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Abstract 

Developments in the provision and quality of digital data are creating possibilities for finer 

resolution spatial and temporal measurement of the properties of socio-economic systems. In 

this paper, we suggest that the ‘lifestyles’ datasets collected by private sector organisations 

provide one such prospect for better inferring the structure, composition and heterogeneity of 

urban areas. Using a case study of Bristol, UK, we compare the patterns of spatial 

dependence and spatial heterogeneity observed for a small area (‘lifestyles’) income measure 

with those of the census indicators that are commonly used as surrogates for it. This leads to 

specification of spatial dependence using a spatially autoregressive model, and 

accommodation of local heterogeneity using geographically weighted regression (GWR). 

This analysis begins to extend our understanding of the determinants of hardship and poverty 

in urban areas: urban policy has hitherto used aggregate, outdated or proxy measures of 

income in a less critical manner; and techniques for measuring spatial dependence and 

heterogeneity have usually been applied at the regional, rather than intra urban, scales. The 

consequence is a limited understanding of the geography and dynamics of income variations 

within urban areas. The advantages and limitations of the data used here are explored in the 

light of the results of our statistical analysis, and we discuss our results as part of a research 

agenda for exploring dependence and heterogeneity in spatial distributions. 
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1. Introduction 

The scale and pace of change in urban systems is without historic precedent. Today’s 

increasingly affluent populations have ever more diverse lifestyles, and it is increasingly 

untenable to think of intra urban social patterning by analogy to an inert mosaic of internally 

homogeneous statistical reporting zones (Johnston, 1999). Moreover, there is mounting 

evidence to suggest that, in developed countries, differences in social conditions and levels of 

participation in society are becoming starker at fine spatial scales (Hall and Pfeiffer, 2000: 

82). Small area spatial differentiation in physical and social conditions thus remains an 

important and developing focus for policy concern: most cities are restricted in spatial extent 

by planning policy, and so experience complex processes of change in neighbourhood 

composition over even quite short time periods (Harris, 1999). Appropriate allocation of 

public resources within and between urban areas requires that social conditions be 

represented in ways that are open to scrutiny (Gordon and Pantazis, 1997), while there is 

increasing realisation that ‘if government has no settled and adequate measure of poverty, 

then it cannot reliably assess how its policies are contributing to reducing poverty’ (White, 

2002). Such measures need to be generalisable, transparent, pertinent, up-to-date and safe to 

use (Campbell, 1999). Taken together, one of the greatest challenges to policy-relevant urban 

geography is to keep pace with the fission of many urban lifestyles and effectively measure 

and monitor pertinent social conditions at fine spatial scales. 

 

In recent years our ability to measure and monitor the morphology and extent of urban areas 

has improved considerably, in view of the development of urban remote sensing (Donnay et 

al., 2001), 3-D cadastral systems (Lemmen and van Oosterom, 2002) and new digital 

mapping products (Morad, 2002; Longley and Mesev, 2002). A major UK research 

programme (NERC URGENT: Swetnam et al., 2002) has demonstrated various ways in 

which urban regeneration initiatives can be furthered through improved measures of 

conditions across extensive urban tracts. There is a range of procedures that can be used to 

cross validate detailed maps of a range of land cover and administrative criteria. Yet there has 

been no commensurate improvement in our ability to measure or infer urban social 

conditions. The barriers to creation of pertinent, robust and defensible small area measures 

are well known: confidentiality strictures dictate the maximum resolution at which census 

variables may be differentiated (Rees and Martin, 2002); population censuses are carried out 

only every ten years (UK researchers will still be using 1991 Census data well into 2003); 

resource constraints on public sector surveys limit the sampling interval and hence increase 
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zone size for sample estimates (e.g. Dale and Teague, 2002); non-response is an increasing 

problem in most national settings (see the discussion of the ‘missing millions’ in the 1991 

Census: Champion et al., 1996); and the remit of many public sector surveys is restricted to 

what are deemed acceptable intrusions into private lives (and in the UK this precludes any 

income question in population censuses). The consequence for quantitative urban geography 

is representation of cities as crude mosaics of rough-hewn tiles, coloured according to very 

imperfect surrogate attribute measures, coincident with reporting zones that may be arbitrary, 

and remaining inert for the duration of successive decennial census periods.  

 

In important respects it is possible to caricature two prevalent responses to urban geography. 

Postmodernism entails a plurality of analytical perspectives, and many geographers have 

become frustrated and overwhelmed by the inadequacies of data to create plausible 

representations of living conditions. They have by and large abandoned the quest for 

generalised analysis of urban areas. At the opposite extreme, the applied, task-centred 

geography practised by marketers has embraced the revolution in the capture and handling of 

geographic information in order to create datasets attuned to the needs of specific projects. 

But the foundations to the resulting representations are provided by commercial datasets, 

which make no claims to generality or social, economic and demographic inclusiveness. The 

sources of bias in such data and the ways in which they operate are usually unknown. With 

respect to this latter approach, the collection of commercial datasets clearly does not 

correspond with best scientific practice (Goodchild and Longley, 1999). Yet, in important 

respects they do allow the creation of rich and generalisable depictions of contemporary 

living conditions, the data are frequently collected, and they are quickly processed. There is 

thus a developing realisation that empirical regularities between datasets collected across 

different domains can allow  inference about the new polarities of social structure (Webber 

and Longley, 2002). 

 

In this paper, we address some of these issues in the context of the debate about the intra-

urban geography of hardship and social exclusion. Low income fundamentally restricts the 

abilities of people to participate actively in society (Harris and Longley, 2002), yet reliable, 

up-to-date income measures at fine spatial scales are rarely available from conventional 

sources. As a consequence, Lee (1999) reflects that many indicators of deprivation are reliant 

upon data sources that are out of date and/or entail use of crude surrogate measures. Some 

measures bear little clear correspondence with hardship at all – for example, even following 
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re-engineering of socio-economic classifications (Rose and Pevalin, 2002), diversity in terms 

and conditions of employment make occupational classifications an increasingly opaque 

indicator of household circumstances. Other widely-used indicators are spatially variable in 

their operation. For example: low car ownership is a poor bellwether of socio-economic 

conditions in transit rich metropolitan centres; lacking freezers has different connotations in 

densely-populated urban areas where residents are almost invariably close to a shop (which 

will often stay open late); and socio-economic descriptors of occupation can have different 

connotations in different settings (e.g. the conditions of employment and remuneration of 

personal assistants, accountants and solicitors in the English provinces compared to their City 

of London counterparts). One response that has been better received (Gordon et al., 2000) is 

to use a ‘democratic majority’ to identify the goods and services that, by common consent, 

define social exclusion; to then infer the relationship between these goods and services and 

census variables in a nationally representative sample survey; and to then infer the detailed 

geography of hardship through the geography of the census variables. This is essentially a 

return to the ‘budget standards’ approaches pioneered in Victorian Britain (White, 2002) and 

represents progress of sorts (Senior et al., 2000), although it also entails problematic 

ecological inferences and insensitivity to spatial setting. Specifically, the indicators deemed 

to define deprivation are not allowed to vary spatially, even though the goal of subsequent 

linkage to the UK Census through surrogate indicators is identification of spatial variation. 

