversed allocative efficiency
AE ∗ and reversed technical efficiency TE ∗ measures

AE∗(ŷ) =
C(ŷ, ω)

ωx

TE∗(ŷ) =
1

Di(y, x∗(ŷ, ω))

Both approaches, the standard Farrell and the reversed Farrell decompo-
sitions, are illustrated in Figure 1 below.
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FIGURE 1 ABOUT HERE
Figure 1: Two decompositions into allocative and technical efficiency

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

In our new decomposition, there is some freedom in the choice of the
output vector at which to evaluate the allocative efficiency. So far we have
only assumed that the reference vector ŷ is such that x ∈ Isoq L(ŷ). We now

discuss this and some alternative assumptions. In general, we denote by Ŷ
a non-empty set of reasonable choices.

One possibility is to make no assumptions about ŷ except the general one
that

x ∈ IsoqL(ŷ) (A1)

There is no obvious ”best” way to choose ŷ. Indeed, this is precisely what
makes the calculation of allocative efficiency without having technical effi-
ciency difficult. Using a sensitivity or lack of information (ignorance) argu-
ment one can therefore require the reversed allocative and technical efficiency
concepts to give reasonable results for all ŷ satisfying A1.We denote this set
Ŷ (A1), i.e. Ŷ (A1) = {ŷ ∈ Rq

+|x ∈ IsoqL(ŷ)}, and use similar notation for
other such sets.

Another possibility is to assume that we can use any ŷ such that

x ∈ IsoqL(ŷ) and ŷ ≥ y (A2)

in the reversed evaluations. One way to rationalize this assumption is in
terms of the economics of organizations. One can assume that the production
unit has produced ŷ but that it have consumed ŷ− y as slack, either directly
by actually producing ŷ and eating ŷ−y or indirectly by supplying less effort
than what is needed to actually produce ŷ, cf. also Section 5.

Of course, (A2) could be refined in a number of ways by making more
precise conjectures about which of the production plans ŷ ≥ y the productive
unit has actually chosen. A natural refinement in this case is to assume that
the production unit has consumed outputs proportionally. This leads to the
Farrell selection ŷ = λ̂y, and the assumption that ŷ = λ̂y ∈ Rq

+ such that

x ∈ IsoqL(λ̂y) (A3)

Note that whichever assumption we impose on the choice of ŷ, we want
Ŷ to be non-empty. This is an existence condition.
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4 Consistency Properties

In this section, we show when the choice of comparison basis ŷ according to
the principles (A1), (A2) and (A3) lead to reversed allocative and techni-
cal efficiencies with desirable properties. We commence by discussing some
desirable consistency properties.

One requirement that is reasonable in general is the weak consistency
requirement

OE = AE∗(ŷ) · TE∗(ŷ) ∀ŷ ∈ Ŷ

This requirement says that we want our measures of technical and allocative
efficiency to give a (multiplicative) decomposition of the overall efficiency.
We note that this is a trivial requirement in the traditional Farrell approach
since there allocative efficiency is essentially defined as a residual. It is not
trivial here, however, because neither of the components are residuals.

The weak consistency requirement is a guarantee that we do not get too
peculiar results in the sense that the combined effect exceeds or fall short of
the overall efficiency OE. As such it is a mild requirement.

In particular, it does not restrain the individual effects, only their product.
Depending on the technology and the choice of the reference output vector
ŷ, there may still be lots of room for what to assign to the allocative and
technical efficiency components - i.e. to substitute between the two effects.
Also, the order of decomposition may still be important. As argued in the
introduction, such possibilities to vary the results make the interpretation
and application of the technical and allocative efficiency concepts ambiguous.
A natural refinement of the weak consistency requirement is therefore to
require that the traditional and the reversed Farrell decomposition lead to
the same measures of allocative and technical efficiency. We call this the
strong consistency requirement

AE = AE∗(ŷ) and TE = TE∗(ŷ) ∀ŷ ∈ Ŷ

With strong consistency, the measures of technical and allocative efficiency
neither depend on the order of decomposition nor involve any arbitrariness in
the substitution between them. This allows the most clear and unambiguous
interpretations of the concepts.

Although the strong consistency requirement is in general stronger than
the weak consistency requirement, we shall show below that they do in fact
impose the same regularities on the technology for reasonable choices of the
Ŷ set.
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Initially, we note that one part of the weak consistency requirement is
actually trivially. The saving potentials calculated by the reversed measures
can never exceed the actual saving potentials. We record this as a lemma.

