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Abstract

In this paper we compare four different specifications of gravity models for inter regional freight

flow prediction. The most used specification with OLS estimation is compared with a model where

errors are assumed to be Poisson distributed and a model similar to this but with errors assumed to

be normally distributed, namely Non-linear Least Square (NLS). We also compare these with a

Feed Forward Back Propagation Neural Network. (NN) Data consists of freight flows between

Norwegian counties. The attribute describing the nodes is population and distance in kilometres is

used as a proxy for costs on transport links. Since we here only are interested in inter regional

flows intra regional flows are excluded. Results are also compared with an earlier study by

Bergkvist and Westin (1997) were also intraregional data were used. Performance measures used

here shows that OLS compared to Poisson, NLS and Neural Network specifications will produce

worse predictions. However, the question on how to compare performance is not indisputable and

of great importance since different measures can produce quite different results, not just in scale

but also in ranking. When non-linear models are used the lack of a simple easily interpretable R-

square measure as in linear regression is evident. We therefore use different measures of

performance and discuss their pros and cons.
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1. INTRODUCTION

Gravity models1 have traditionally been used to estimate flows of goods and people between

nodes in networks. Variables, functional form and estimation methods have not changed much

since those currently used produce reasonable results which are hard to improve upon without

increasing costs c.f. Haynes, K.E. and A.S. Fotheringham (1984) or Sen, A. and T.E. Smith

(1995). However, these results are far from perfect and when used as support in infrastructure

investment analysis even small errors on flow forecasts can produce costly mistakes. The need

for improved forecasting models is thus still present.

However, methods do not just differ in “pure” forecasting error for example caught by a

performance measure such as root mean square error (RMSE), they also differ in qualitative

aspects. Differences that may not be noticed unless one uses several performance measures

preferably also combined with different kind of residual plots. The type of qualitative error

may play a different role in different types of investment projects. If the method is good at

forecasting small flows but worse at large it may still be very useful when the actual link is not

so heavily used. Sometimes though one may suspect that the investment in mind may change

flows dramatically and hence brings up the need for a model that can handle non-linearities

and qualitative changes off flows in a proper way.

The availability and quality of data is also something that affects a method’s performance. In

this kind of data zero flows between some or several nodes is common and thus creates

problems for an estimation method such as OLS (values have to be logged), the distance

measure inside a node/region may also have been set to an arbitrary (e.g. average distance)

number which arises the question if using them will improve or just confuse the information

available. In Bergkvist and Westin (1997) both these problems are present and the zero flow

problem dealt with. There OLS-, non linear (NLS) – and Poisson- regression are compared

with a feed forward backpropagation neural network (NN) as a tool for forecasting freight

                                                

1 The name emanates from physichs and refers to that the attraction between bodies is related to their mass and
distance. Which also is ”true” for the Gravity models here used.
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flows in- and between Norwegian counties. There only RMSE was used to measure

performance and the neural network performed best.

Neural networks have quite recently been discovered as a useful tool in regional science and

research have concentrated on examinig the possibilities of existing neural network paradigms

in this new area. Earlier, Nijkamp et al. (1996) compared logit and NN in the case of transport

mode choice while telecommunication flows where analysed by Fischer and Sucharita (1994),

Bergkvist and Westin (1997) in their turn compare NN with other methods as a tool to

forecast road transport flows between and in Norwegian counties.

The contribution here would be to further explore the possibilities of NN and compare it with

OLS and NLS-estimation as well as with a Poisson model. We also perform an indirect

sensitivity test of results from Bergkvist and Westin (1997) since we use the same data except

for in-county flows. Moreover we compare different performance measures and evaluate their

pros and cons.

The paper is structured as follows. In section two, the gravity model and different ways to

specify and estimate it are discussed. Our data is described in section three and results are

presented in section four. Conclusions and comments are then presented in the last section.

2. ESTIMATION OF GRAVITY MODELS

The most common formulation of the gravity mode is: (c.f. Sen, A. and T.E. Smith (1995)).