Thus the specification of deprivation is aspatial (in what settings, for example, is car 

ownership or freezer ownership a necessity?), and it is only when parameter estimates are 

used predictively that spatial variation is assumed to occur. Can a model of deprivation that is 

mis-specified in this way provide a reliable indication of geographic variation in the 

phenomenon of interest? And can ‘top down’ inferences from a national survey to local 

scales be used reliably to infer characteristics of small areas?  

 

The broader issue concerns the scale and extent of ‘pockets’ of hardship and the scale ranges 

at which difference is deemed manifests. Where geography underpins policy, there is often a 

prevailing sense of muddled thinking – for example, a recently introduced UK policy on 

property sales tax breaks has led to 40% of the entire area of Wales receiving relief, while the 

same policy can blight small inner city designations. The problems are further compounded if 

each of the range of surrogate measures used to specify a concept operates at different scales. 

Taken together, it remains unclear whether meaningful indicators of social conditions can 

ever be adequately specified, or whether generalised representations can be sufficiently 
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sensitive to place. For example, at what scale range does the impact of predictor variables 

hold constant, and what are the possible distorting effects on the scale of hardship?  

 

Our own view at this point is pragmatic. Notwithstanding evidence of geographies to the 

informal economy (e.g. Williams and Windebank, 2001) and mismatches between the spatial 

distribution of earned income and unearned income and wealth (e.g. Ball, 1994), it is clear 

that deprivation and hardship are inextricably linked to incomes from earnings and transfer 

payments. In many countries (e.g. the UK) no small area income measures are collected at 

all, and this forces reliance upon commercial sources. Yet, as we discuss below, the use of 

such data in academic research is not without considerable problems. In the same spirit as 

Gordon and Pantazis (1995) we thus think it necessary to retain some linkage to population 

census data – but in a way which is much more sensitive to spatial context. A critical issue is 

thus to understand the scales at which both income, and the variables that are used to predict 

it, vary (see also Rees, 1998; Harris and Longley, 2002). In our empirical analysis we 

examine a number of the facets to this issue through our detailed empirical case study. We 

begin by addressing the issue of multicollinearity in the specification of a model of small area 

incomes. Next we examine the over-all level of spatial autocorrelation in small area incomes 

and the predictor variables used to represent it. Further analysis is used to show that the local 

patterns of spatial autocorrelation vary between the independent variables. This is consistent 

with small area heterogeneity in each of the independent variables and we use geographically 

weighted regression (GWR) to appraise local variation in the parameter estimates of the 

indicator variables. We then draw conclusions with respect to the specification, estimation 

and testing of deprivation measures, and whether such methods might be developed using 

commercial data sources. The broader issue, which may be relevant to the proposed 

replacement of censuses with sample surveys, concerns whether we are better off assessing 

social conditions through frequent sample surveys, or whether it is necessary to aim for 100% 

census coverage (with consequent decreases in temporal granularity) to develop reliable 

representations of conditions. 

 

Our empirical case study begins to assess the contribution of new data sources to building 

improved representations of income distributions. We take a lifestyles survey that enables us 

to create small area estimates of household incomes for a study of the City of Bristol, UK, 

defined as the census zones lying within a radial distance of approximately 9 km of the 

historic city centre. We use this analysis to begin to identify the relative priorities of better 
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data, better specification of spatial dependence to draw inferences across space, and better 

understanding of local heterogeneity. The case study is also used to evaluate, in an inductive 

way, the scale at which it seems meaningful to draw inferences about hardship in our study 

area. 

 

2. Data Considerations 

‘Lifestyles’ datasets provide detailed socio-economic information about individuals’ 

circumstances and preferences. The term ‘lifestyles’ is used as an umbrella term for a diverse 

range of survey data, which may be concatenated from disparate data sources using a 

common field (the residential address) to form a profile of individual households. They are 

mostly obtained from responses to postal consumer surveys or questionnaires and are widely 

used for direct marketing. Although they are collected by private sector organisations, they 

can be made available (in suitably anonymised form) as individual or household records. 

 

The limitations of lifestyles datasets are well known in general, if not always well-quantified, 

terms (but see Longley and Harris, 1999). Inter alia, they almost invariably employ closed 

response questions, completion is voluntary (Harris, 1999), and some low income groups are 

likely to be under-enumerated. These limitations make lifestyles data less reliable than 

conventional census data, for example, and the operation of biases in their collection remains 

an under-researched area. Nevertheless, they are updated every year, response rates enable 

reasonably robust estimates to be made at small area levels, and they contain a direct question 

on income – which has never been asked as part of any UK Census of Population.  

 

The limitations of lifestyles data for academic research and policy purposes can be 

understood in relation to the quite distinct rationale for their creation (Webber and Longley, 

2002). First, most commercial organisations are interested in the estimation of a metric which 

is directly indicative of the level of household expenditure, rather than income. Their interest 

in income is thus as a proxy for expenditure. It is also worth distinguishing between two 

rather different applications. Direct marketers, who communicate with individuals rather than 

serve areas, desire estimates of expenditure which are optimally predictive at the person or 

household level but are not materially concerned whether there is any geographically 

systematic error in this estimate. Thus there are no inferential errors generated in ‘one to one’ 

marketing applications. By contrast retailers, who serve areas rather than individuals, are not 

particularly concerned whether their income estimation methods are accurate at the 
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household level. Rather, like the academic or policy analyst, it is more important that 

whatever inferential errors there may be are not systematic at the area level. Thus the best 

model for direct marketers is not necessarily the best model for retailers.  

 

There are additional inferential errors that arise in using ‘non-traditional’ data sources in 

spatial analysis. To the collector of lifestyle data, there are significantly different commercial 

returns from having a high income household respond than a low income household.  

Companies that use lifestyle lists to identify potential mail-drop targets are unlikely to select 

households with low incomes. For this reason most lifestyle operators have decided that it is 

more cost effective to target the blanket door drops of questionnaires to postcode sectors with 

higher rather than lower levels of affluence (Webber, personal communication).  However, 

UK postcode sectors are the lowest areal units which can be leafleted by distributors, and this 

is likely to improve the representativeness of response – especially where, as in Bristol, high 

and low income groups continue to live in quite close proximity to one another. Thus while 

timely, small area income data provide a central ingredient of small area hardship measures, 

there is a clear need to cross validate small area income estimates with respect to external 

data sources. Some aggregate comparisons are reported by Longley and Harris (1999), but 

this does not accommodate small area variability in income measures. 