Lemma 1 We have

OE ≤ AE∗(ŷ) · TE∗(ŷ) ∀ŷ ∈ Ŷ (A1)

Proof: As above, let x(y, ω) be a cost minimal input vector capable of
producing y when input prices are ω. We then have

AE∗(ŷ) · TE∗(ŷ) =
C(ŷ, ω)

ωx
· 1

Di(y, x∗(ŷ, ω))

=
ωx∗(ŷ, ω)/Di(y, x∗(ŷ, ω))

ωx

≥ ωx∗(y, ω)

ωx
= OE

because x∗(ŷ, ω)/Di(y, x∗(ŷ, ω)) may not be a cost minimizer for y. 2

The proof of Lemma 1 suggest that in order for the reversed Farrell mea-
sures to be weakly consistent, we basically need the cost minimizer for y and
ŷ to be proportional. Depending on the structure of Ŷ , this means that we
need some type of homothetic technology to get consistent measures. We
formalize this in the next propositions.

Proposition 2 With arbitrary choice of reference output, ŷ ∈ Ŷ (A1), the
following properties are equivalent

1. Weak consistency

∀(x, y, ω) ∈ T ×Rp
+ : OE = AE∗(ŷ) · TE∗(ŷ) ∀ŷ ∈ Ŷ (A1)

2. Strong consistency

∀(x, y, ω) ∈ T ×Rp
+ : AE = AE∗(ŷ) and TE = TE∗(ŷ) ∀ŷ ∈ Ŷ (A1)

3. T is input homothetic
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Proof: First, assume that the weak consistency requirement holds for an
arbitrary ŷ ∈ Rq

+ such that x ∈ IsoqL(ŷ). From the proof of Lemma 1, we
therefore have

x∗(y, ω) = x∗(ŷ, ω)/Di(y, x∗(ŷ, ω))

(If there are multiple cost minimizers, we can at least choose x∗(y, ω) such
that this holds). This shows that the expansion path is a ray when we move
between any y and ŷ for which there exist an x such that (x, y) ∈ T and
x ∈ Isoq(ŷ). In turn, this implies that T is input homothetic: Let y1 and
y2 be arbitrary feasible output vectors. Then, by the disposability of inputs,
there exist an x such that (x, y1) ∈ T and x ∈ Isoq(y2) or (x, y2) ∈ T and
x ∈ Isoq(y1). Either way, we get that x∗(y1, ω) and x∗(y1, ω) are proportional
and therefore that T is input homothetic.

Next assume that T is input homothetic. Then the evaluations are also
strongly consistent since

AE∗(ŷ) =
C(ŷ, ω)

ωx

=
C(ŷ, ω)Di(ŷ, x)

ωx

=
H(ŷ)C̄(ω)D̄(x)

ωxH(ŷ)

=
H(y)C̄(ω)D̄(x)

ωxH(y)

=
C(y, ω)

ωx/Di(y, x)

= AE

and

TE∗(ŷ) =
1

Di(y, x∗(ŷ, ω))

=
1

Di(y, x)

= TE

since x∗(ŷ, ω) and x both belong to L(ŷ).
Lastly, given strong consistency, weak consistency is trivial since the tra-

ditional Farrell measures gives a decomposition of OE:

OE = AE · TE
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= AE∗(ŷ) · TE∗(ŷ)

We have hereby proved (1) ⇒ (3) ⇒ (2) ⇒ (1) and therefore the desired
equivalences. 2

According to Proposition 1, we need an input homothetic technology to
ensure the consistency of the new decomposition for arbitrary choice of the
output level ŷ (with x ∈ IsoqL(ŷ)).

¿From an organizational point of view, it is easier to justify A2 than
A1. It is interesting to note therefore that restricting the choice of output
reference to ŷ ∈ Ŷ (A2) does not affect the conclusions from Proposition 1,
including the need for a homothetic technology to ensure that the reversed
evaluations are consistent. We record this as a corollary.

Corollary 3 If we restrict the reference output to exceed the actual output,
ŷ ∈ Ŷ (A2) , Proposition 1 is still valid.