( )rssrrs cDAOX λβα exp= (1)

In (1), the flow between nodes r and s is a function of the attributes of the nodes given by Or

and Ds while affinity between nodes are given by crs. Parameters to be estimated are

λβα and ,,A . For estimation purposes we will make assumptions about the error term and

how it enters in equation (1). In (2) we assume that εrs is normally distributed and E(εrs)=0.

And by this we will get NLS.
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( ) rsrssrrs cDAOX ελβα += exp (2)

In (3b) logs are taken of (3a) and we assume that ln(εrs) is normally distributed and

E(ln(εrs))=0. Thus we can use OLS to estimate the now linear model.

( ) rsrssrrs cDAOX ελβα exp= (3a)

)ln(lnlnlnln rsrssrrs cDOAX ελβα ++++= (3b)

This is, as mentioned earlier, impossible when flows (Xrs) are zero. A way to handle this

without having to add desinformation, aggregate or lose information would be to use

something like NLS or Poisson regression. Were the choice would be made upon theoretical

and empirical considerations. Both these approaches are also used since it a priori is hard to

actually tell which model that will best suit such demands since the models have to be

estimated before things such as residuals can be examined (Sen, A. and T.E. Smith (1995)). If

the dependent variable (Xrs) is assumed to be Poisson distributed we get the Poisson regression

model as specified in (4).

( )rssrrssrrs cDAOcDOXE λβα exp],,[ = (4)

One question is if the Poisson distribution gives a better performance compared to the normal

distribution assumptions in (2) and (3b).

These more traditional methods will be compared to a NN, in this case a feed forward

backpropagation neural network. In doing this beside from leaving assumptions about the

probability distribution we also leave some assumptions about the functional form of the

gravity model and say that ) , ,( rssrrs cDOfX =  and specify ) , ,( rssr cDOf  as e.g.,
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This is one structure this type of neural network can have. In Bergkvist and Westin (1997)

exactly this was used with M=2, in this paper we found that a more complex form gave better

results. The general structure can be seen in Figure 15 in Appendix. Each circle in the hidden

layers defines a neuron or processing element and contains the summation and output function
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defined in (6), in the output layer the inputs are just summed together linearly. In (6) xj is the

current output of neuron j in layer l, Ml is the number of neurons in layer l-1and wij is the

weight/parameter to the jth neuron in layer l from the ith neuron in layer l-1. The number of

hidden layers and neurons can be arbitrarily chosen but the number of hidden layers are

typically not more than one to three.
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The estimation is not as straightforward for the neural network as for the other methods. This

since there exists some free parameters which have to be chosen by the researcher. No

analytical results are available as guidance, so finding these parameters is mostly a trial-and-

error process. The weights/parameters w:s  and x:s are estimated so that the Root Mean Square

Error (RMSE) is minimised, for any given Ml. The parameters Ml and l are free to be set by

the researcher after evaluation of performance has been done, there are also parameters in the

gradient descent search algorithm such as step length which to be set by the researcher.

For a more detailed description of the feed forward back propagation NN, see e.g. Rumelhart

et al. (1986).

3. THE FREIGHT DATA

Data is from Norway and put was into a flow matrix by the Norwegian transport institute in

Oslo (T∅I). They consists of road??? freight flows in whole tons of general cargo between

nineteen Norwegian counties from the year 1988. We use population size in each region as a

measure of attraction between nodes. This should be seen as a proxy for potential demand in

the nodes with the assumption that income is evenly distributed among citizens. It is also not a

very unrealistic assumption regarding that Norway is a highly developed welfare state. It is

also reasonable to look upon size of population as production potential and hence a greater

population would induce a greater supply and increased transports from that node. This would

then give rise to two effects from population growth in the Origin node. Increasing export and
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flows as supply increases and decreasing export as internal demand increase. As cost of

transportation or friction between counties distance in kilometres is used.

Total number of observations, i.e. flows on links, are 340, which includes flows between

counties and zero flows.

Observations are randomly divided into two sets of size 115 and 225 which becomes the test

and training set respectively. We do this to be able to evaluate the performance of the different

estimators. It is of extra importance for a NN since these are able to fit themselves so good to

data, it is actually that they can use so many parameters in estimation that they totally fit or

even overfit the data. This will give poor forecasting when forecasting out of the estimation

sample and hence  we have to use a test set not previously “seen” by the NN to calibrate the

net and evaluate performance.