 

The lifestyles survey used here comprise 51 882 household responses to a postal survey, of 

which 43 278 (83%) include income information. Each household record is georeferenced to 

the unit postcode level (equivalent to the full US Zip code), which enables matching of the 

records to individual census enumeration districts (blocks). The income question required the 

respondents to identify their approximate household income from seven bands, which were 

rescaled to take proportionate values within the 0-10 intervali (Harris, 1999). Income scores 

were aggregated by enumeration district (ED: the UK equivalent of a US census block) and 

divided by the total number of respondents in each of the 844 EDs in the study area, in order 

to obtain an income score (INC) for each ED used in the calculations. We focus here upon the 

relationship between the small area income measure and a number of conventional 1991 

Census variables. A combination of a priori reasoning and statistical analysis led us to posit a 

relationship between income scores and the following indicator variables found in the 1991 

Census:  

• OLDPSN is the percentage of households per ED where residents are aged 65-74. 
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• 2534NK is the percentage of households per ED where residents are aged 25-34 and 

there are no children aged 0-15 years.  

• WKWIFE is the percentage of households per ED where there are married females 

working. 

• BIGACC is as the percentage of total households per ED with 7 or more rooms.  

• COUNCL is the percentage of households per ED in council (public sector) rented 

property. 

• HHTCA is the percentage of households per ED owning two cars. 

• UNSKLD is the percentage of households per ED with unskilled workers. 

• QUALML is the percentage of qualified male residents per total households in the 

ED.  

 

Most of the variables are positively skewed, in part because of the incidence of low or zero 

values near to the historic centre of the city. The spatial distribution of these nine variables is 

shown in Figure 1, where maps are shaded according to quintile ranges. Some interesting 

spatial features of the data are made apparent by these maps. For instance, EDs with a large 

proportion of young childless residents (2534NK, top centre map in Figure 1) are 

concentrated in areas surrounding the historic centre of Bristol and generally coincide with 

areas of low proportion of households in council accommodation (COUNCL, central map in 

Figure 1). In contrast, the older population (OLDPSN, top left map) tends to locate towards 

the outskirts and particularly to the north of Bristol in areas that also appear to have a high 

percentage of the households living in council (public housing) accommodation. The spatial 

distribution of qualified male residents (QUALML, bottom centre in Figure 1) indicates that 

the 574 EDs that have the lowest proportion for this variable (less than 25% of the 

households in the ED) are largely coincident with areas where households live in spacious 

accommodation (BIGACC, middle left map in Figure 1). Unsurprisingly, most of the EDs 

with higher scores for the income score variable (INC, bottom right map) are in that same 

sector. EDs with a high proportion (30% or more) of multiple car ownership (HHTCAR, 

middle right in Figure 1) are also located in this area, as well as in EDs that are further away 

from the city centre. These observations bear out the common experience that areas with poor 

physical and social conditions broadly correspond with one another. However, the 

relationship between income and various deprivation indicators is not invariably 

straightforward.  
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[Figure 1 here] 

 

3. A city wide relationship between income and the indicator variables 

Linear regression analysis is the standard technique for formalising statistical associations 

between a dependent variable and a set of explanatory ones, and estimating the best fit 

between the predicted and observed values of the dependent variable. The standard regression 

equation is given by:  

111 NxKxNxKNx Xy εβ +=                (1) 

where y  is the dependent variable in vector form of length N ; X  is a matrix of N  

observations and K  explanatory variables; β  a vector comprising K  regression coefficients; 

and ε  is a vector comprising random errors for each observation N . Ordinary least squares 

(OLS) provides the best linear unbiased estimators β , assuming that the random error term is 

uncorrelated and normally distributed with zero mean and constant variance. These 

assumptions allow statistical inferences to be drawn about the β estimates.  

 

Table 1 shows the results of OLS regressionii using the lifestyles income score variable 

(INC): it exhibits a statistically significant positive relationship with six variables in the 

dataset (OLDPSN, 2534NK, WKWIFE, BIGACC, HHTCAR and QUALML) and a 

statistically significant negative relation with two more attributes (COUNCL and UNSKLD). 

Hence, the higher the proportion of households in the ED with older people or young 

childless residents, working wives, large accommodation, qualifications and at least two cars, 

ceteris paribus, the higher the predicted income score. Similarly, the higher the percentage of 

households in the ED living in council accommodation or having unskilled residents, ceteris 

paribus, the lower the predicted income score. The over-all regression specification generates 

a significant F statistic and the adjusted 2R  of 0.65 suggests a reasonable global fit.  

 

[Table 1 here] 

 

However, as in most geographical analysis, the assumption of uncorrelated normal errors 

with constant error variance is not realistic, given the evidence of spatial dependence in the 

data. Moreover, a problem commonly encountered when working with census data is the 
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presence of multicollinearity or high correlation between observations of the explanatory 

variables – because many of the census variables are in effect measuring the same, or similar, 

constructs. Although there are no tests for directly quantifying the degree of correlation 

between variables in a regression, the Condition Number (Anselin, 1992) can be used as a 

diagnostic: our regression yields a value of 21.74 which, although high, does not have the 

effect of increasing the parameter variance estimates to the point that the t statistics are 

unable to attain significance.  

 

However, a significant Jarque-Bera test statistic (value 11 131) indicates that the null 

hypothesis of normally distributed errors cannot be accepted. In such cases, tests on 

heteroskedasticity and spatial dependence must be interpreted with caution as they assume 

that this is the case. The Koenker-Bassett and White tests indicate the presence of 

heteroskedasticity in the residuals, which subsequent experiments with a heteroskedastic 

error specification were unable to rectify. However, tests to identify non-constant error 

variance are sensitive to the presence of spatial dependence (Anselin, 1990). A possible 

implication is thus that the heteroskedasticity tests indicate the presence of spatial 

autocorrelation in the residuals or in the dependent variable. Results of an estimator robust to 

heteroskedastic errors (see Anselin, 1992 for a discussion) are presented in Table 2. Inference 

in this case is based on the z-valueiii and all explanatory variables can be seen to be 

significant, except for COUNCL and (marginally) WKWIFE. These various results provide 

circumstantial evidence that the model may be mis-specified in some way, yet it is not clear 

whether any mis-specification is attributable to spatial autocorrelation in the dependent 

variable and/or the residuals. 

 

[Table 2 here] 

 

These estimates consider each individual area independently of the values of its neighbours. 