Proof: As in Proposition 1, we may show that (1) ⇒ (3) ⇒ (2) ⇒ (1).
The proof of the last three implications from the proof of Proposition 1 is
still valid. To show the first implication, assume that the weak consistency
requirement holds for an arbitrary ŷ ∈ Ŷ (A2), i.e. an arbitrary ŷ ∈ Rq

+ such
that x ∈ IsoqL(ŷ) and ŷ ≥ y. From the proof of Lemma 1, we therefore have

x∗(y, ω) = x∗(ŷ, ω)/Di(y, x∗(ŷ, ω))

(If there are multiple cost minimizers, we can choose x∗(y, ω) such that this
holds). This shows that the expansion path is a ray when we move between
any y and ŷ ≥ y for which there exist an x such that (x, y) ∈ T and x ∈
Isoq(ŷ). In turn, this implies that T is input homothetic: Let namely y1

and y2 be arbitrary feasible output vectors and let x1 ∈ Isoq L(y1) and
x2 ∈ Isoq L(y2). Then, by the disposability of inputs, both x1 and x2 can
produce y = min{ y1, y2} where min{.} is the coordinate-wise minimum.
Letting x = x1 and ŷ = y1 we get

x∗(y, ω) = x∗(y1, ω)/Di(y, x∗(y1, ω))

and letting x = x2 and ŷ = y2 we get

x∗(y, ω) = x∗(y2, ω)/Di(y, x∗(y2, ω))
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Therefore the cost minimizers of arbitrary output vectors y1 and y2 are pro-
portional

x∗(y1, ω) =
Di(y, x∗(y1, ω))

Di(y, x∗(y2, ω))
· x∗(y2, ω)

which shows that T is input homothetic as desired. 2

If we refine the choice of reference vector into ŷ ∈ Ŷ (A3), i.e. we assume
that the reference vector is found by proportional expansion of the actual y,
we get the following necessary and sufficient conditions for consistency.

Proposition 4 If we restrict the reference output to be proportional to the
observed output, ŷ ∈ Ŷ (A3), the following properties are equivalent

1. Weak consistency

∀(x, y, ω) ∈ T ×Rp
+ : OE = AE∗(ŷ) · TE∗(ŷ) ∀ŷ ∈ Ŷ (A3)

2. Strong consistency

∀(x, y, ω) ∈ T ×Rp
+ : AE = AE∗(ŷ) and TE = TE∗(ŷ) ∀ŷ ∈ Ŷ (A3)

3. T is input ray-homothetic

Proof: First, assume that the weak consistency requirement holds for
(any) ŷ = λ̂y ∈ Rq

+ such that x ∈ IsoqL(λ̂y). From the proof of Lemma 1,
we therefore have

x∗(y, ω) = x∗(λ̂y, ω)/Di(y, x∗(λ̂y, ω))

(If there are multiple cost minimizers, we can choose x∗(y, ω) such that this
holds). This shows that the expansion path is a ray when we move between

any y and λ̂y for which there exist an x such that (x, y) ∈ T and x ∈ Isoq(λ̂y).
In turn, this implies that T is input ray-homothetic.

Next assume that T is input ray-homothetic. Then the evaluations are
also strongly consistent since

AE∗(ŷ) =
C(λ̂y, ω)

ωx

=

G(bλy)

G(bλy/||bλy||)C(
bλy

||bλy|| , ω)

ωx
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=

G(bλy)
G(y/||y||)C( y

||y|| , ω)

ωx

=

G(y)
G(y/||y||)C( y

||y|| , ω)

ωx G(y)

G(bλy)

=
C(y, ω)

ωxDi(bλy,x)
Di(y,x)

=
C(y, ω)

ωx/Di(y, x)

= AE

and

TE∗(ŷ) =
1

Di(y, x∗(λ̂y, ω))
=

=
1

Di(y, x)

= TE

since x∗(λ̂y, ω) and x both belong to Isoq(λ̂y) and therefore has the same
distance to Isoq(y).

Lastly, given strong consistency, weak consistency is trivial since the tra-
ditional Farrell measures gives a decomposition of OE:

OE = AE · TE

= AE∗(ŷ) · TE∗(ŷ)

We have hereby proved (1) ⇒ (3) ⇒ (2) ⇒ (1) and therefore the desired
equivalences. 2

According to Proposition 2, we need an input ray-homothetic technology
to ensure the consistency of the new decomposition if we choose λ̂(x)y (with

x ∈ IsoqL(λ̂(x)y)) as the basis for evaluating the allocative efficiency.

5 Organizational Interpretations

An important rationale for the reversed decomposition is that it may be
easier to reallocate resources than to improve technical efficiency. ¿From
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an organizational point of view, there are two obvious sources of technical
inefficiencies.

One is inadequate decision making. An inefficient production unit uses
sub-optimal decision making procedures and production practices. This is the
typical explanation found in the productivity analysis literature. It implies
that performance can be improved by learning the procedures and practices
of the efficient units.