Table 1. Descriptive statistics of the Norwegian freight flows NN II.

Set Whole set N=340 Train set N=225 Test set N=115

Var. X O D c X O D c X O D c

Mean 35.65 218475 218475 824.56 31.22 210297 222174 830.6 44.32 234476 211238 812.75

Std.Dev 74.94 104011 104011 690.58 60.16 99389 107942 686.72 97.32 111219 95896 701

Min 0 74654 74654 41 0 74654 74654 50 0 74654 74654 41

Max 628 451099 451099 2831 432 451099 451099 2831 628 451099 451099 2777

Descriptive statistics regarding the three sets are presented in Table 1. As can be seen from

there are not very big differences between the train and test set. An indication that the random

sampling and division into two sets gave an even result.

4. RESULTS FROM ESTIMATION AND FORECASTING

The estimators are primary evaluated using the RMSE measure defined in (7). The purpose

here is however not just to arrive at one number or measure of performance why we will use
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also other measures of fit and moreover present residual plots so that more qualitative

conclusions can be drawn. Residual plots will be of two kinds, the absolute size of the residual

(e) and it’s relative size to the actual flow2. The relative residual is obviously not defined for

zero flows why these cannot be presented.

It is also interesting to see if the models capture different parts of the observations to the same
extent. It is for example possible that a model performs differently on in-sample
data than in an out-of-sample forecast. Therefore we also show residual plots for
the training sets as well for the test sets. The primary interest is however on the
out-of-sample performance why residuals for the training sets are kept in the
Appendix. Residual plots from OLS estimations in Figure 1,

Figure 2 and Figure 16 show that this estimator has the largest deviations for all sets and also

in both relative and absolute measures. This estimator also show similar performance for both

test and train set, absolute e increase with actual flow size and both set also contain negative

e:s, especially for smaller flows.

Figure 1 Residual plot for the test set with OLS estimation. Residuals versus actual flows
.
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Figure 2 Relative size of residual compared to actual flow size plotted against flow. Test
set with OLS estimation.
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The performance of the NLS estimator showed in Figure 3,  and Figure 17 exhibits a different

behaviour compared to OLS, it has the second smallest absolute deviation for the train set and

the test set. It also shows a more irregular pattern for large flows than OLS, the absolute error

does not either increase as smooth with increasing flow size as for OLS and it also exhibits

some large relative deviations for greater flows.

Figure 3 Residual plot for the test set with NLS estimation. Residuals versus actual flows
.
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Figure 4 Relative size of residual compared to actual flow size plotted against flow. Test
set with NLS estimation.
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Poisson regression in Figure 5,  and Figure 18 gives a result very close to NLS but in general a

little larger absolute and relative deviation for most observations.

Figure 5 Residual plot for the test set with a Poisson specification. Residuals versus actual
flows .
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Figure 6 Relative size of residual compared to actual flow size plotted against flow. Test
set with Poisson regression.
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The neural network performance in Figure 7,  and Figure 19 also that shows a similar

performance pattern as NLS and Poisson. The difference is mainly in magnitude, where the

neural network has the lowest visible max-deviation in all tables.

Figure 7 Residual plot for the test set with a BP-NN specification. Residuals versus actual
flows .
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Figure 8 Relative size of residual compared to actual flow size plotted against flow. Test
set with BP-NN specification.
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Besides the graphical evaluation made from the figures we also compare some different

numerical measures. But the result obtained from these are first of all dependent on estimation

method and it’s objective function. OLS, NLS and NN estimations has the same objective.

Namely to minimise the squared some of residuals (MSE) which ii the same as minimising the

Root Mean Square Error (RMSE) shown in equation (7). RMSE is also chosen to be one of

our numerical measures of evaluation. The Poisson regression has a different objective

function, here the maximum likelihood as specified in equation (8) is used, but hence not used

to evaluate other estimators.
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N
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This is of course an advantage for the estimators that uses the RMSE, which is one more

reason that other performance measures will be used as well.
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In Table 2-Table 5 results from the estimations are given.
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As mentioned before there is not only one solution for the NN, but we only present the final

result of our simulations. This is not by any means guaranteed to be the optimal solution and

should therefore only be considered as our best try.