As such, it is difficult to develop a picture of the scale at which hardship, or any of its 

indicators should be conceived and measured. The results from this regression technique can 

only be interpreted as yielding average parameter values for the study area as a whole 

(Fotheringham et al., 2001; Harris, 1999), that is as presenting a global characterisation of the 

prevailing relationship. They cannot account for spatial variation or local differences in the 

data – and provide no indication of whether each indicator variable is specified at an 

appropriate scale. The statistical tests in our own analysis suggest a need to investigate 
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possible spatial dependence in the indicator variables, above and beyond the need to 

investigate the income variable from the lifestyles data.  

 

4. Measuring spatial association 

4.1. Global Indicators of Spatial Association: Moran’s I 

Moran’s I measures the spatial dependence or autocorrelation between values of a variable. It 

is structured as a measure of covariance or it may be used to test hypotheses concerning the 

similarity of specified values of a variable (Getis and Ord, 1996). Formally: 
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where i  and j  refer to the spatial units of which there are N ; xxz ii −= , where x  is the 

mean of x  or the attribute being measured; and ijw  is the degree of connection or potential 

spatial interaction between zones i  and j .  

 

In an area of N spatial units, there are ( )1−NN  possible interactions between each unit and 

all the rest. In our case, the study area comprised 844 EDs which would potentially represent 

844*843 = 711,492 interactions, if unconstrained in any way by contiguity or adjacency. 

Hence, there is a need to impose structure on the nature and extent of the possible spatial 

interactions. This is normally achieved by defining a neighbourhood for each unit by means 

of a spatial weights matrix. These weights “are usually determined either by continuous 

inverse distance measurements or by binary definitions of whether or not the two zones are 

contiguous” (Fotheringham et al., 2000: 202). Here we will assign weights defined according 

to the contiguity criterion. The neighbourhood matrices used are of various orders where the 

order is an indication of the region considered to be neighbouring each ED. iv 

 

The expected value of Moran’s I indicates the value that would be obtained if there were no 

spatial autocorrelation in the data and it is defined as: 

       [ ] ( )11 −−= NIE                (3) 

or –0.001186 in our case of 844 ED observations. Values greater than [ ]IE  indicate positive 

spatial autocorrelation or similar values—either high or low—clustered together. A Moran’s I 

coefficient smaller than its expected value would indicate negative autocorrelation or 
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dispersion of similar values (Fotheringham et al., 2000; Longley et al., 2001: 100-3). For 

inferential purposes, a standardized value of I  is used such that: 

[ ]( ) [ ]ISDIEIz −=             (4) 

where z  is the standardised value of I ; [ ]IE  and [ ]ISD  are the theoretical mean and 

standard deviation of I , respectively.v Table 3 shows the results for the standardised global 

Moran’s I for nine variables.vi All values are highly significant and greater than the mean, 

indicating positive autocorrelation: that is, similar values (high or low) are more spatially 

clustered than would be expected by chance (Anselin, 1992). For spatial weights of higher 

order, Moran’s I shows diminishing values. Note for instance the values of the statistic for the 

INC variable that indicates decreasing evidence of spatial autocorrelation between distant 

neighbours.vii  All lags up to and including lag 5 are significant, which might be taken to 

suggest some very coarse patterns of spatial autocorrelation. However, the global Moran’s I 

statistic only provides an average measure of spatial dependence across the entire study 

region. Hence, the evidence of spatial autocorrelation in higher order neighbourhoods may in 

fact subsume still stronger, but more local variation in the data. Such patterning would 

certainly be consistent with the substantive setting described in the introduction, in which 

zones of affluence and deprivation juxtapose within small areas. 

 

[Table 3 here] 

 

4.2 Local Indicators of Spatial Association: Local Moran’s I 

Local Indicators of Spatial Association (LISA) measure the degree of spatial dependence 

between locations. They identify the association between a single value of a variable at one 

location and its neighbours, which are defined according to their degree of contiguity, as in 

the previous sub-section. However, unlike the global statistics presented above, LISA account 

for non-stationarity across space. Of course, the definition of the neighbourhood remains 

shackled to the zonal system and is subject to the modifiable area unit problem (Openshaw, 

1984). If the shapes and configuration of the Eds (census blocks) were changed, the 

individuals considered to be in adjacent zones of the various topological orders would also 

change, as would the values of the local statistics. However, there is reason to anticipate that 

ED zonations are not entirely random, i.e. they bear a correspondence to social structure and 

built form, and so it is likely that the ED zonation and contiguity rule will create robust 

results.  
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LISA are well suited for identifying the existence of hot spots or local spatial clusters, 

assessing assumptions of spatial stationarity and identifying spatial lags beyond which no 

discernible association can be obtained (Getis and Ord, 1996). For Anselin (1995) LISA have 

two characteristics: the LISA for each observation provides an indication of the extent of 

significant spatial clustering of similar values around an observation; and the sum of the 

LISA for all observations is proportional to a global indicator of spatial association. The first 

of these characteristics make them a useful inductive device for ascertaining the scale of 

‘pockets’ or ‘neighbourhoods’ of hardship. Local Moran’s I is one such statistic (Anselin, 

1996) and is formally expressed as: 

j
j

ij
i

iii zwzzI ∑∑ 






= 2             (5) 

where the subscript i  refers to the location for which the statistic is estimated and j to any 

other zone; xxz ii −= , where x  is the mean of x  or the attribute being measured; and ijw  is 

the degree of connection or potential spatial interaction between zones i  and j . The 

expected value of the local Moran’s I is defined as: 

[ ] ( )1−−= NwIE ii                (6) 

The interpretation of iI  as an indication of local stability can be better understood from its 

relation to the global statistic as the average of all iI  values is equal to the global Moran’s I 

scaled to a factor of proportionality (Anselin, 1992). Since iI  varies by location i , it is more 

easily interpreted visually by colour coding of each enumeration district. Figure 2 presents 

the normalised iI  values for the first order spatial weights matrix of each of the nine 

variables. Hardship and deprivation are usually defined as occurring in areas where poor 

physical and social conditions interact, yet there is only limited uniformity in the patterns 

revealed by the LISAs. Note for instance the presence of ‘patches’ of positive spatial 

dependence for BIGACC (middle left map in Figure 2), HHTCAR (middle right map), 

QUALML (bottom centre map) and INC (bottom right map) to the northwest of Bristol and 

an indication of negative spatial autocorrelation in COUNCL (middle centre map) for the 

same region. Other hotspots of positive spatial autocorrelation are apparent to the west for 

HHTCAR (middle right map), BIGACC (middle left map) and INC (bottom right map). 

Areas with similar values of 2534NK (top centre map) are concentrated around and to the 

northwest of the city centre where BIGACC and COUNCL also show less positive or even 
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negative spatial autocorrelation patterns. Similarly, QUALML shows distinctive hotspots to 

the south of Bristol. 