The other possible source of inefficiency is related to the conflicts of in-
terest and asymmetric information in a decentralized organization. The in-
efficient unit may have excessive on the job consumption of resources and
it does not motivate sufficient (non-measured) effort to save on the inputs
or expand the output. This perspective has been advocated in for example
Bogetoft(1994,95,97).

Either way, the two decompositions, the original and the reversed, can be
given dual organizational interpretations. The traditional Farrell approach
involves excessive consumption of inputs or sub-optimal input handling pro-
cedures. The reversed Farrell approach involves excessive consumption of
output or sub-optimal output handling procedures. We now formalize this.

The traditional Farrell measure of allocative efficiency can be rewritten
as

AE =
C(y, ω)

ωx/Di(y, x)

= min
x′

{ ωx′

ωx/Di(y, x)
|x′ ∈ L(y)}

= min
x′

{ωx′Di(y, x)

ωx
|x′ ∈ L(y)}

= min
x”

{ωx”

ωx
|x” ∈ Di(y, x)L(y)}

One interpretation of this is that we seek to reduce the cost of producing y but
we realize that we actually need inputs in a factor Di(y, x) in excess of what is
truly needed. That is, if we suggest allocating x” to the production process,
we realize that only x”/Di(y, x) is actually strictly needed for production.
The rest

x”(1 − 1

Di(y, x)
)

is consumed as slack. Note that in this interpretation, we do not presume
that technical inefficiencies have been eliminated. Rather we assume that the

14



technical inefficiencies are on the input side and will continue at the same
general level as before.

Consider next the reversed Farrell measure of allocative efficiency. Also,
for ease of comparison, let us consider the case where the reference output is
chosen as ŷ = λ̂y. In this case

AE∗ =
C(y/Do(x, y), ω)

ωx

= min
x′

{ωx′

ωx
|x′ ∈ L(y/Do(x, y))}

One interpretation of this is that we seek to reduce the cost of producing y
but we realize that to actually get y, we need to produce y/Do(x, y). The
excess output

y(
1

Do(x, y)
− 1)

is consumed as slack. Again, we do not presume that technical inefficiencies
have been eliminated. Rather, we assume that the technical inefficiencies are
on the output side and continue at the same general level as before.

We have shown in Proposition 2 that in order for the two perspectives to
give consistent values, we need the technology to be input ray-homothetic. In
other cases, the reversed measures do not fully capture the saving potentials.
Indeed, we know from Lemma 1 that there will typically be some possibility
to gain from reallocation after the second step elimination of technical ineffi-
ciency. That is, if we do not restrict the technology and if we initially seek to
improve performance by a reallocation and next by a (Farrell) improvement
of technical efficiency, we may be left with some ”second order” allocative
inefficiency

AAE∗(ŷ) =
ωx∗(y, ω)

ωx∗(ŷ, ω)/Di(y, x∗(ŷ, ω))

resulting from the fact that a proportional (Farrell) reduction in x∗(ŷ, ω) may
not be the cost minimizer for the production of y, cf. the proof of Lemma 1.
This leads to a three factor decomposition of the overall efficiency

OE = AE∗(ŷ) · TE∗(ŷ) · AAE∗(ŷ) ∀ŷ ∈ Ŷ

or

OE =
C(ŷ, ω)

ωx
· 1

Di(y, x∗(ŷ, ω))
· ωx∗(y, ω)

ωx∗(ŷ, ω)/Di(y, x∗(ŷ, ω))
∀ŷ ∈ Ŷ
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where the first allocative effect, AE∗, does not presume technical efficiency
and may therefore be relatively easy to generate while the latter allocative
term, AAE∗, does presume technical adjustments. In Figure 1, AAE∗ corre-
sponds to OG/OD.

6 Final Remarks

In this paper we have discussed ways of measuring allocative efficiency with-
out presuming technical efficiency. In the traditional Farrell approach, the
technical efficiency is evaluate first and the allocative efficiency next. We
introduced a reversed Farrell approach, in which the allocative efficiency is
evaluated before technical adjustments are introduced.

We identified necessary and sufficient technological regularities for the
two approaches to give consistent measures. For natural choices of the out-
put reference, we need input homothetic or at least input ray-homothetic
technologies for the two approaches to be equivalent.

We also gave dual organizational interpretations of the approaches. One
interpretation is that the traditional Farrell approach presumes consumption
of input slack when evaluating the allocative efficiency while the reversed
approach presumes consumption of output slack when the allocative gains
are evaluated.

Acknowledgments: This paper was written while Peter Bogetoft vis-
ited Department of Agricultural and Resource Economics, University of Cal-
ifornia at Davis. Financial support from The Danish Social Science Founda-
tion is appreciated.
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