Table 2. Root Mean Square Error (RMSE) for the different methods .

Estimator

Data set OLS NLS Poisson NN

Train set 24 18 19 29

Test set 92 53 57 47

Table 2 confirms that the NLS model performed best on the training set while the neural

network performed best on the test set. The neural net has the most even performance. If we

measure the performance by use of the standard 2R  (equation (9)) measure as in Table 3, the

result remains the same. But by looking closer at equations (7) and (9) we see that it basically

is the same measure but with a different scaling. It’s interpretation is however not as in the

linear case and numbers cannot be interpreted as percent explained where one reason to this is

that it in a non-linear case not necessarily is bounded to be –1 and 1.

Table 3. 2R standard for the different methods .

Estimator

Data set OLS NLS Poisson NN

Test set 0,11 0,70 0,65 0,76

∑∑
==

−−−=
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22 1 (9)

Another measure is the 2
CorrR

Table 4 and equation (10) (see Cameron (1994)) which is bounded by 0 and 1 but shares,

amongst other disadvantage, the disadvantage of not being interpretable as percent explained.

No change in ranking occurs here either.
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Table 4. 2
CorrR  for the different methods .

Estimator

Data set OLS NLS Poisson NN

Test set 0,56 0,76 0,74 0,81
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The measurement in Table 5 is different from others since it does not try to measure some sum

of residuals but rather to examine how big share of the relative residual that is above a certain

range. Here we also experience a change in ranking as Poisson regression show the smallest

amount of big errors and neural networks the largest. But as we have seen from residual plots

are the largest relative errors for small flows why one has to consider what is most important,

Overall small absolute or relative errors, or perhaps some mix.

Table 5. Share predicted with a relative error greater than 20%.

Estimator

Data set OLS NLS Poisson NN

Test set 86,1 80,9 79,1 87

The conclusion is that standard residual deviance based performance measures show that NN

has he best performance but that differences are small and when measured in a little different

way ranking can be completely changed. It is hence of great importance to carefully choose a

performance measure that address the problem at hand.

Table 6. Parameters of OLS, NLS and Poisson regressions .

Parameter OLS NLS Poisson

Constant -10,71 (-2,63) 4,55*(*) 4,34*(*)

Population Origin 0,60  (2,64) 0,48 (*) 0,50*(*)

Population Dest. 0,57  (2,60) 0,77*(*) 0,79*(*)

Km -0,002 (-7,67) -0,0054*(*) -0,0045*(*)

t-values in parenthesis, (*) asymptotic significance at 95% level, * bootstrapped significance at 95% level.
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Parameters from estimation can be found in Table 6 and they are significant at a 95% level for

all estimators and means of deriving them except for the asymptotic t-value for the Population

Origin parameter in NLS. For the Neural network no such values were possible to obtain since

the software3 here used had no such functions implemented. Values are quite similar in size

which supports the findings that estimators are quite similar in behaviour and performance.

If we compare results here to those obtained in Bergkvist and Westin (1998) from Table 7 we

see that the NN is also here the best performing estimator but that NLS completely fails on the

test set. The difference in data sets is that we now have omitted inter regional flows which

before were present and whose distance all were set to 30 kilometres. Which created some

very large flows with a constant distance and hence made the data more “badly” behaving.

Which may be a reason why the NN’s performance is so very much better since it is more

flexible than other estimators.

Table 7. Root Mean Square Error (RMSE) for the different methods inter- and intra-
regional flows .