 

[Figure 2 here] 

 

These results illustrate how scale effects differ amongst the constituents of the global 

regression. Thus, for example, the high local patterns of negative spatial autocorrelation in 

the COUNCL variable reflect the clustering of many housing units in public sector estates 

during construction, while the more gradual variation in the characteristics of currently 

resident households depicts the outcome of (typically) half a century of filtering of tenant 

characteristics and the effects of tenant ‘right to buy’ initiatives since the late 1970s. The 

values of the 2534NK and QUALML variables exhibit intermediate patterns.  

 

5. Specifying Local Relations 

These observed scale effects suggest a need to accommodate geographical variability in the 

regression specification. There is a long tradition in spatial analysis that has attempted to 

understand and specify local relations in multivariate data. For instance, Casetti’s (1972) 

expansion method attempts to measure trends in relations over space by making the 

parameters of a global model a function of some other attribute such as location. In some 

circumstances, however, this technique can obscure significant local variation (Fotheringham 

et al., 2002: 16-17). Since the results in the previous sections give an indication of possible 

significant spatial variation in the data, the method was not considered for its investigation. 

The spatial adaptive filtering method proposes a model to investigate local and regional 

effects by estimating spatially varying parameters. However, if there are large differences 

between the true parameters of neighbouring observations, “the algorithm will tend to smooth 

out these changes rather than recognize sudden drops or increases” (Olligschlaeger, 1997). 

Hence, it tends to produce regression parameters that ‘drift’ slowly across geographical space 

(Fotheringham and Brunsdon, 1999). In the random coefficient model, parameters are 

allowed to vary randomly, as opposed to the classical linear regression model where they are 

assumed to be the same for all locations and cases, or the spatial expansion method where 

they are smooth. This technique however is not inherently geographical as coefficients can be 

drawn from very different distributions, even if the corresponding cases are in close 

proximity.viii  
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Two methods are used here to explore the local variability of the relations in the dataset, 

namely spatial autoregressive models and geographically weighted regression (GWR). The 

former recognises that spatial data may not be  independent, and that this can have a number 

of effects on the optimality and/or efficiency of traditional linear regression estimates. If 

present, the technique attempts to model the spatial dependency in the dependent variable, in 

the error terms, or in both. Although spatially autoregressive models provide a good means of 

detecting local relations, they can only be accommodated in a set of global parameter 

estimates. GWR allows for local rather than global parameters to be estimated, and thus 

provides a better way of accommodating spatial heterogeneity in the local geography of high 

and low income in Bristol. Both techniques can be interpreted as localised versions of 

traditional global techniques. 

 

5.1. Spatially Autoregressive Models 

LISAs provide a useful means of identifying the extent of autocorrelated zones, because the 

statistic is sensitive to the definition of the neighbourhood that is used. They also provide a 

clearer indication of the intensity of the relation than is provided by a global autocorrelation 

statistic alone. This can be used as a starting point for direct specification of spatial 

dependence by allowing values of the dependent variable and/or the error term at a location 

to be correlated with observations at other locations. If the dependent variable is spatially 

autocorrelated with the values of neighbouring locations, then its spatial dependence can be 

formally modelled as a spatial autoregressive model: 

( ) 1111 NxNxKxNxKNx WyXy ερβ ++=            (7) 

where y , X and β  are as in Equation (1); the subscript N denotes the number of 

observations and K  the number of explanatory variables; Wy  is a vector of spatial lags for 

the dependent variable and ρ  the corresponding regression coefficient, and ε  is a vector of 

random and independently distributed errors. 

 

If spatial autocorrelation is shown to be present, OLS estimates would be biased and 

inferences drawn using the aspatial regression model (Equation (1)) would be incorrect. 

Moreover, if there is spatial dependence in the error term, OLS estimators are not efficient 

and, although parameter estimates remain unbiased, inferences based on t  and F significance 

tests are misleading, as is interpretation of the 2R  goodness-of-fit measure (Anselin, 1992). 
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In our case study, there was no evidence of spatial dependence in the error term although the 

Lagrange Multiplier (LM) diagnostics used to identify it are only valid under the normality 

assumption. Therefore, this evidence must be treated with care as the Jarque-Bera test 

showed the residuals not to be normally distributed. However, robust LM diagnostics could 

not identify this form of dependency which was therefore not considered to be present in our 

case study. 

  

An instrumental variables approach to estimation was taken, because of the likely non-normal 

error distribution. Instrumental variable estimation is based on the principle that a set of 

instruments exists which is correlated with the original explaining variables but which is 

uncorrelated with the error term (Anselin, 1992). Instruments that fulfil this requirement will 

result in a consistent estimate of the parameters. The instruments are used to construct a 

proxy, in this case, of the spatial lag or the term Wy  in Equation (7). In our case study, the 

first order lags of the independent variables are included as the instruments (see Anselin 

(1988) for a discussion) in order to accommodate the presence of spatial dependence. This 

occurs because if the error values were non-autocorrelated, as the LM diagnostics suggest, 

then lags of the explanatory variables would be uncorrelated with the error term and “at the 

same time probably highly correlated with the explanatory variable” (Judge et al., 1980: 534). 

The instruments are then regressed against the independent variables in a standard OLS 

regression making it equivalent to a two-stage least squares method Table 4 shows the 

results. 

 

[Table 4 here] 

 

Apart from not requiring the assumption of normally distributed errors, instrumental variables 

estimation has been used widely in the econometric literature to account for the possible 

endogeneity between income and the socio-economic independent variables where the 

direction of causality in the relations between them is not straightforward (see for instance 

Mincer, 1974). For instance, it may be the case that being unskilled causes a lower income 

but the opposite relation may also hold. 

 

COUNCL as well as the CONSTANT were excluded from this regression as they were found 

not to be statistically significant in the instrumental variables estimation. The ρ  parameter 
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associated with the spatial lag of the dependent variable, or the instruments in this case, is 

highly significant as well as the seven other explanatory variables included. All parameters, 

including the spatial lag or instrumental variable, are significant with the expected signs. The 

pseudo- 2R of 0.7 reported in Table 4 gives an indication, though not comparable to the OLS 

results, of the goodness of fit of the model. Figure 3 shows the residuals for the estimation, 

which do not seem to exhibit any particular pattern.  

 

[Figure 3 here] 

 

Instrumental variables estimates can be interpreted as weighted averages of individual-

specific causal effects. Although this model takes into account the relation between locations 

and allows us to account for the dependency in the data, they are not intended to estimate 

how that dependency may vary across space. This is explored using geographically weighted 

regression (GWR) in the following section. 

 

5.2. Geographically Weighted Regression (GWR) 

GWR is a technique that “extends the traditional regression framework by allowing local 

rather than global parameters to be estimated” (Fotheringham et al., 2001: 51). As such, in 

the present case study, it provides an important method of identifying spatial heterogeneity in 

each of the predictors of income. Following Brusdon et al. (1996), GWR can formally be 

expressed as: 

i
K

KiKiii xy εββ ++= ∑0              (8) 

where iy  is the observation of the dependent variable at location i  and Kiβ  is the value of 

the parameter for the corresponding explaining variable at point  i . Hence, in this model, a 

continuous surface of parameter values is estimated under the assumption that locations 

nearer to i  will have more influence on the estimation of the parameter 
^

iβ  for that location 

(Fotheringham et al., 2000). This is formally expressed in matrix form as: 

( ) yWXXWX i
t

i
t

i
1^ −=β             (9) 

where the n  by n  weights matrix iW  has diagonal elements ( )inii www ,,, 21 K  that denote the 

weighting of observed data on the calibration of the model around point i  and off-diagonal 
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elements equal to 0. The weights are defined as continuous functions of distance. Hence, they 

vary with i  and are greater the closer an observed data point is to the calibration point 

(Fotheringham et al., 2001; 2002). A function of the form  

( )






>
≤−=

hdwhen
hdwhenhdw

ij

ijij
ij

0
1

222
            (10) 

was used for all estimations reported here where ijd  is the distance between points i  and j  

and h  denotes the bandwidth. In principle, GWR may be applied at any geographic scale of 

measurement, although in practice the availability of suitably anonymised data has restricted 

many applications to the sub-regional or coarser scales (e.g. Fotheringham et al., 1996; 

Fotheringham and Brunsdon, 1999). The bandwidth, h, is increased where data points are 

more widely spaced, a desirable property in our case study where the data points are ED 

centroids, which vary greatly in their density across the City of Bristol. Note however that the 

selection of the continuous function does not appear to have an effect on the results (see 

Fotheringham et al., 1998) whereas the selection of the bandwidth is crucial: a large 

bandwidth would produce parameters with little spatial variation or greater smoothing and a 

small bandwidth would produce parameter estimates with increased variance or large local 

variation. Bandwidth selection can follow a number of criteria. In this paper, the bandwidth 

that minimised an AIC criterion was used (see Charlton et al. 2002, for details).ix 

 

The OLS estimation in Equation (1) indicated that, on average for the whole region, high 

levels of the income score variable are positively related to high levels of OLDPSN, 2534NK, 

WKWIFE, BIGACC, HHTCAR and QUALML, and negatively with high levels of 

COUNCL and UNSKLD. GWR extends this aspatial regression framework by allowing the 

estimation of local parameters instead of global ones. These can be more easily inspected 

visually when represented as maps like those in Figure 4 which illustrate the variation of the 

parameters by location for the eight variables in the regression. These maps also show how 

the relation between the explanatory and the dependent variable can differ by location. 

Interesting relations include the areas of negative parameters of WKWIFE (top right map in 

Figure 4). Although the ‘global’ relation between this variable and INC for the whole region 

is positive, this relation clearly varies across space with the stronger relation being in the 

southeast (darker areas). A similar situation occurs with the coefficients for all other variables 

which have the expected signs but their spatial patterns indicate that the relation of the 

variables to INC is less positive in the lighter shaded or white areas. The intercept terms also 
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show a clear spatial pattern with lower positive values to the southeast and higher values 

located at the north western edges of Bristol. Taken together, these maps suggest 

considerable heterogeneity in the contribution of the predictor variables to accounting for the 

geography of income variation. While they some of the mapped variables show clear sectoral 

patterns, the differences between the maps suggest the geography of surrogate indicator 

measures may compromise their use in policy applications. 

 

[Figure 4 here] 

 

The values represented in the maps in Figure 4 do not take into account the standard error of 

the parameter estimates (Fotheringham et al., 2001: 53). Hence, dividing the local estimates 

by their corresponding standard errors permits the mapping of a pseudo t-statistics (Figure 5) 

that can indicate the significance of the parameters described above (darker greys or black 

indicate the highest significance). In this case, areas of larger parameter values (either 

positive or negative) in Figure 4 generally coincide with corresponding large t-values in 

Figure 5. This observation does not always hold as in the case of COUNCL (middle centre 

map). Thus the magnitude as well as the significance of the relationships between the 

explanatory variables and the income score are not spatially invariant. For instance, 

QUALML (bottom centre map in Figure 4) shows a more negative relationship to the west 

and northwest of the study area where the pseudo t-statistics are also higher, while the 

opposite relation occurs to the east. HHTCAR (middle right maps) shows a strong positive 

relation with INC around the centre and along a strip running from the north west to the south 

east of Bristol. 2534NK (top centre maps) shows a strong positive relation to INC across a 

similar strip as that just described. Conversely, the negative dependency relation of INC to 

the COUNCL (middle centre) appears to be stronger and more significant in areas further 

from the historic city centre. The parameters of BIGACC (middle left) are of highest 

magnitude, indicating a stronger statistical relationship to INC, to the northeast, but the t-

values are high throughout most of the study area, with the exception of a patch to the north 

west of the centre.  

 

[Figure 5 here] 
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Figure 6 shows the local values of 2R , a goodness-of-fit measure that can “informally depict 

the accuracy with which the model replicates the observed values [of the income score 

variable] in the vicinity of the point for which the model is calibrated” (Fotheringham et al., 

2000: 125). The map indicates that there is some variation in the 2R  statistic: however, the 

statistic ranges from moderate levels (c. 0.67) to high values (up to 0.92), with the highest 

values occurring to the north of the study area. The map of standardised residuals to the right 

of Figure 6 illustrates that they have no particular spatial pattern. 

 

[Figure 6 here] 

 

Finally, GWR makes it possible to inspect the spatial variability of each parameter by 

calculating a Monte Carlo test of significance (Fotheringham et al., 2000). The results 

presented in Table 8 indicate that only UNSKLD and marginally QUALML appear to vary 

significantly across space. The spatial variation in the remaining variables cannot be said to 

be significant. This would indicate that the distribution of unskilled workers and qualified 

males shows spatial non-stationarity. 