Estimator

Data set OLS NLS Poisson NN

Train set 838 168 408 574

Test set 520 177194 443 341

Due to the more complicated structure of the NN here used it is very hard and would be of

little use to derive elasticities analytically. It is however possible to get elasticities numerically

by varying input and measure the output change. Analytical and numerical elasticities can be

found in Table 8. The elasticities reported for the different variables in the NN are calculated

as other variables are held constant around their mean. However, if we look at the plots of

elasticities for the NN in Figure 9-Figure 11 we see that the NN is not by any mean constant

elastic. It even shows a different functional form for different input variables. Looking at

Origin Population in Figure 9 we see that the elasticity first decrease and then starts to

                                                

3 Neuralworks explorer
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increases with population size which could be a sign that increasing population consumes

greater shares of potential export and that agglomeration effects and increasing returns-to

scale eventually creates greater supply and also again better export prospects. The effect of

increasing population in the destination node is not ambiguous, an increasing demand for

goods increases the demand for goods and hence freight flows increase. But also here

elasticity increase why there may exist similar effects as in the Origin node. That income is

not a linear function of population but rather that a greater population eventually make it

possible to exploit economics of scale so that income may increase at a higher rate than

population. Figure 11 is even more interesting since it’s shape could be due to how

substitution possibilities exist for lorry freights on different distances. As distance increase,

train and air transportation becomes more and more an alternative to lorries, the demand for

lorries get more and more elastic. Then for certain kind of transport there exist really no

alternative means of transportation why elasticity starts to go towards zero and stays there for

the really long but necessary transports.

Table 8 Analytical** and numerical* elasticites .

OLS** NLS** Poisson** BP-NN*

Population Origin 0,60 0,48 0,50 -0,004 - 0,006

Population Dest. 0,57 0,77 0,79 0,05 - 0,35

Km -0,002 -0,0054 -0,0045 -1,7 - 0

Figure 9 Elasticities for Population Origin related to Population size.
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Figure 10 Elasticities for Population Destination related to Population size.
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Figure 11 Elasticities for Kilometers related to distance in Kilometers.
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In Figure 14 we have plotted how the flow changes as one variable at the time is varied
between it’s min- and max values and others held constant at their means.

Figure 12 show what elasticities indicate, namely that the flow first decrease as population

increase and eventually starts to increase first as population reaches a certain level. Here a

population over 350 000 is needed.
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Figure 12 Relation between Origin Population size and flow size.
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For population at the destination in Figure 13 we get an almost linear relation between

population and flow size, which is as we would expect from investigating elasticities.

Figure 13 Relation between Destination Population size and flow size.
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The relation between kilometres and flow in Figure 14 is that flow decreases sharply for

distances up to about 300 kilometres and that the decrease then slows down an finally the flow

starts to get totally insensitive for distance. From elasticities we also know that the decrease

accelerates up to 300 kilometres.
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Figure 14 Relation between distance in kilometres and flow size.
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5. FINAL COMMENTS

Here we have compared four different estimation methods and their ability to predict freight

flows between Norwegian counties. Amongst these the neural network compared best in terms

of root mean square error. Differences are nevertheless small and if the measurement of

performance is changed to one that is more sensitive to shares of larger deviation estimators

such as NLS and Poisson regression performed better. It is hence crucial to know what kind of

errors one wants to minimise before choosing evaluation method and estimator. For

measurements based on residual deviation we get the ranking that NN is best closely followed

but NLS and Poisson regression and OLS a little more behind. This is similar to results in

Bergkvist and Westin (1997) but there NLS failed completely in out-of-sample forecasting

and the differences between Poisson and NN was larger. This probably since data was less

“well-behaving” and therefor caused greater problems for the more linear estimators.

We also investigated elasticities and all of them are constant elastic with similar sensitivity

except for the NN which is not constant elastic and also shows different functional form on

elasticities for different explanatory variables. An interesting property since plots of

elasticities are possible to interpret in a economic consistent way.
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NN performs well but has it’s drawbacks in estimation time and also the time consuming

process that is necessary to find a good enough topology and find reasonable free parameters

which have to be set by the researcher. Poisson is here more straightforward to use and also

shows reasonable performance on data used here and in Bergkvist and Westin (1997). The NN

however give more information due to it’s ability to treat inputs in a much more individual

way.
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APPENDIX

Figure 15 Structure of a neural network.
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Figure 16 Residual plot for the training set with OLS estimation. Residuals versus actual
flows.
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Figure 17 Residual plot for the training set with NLS estimation. Residuals versus actual
flows.
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Figure 18 Residual plot for the train set with a Poisson specification. Residuals versus
actual flows.
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Figure 19 Residual plot for the training set with a BP-NN specification. Residuals versus
actual flows.
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