 

6. Consolidation and assessment 

Better measurement usually precedes the development of better theory in both science  and 

social science. In the context of urban geography, ‘better’ measures need to be more timely, 

more relevant and highly disaggregate if generalisation is not to be blind to pattern, 

reductionist in classification and oblivious to rapid change. The ongoing revolution in the 

provision and handling of socio-economic information is improving the supply of geographic 

data, yet a challenge to researchers is to better understand the sources and operation of biases 

in data collection. In this paper we have used analysis techniques that are sensitive to context 

to begin to assess the inherent differences and spatial mismatches between conventional 

indicators of income from the UK Census and direct income measures from a lifestyles 

survey. We believe that extending the interests of urban geographers from census analysis 

towards work with direct, timely, spatially disaggregate indicators is key to developing the 

data foundations to a new, data rich and relevant urban geography. The issues of using 

lifestyles data are fraught with problems, not least because some users of such surveys have 

little interest in the vagaries of spatial heterogeneity and non-stationarity. However, just as 

retailers use such data to supplement conventional geodemographic indicators, there is a need 
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to tease out the relationship between these new pertinent measures and conventional 

indicators.  

 

The problems of inference in urban geography are not just of technique, but of generalised, 

timely, spatially disaggregate data. This paper has begun to address the advantages of using 

new sources of digital data for estimating models that allow statistical inference and a better 

understanding of their processes in space. The range of spatial models permitted the 

identification of spatial patterns of interest beyond averaged relations between dependent and 

explanatory variables. It may appear as intuitive to argue that variables can better explain the 

variability in the level of income in some EDs rather than others, or in statistical terms, that 

the significance of their relation to the dependant variable can vary across space. Yet this 

confirmation of local heterogeneity and spatial dependence can also be interpreted as 

providing evidence of local misspecification of multifaceted concepts such as hardship. Use 

of a range of techniques points both towards interesting local spatial patterns and at problems 

in the specification of the models, both of which encourage iterative refinement and better 

understanding of local heterogeneity. This also underscores the importance of including 

spatial effects when they exist as a means to account for local variability, and the complexity 

of specifying its manifestations at finer scales. There is a sense here of the receding horizon – 

whilst the economist might adhere to the Holy Grail quest for a fully specified model, we 

incline to the geographer’s view that we will never completely specify the attributes of place. 

Our case study illustrates the ways in which surrogate measures of income (such as car 

ownership and ownership of consumer durables) may be affected by the existing physical and 

socio-economic infrastructure.  

 

Inevitably analysis such as this raises as many questions as it begins to answer, but a task of 

urban geography should be to contain such questions to clearly defined issues, as a precursor 

to making their treatment more routine. Accumulated experience should be able to tell us 

about the effects of different contiguity/proximity definitions, the weighting of contiguity 

relations according to the over-all similarities of adjacent zones, the vagaries of data linkage 

mechanisms, differential weighting of sample surveys and the likely biases in data from 

different sources. In a similar manner, it should be possible to inform the specifically 

geographical aspects of analysis with the results of accumulated experience. In the context of 

UK studies of hardship and deprivation, these might include: regional differences (e.g. the 

result of average rooms per dwellings in Scotland being consistently low the national average 
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irrespective of demographics); factors pertaining to accessibility (e.g. the importance of 

proximity to town centres and to public transport networks when representing the effects of 

car ownership); and ecological factors (e.g. studies of voting behaviour suggest that variables 

from a coarser levels of granularity have incremental impacts because of spillover effects: 

Webber and Farr 2001). It may be that different methods would be appropriate in these 

different circumstances. Taken together, continuing research needs to consider the extent to 

which these techniques are necessary because of the unreliability of the data that is being 

predicted or because or localised distortions in the independent variables. 

 

In a wider sense, there is an important role for geographers in relation not just to policy but 

the broader remit of business and service planning. Just as the importance of car and freezer 

ownership is not spatially invariant, so too the range of lifestyles variables now used by 

retailers have different connotations in different settings. In the UK, for example, it has been 

suggested that rural areas have higher ownership of houses, cars and household equipment 

than do inner city areas, reflecting the lower level of competition for land in rural areas 

(Webber, personal communication). By contrast, inner city residents may spend a much 

higher proportion of their disposable income on experiences (cinema, theatre, eating out, 

going on holiday, going to the pub), in part because of the greater range of commercial 

opportunities for spending money on leisure experiences that are available to them. This is an 

important and developing area of research and, like the creation of policy-specific hardship 

measures, resolution of uncertainty is as much concerned with issues of application as with 

issues of science (Zhang and Goodchild, 2002). Despite these limitations, new sources of data 

combined with appropriate spatial analysis techniques can reveal information and insight into 

spatial relations that may be little understood. Hopefully this exercise has shown the potential 

richness and depth of analysis that can be attained. 
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Notes 
1.The household income bands and their values as rescaled by Harris (1999) are: 1) household income 

under £5,000 (rescaled to 1.2 to accommodate social security thresholds); 2) between £5,000 and 

£9,999 (rescaled to 2); 3) between £10,000 and £14,999 (rescaled to 3); 4) between £15,000 and 

£19,999 (rescaled to 4); 5) between £20,000 and £29,000 (rescaled to 5.5); 6) between £30,000 and 

£39,999 (rescaled to 7.5); 7) household income over £40,000 (rescaled to 10). 

 
2 Estimations in this section were performed using SpaceStat 1.8 (Anselin, 1992) which, in addition to 

calculation of spatial statistics, is also a convenient environment for performing aspatial multiple 

regression. 

 
3 The significance of individual coefficients is based on the standard normal distribution because the 

estimation method is based on asymptotic considerations. Hence the z-value column of Table 2, 

which is actually an asymptotic t-test. 

 
4 For instance, in the so-called queen’s case, a first order adjacency neighbourhood matrix would 

consider as neighbours of an area all other units that share a border or a vertex with it. By definition a 

location or unit is not contiguous to itself. Higher order adjacency matrices follow a recursive 

definition. Hence, a second order adjacency matrix would take as second order neighbours of a 

location all of the first order neighbours of its first order neighbours. 

 
5 The expressions for the mean and standard deviation of I vary depending on the assumptions made 

about the data and the nature of the spatial autocorrelation. The approach taken here is to assume that, 

asymptotically, Moran’s I follows a standard normal distribution. 
 
6 Estimations in sections 4.1 to 4.3 were calculated using SpaceStat 1.8. 

 
7 Note that the expected value is the same for all spatial weights as it is only dependent on the number 

of observations, i.e. -0.001 = 1/844. Conversely, the standard deviation (column SD in Table 3) is a 

function of the spatial weights matrix and so it is different for each one, with the SD decreasing for 

higher order matrices. 
 
8 See Fotheringham and Brunsdon (1999) and Brunsdon et al., (1999) for a discussion on how this 

technique can be used to explore local variability in some cases. 

 
9 GWR version 2.0, the software used to estimate the models in this section, allows the selection from 

a number of criteria for determining the bandwidth.
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Table 1: The results of OLS regression. 
OBS 844 DF 835 

2R  0.6546 Adj- 2R  0.6513 
F-test 197.85 Prob 0.0000 

    
VARIABLE COEFF SD t-value 
CONSTANT 1.470 0.170 8.639 

OLDPSN 0.029 0.006 4.517 
2534NK 0.022 0.005 4.033 

WKWIFE 0.016 0.003 5.238 
BIGACC 0.021 0.003 7.352 
COUNCL -0.004 0.001 -3.086 
HHTCAR 0.035 0.005 6.893 
UNSKLD -0.012 0.005 -2.736 
QUALML 0.012 0.002 6.573 
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Table 2: The results of robust OLS estimation 
OBS 844 DF 835 

2R  0.6546 Adj- 2R  0.6513 
F-test 197.85 Prob 0.0000 

    
VARIABLE COEFF SD z-value 
CONSTANT 1.470 0.456 3.225 

OLDPSN 0.029 0.009 3.212 
2534NK 0.022 0.007 3.039 

WKWIFE 0.016 0.006 2.741 
BIGACC 0.021 0.003 6.310 
COUNCL -0.004 0.002 -2.209 
HHTCAR 0.035 0.008 4.442 
UNSKLD -0.012 0.004 -3.293 
QUALML 0.012 0.003 4.819 
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Table 3: Moran Statistics for all variables at different lags. 

     
Variablesx Neighbourhood I SD Z-VALUE 
OLDPSN First Order  0.441 0.021 21.536 

 Second Order  0.259 0.014 19.211 
 Third Order  0.200 0.010 19.225 
 Fourth Order  0.166 0.009 19.101 
 Fifth Order  0.102 0.008 13.163 

2534NK First Order 0.654 0.021 31.894 
 Second Order 0.557 0.014 41.319 
 Third Order 0.453 0.010 43.333 
 Fourth Order 0.376 0.009 43.002 
 Fifth Order 0.284 0.008 36.192 

WKWIFE First Order  0.250 0.020 12.281 
 Second Order  0.160 0.013 11.983 
 Third Order  0.088 0.010 8.500 
 Fourth Order  0.050 0.009 5.907 
 Fifth Order  0.028 0.008 3.689 

BIGACC First Order  0.615 0.020 30.071 
 Second Order  0.467 0.014 34.657 
 Third Order  0.358 0.010 34.317 
 Fourth Order  0.251 0.009 28.789 
 Fifth Order  0.168 0.008 21.530 

COUNCL First Order  0.552 0.021 26.951 
 Second Order  0.322 0.014 23.902 
 Third Order  0.180 0.010 17.260 
 Fourth Order  0.104 0.009 11.947 
 Fifth Order  0.047 0.008 6.071 

HHTCAR First Order 0.591 0.021 28.842 
 Second Order 0.413 0.014 30.677 
 Third Order 0.255 0.010 24.418 
 Fourth Order 0.155 0.009 17.833 
 Fifth Order 0.086 0.008 11.103 

UNSKLD First Order 0.242 0.021 11.844 
 Second Order 0.176 0.014 13.145 
 Third Order 0.113 0.010 10.892 
 Fourth Order 0.071 0.009 8.249 
 Fifth Order 0.069 0.008 8.873 

QUALML First Order 0.657 0.021 32.064 
 Second Order 0.595 0.014 44.066 
 Third Order 0.527 0.010 50.406 
 Fourth Order 0.435 0.009 49.677 
 Fifth Order 0.361 0.008 45.924 

INC First Order  0.510 0.021 24.917 
 Second Order  0.385 0.014 28.597 
 Third Order  0.302 0.010 28.988 
 Fourth Order  0.232 0.009 26.576 
 Fifth Order  0.173 0.008 22.174 
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Table 4: Instrumental variables estimates.  
Dependent 
Variable 

INC OBS 844 

VARS 5 DF 838 
2R  0.7002 Sq. Corr. 0.6615 

    
VARIABLE COEFF SD z-value 

W_INC 0.243 0.060 4.031 
OLDPSN 0.034 0.007 5.257 
2534NK 0.024 0.005 4.472 

WKWIFE 0.025 0.003 7.799 
BIGACC 0.017 0.004 4.805 
HHTCAR 0.034 0.006 6.219 
UNSKLD -0.010 0.003 -3.048 
QUALML 0.007 0.002 2.830 

Diagnostics for spatial dependence 
Lagrange Multiplier (error) DF VALUE 
First order standardized weights  1 10.6036* 
Second order standardized weights  1 0.4375 
Third order standardized weights 1 0.9244 
Fourth order standardized weights 1 0.7320 
Fifth order standardized weights 1 0.2431 
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Table 8: Monte Carlo Test 

Parameter P-value 
CONSTANT 0.15 

OLDPSN 0.49 
2534NK 0.70 

WKWIFE 0.15 
BIGACC 0.43 
COUNCL 0.14 
HHTCAR 0.77 
UNSKLD 0.00 
QUALML 0.08 
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Figure 1: Spatial distribution by quintile ranges for: old residents (OLDPSN: top left); 
young childless households (2534NK: top centre); working wives (WKWIFE: top right); 
large accommodation (BIGACC: middle left); residents in council property (COUNCL: 
middle centre); multiple car ownership (HHTCA: middle right); unskilled workers 
(UNSKLD: bottom left); qualified male residents (QUALML: bottom centre); income 
score (INC: bottom right). 
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Figure 2: Local Moran’s I statistic for: old residents (OLDPSN: top left); young 
childless households (2534NK: top centre); working wives (WKWIFE: top right); large 
accommodation (BIGACC: middle left); residents in council property (COUNCL: 
middle centre); multiple car ownership (HHTCA: middle right); unskilled workers 
(UNSKLD: bottom left); qualified male residents (QUALML: bottom centre); income 
score (INC: bottom right). 
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Figure 3: Residuals from the Instrumental Variables estimation. 
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Figure 4: GWR parameter variation across the study area for: old residents (OLDPSN: 
top left); young childless households (2534NK: top centre); working wives (WKWIFE: 
top right); large accommodation (BIGACC: middle left); residents in council property 
(COUNCL: middle centre); multiple car ownership (HHTCA: middle right); unskilled 
workers (UNSKLD: bottom left); qualified male residents (QUALML: bottom centre); 
and constant ( i0β : bottom right). 
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Figure 5: Parameter t-values for: old residents (OLDPSN: top left); young childless 
households (2534NK: top centre); working wives (WKWIFE: top left); large 
accommodation (BIGACC: middle left); residents in council property (COUNCL: 
middle centre); multiple car ownership (HHTCA: middle right); unskilled workers 
(UNSKLD: bottom left); qualified male residents (QUALML: bottom centre); and 
constant ( i0β : bottom right). 
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Figure 6: R-squared (left) and residuals (right) for the GWR regression 
 
                                                
i The household income bands and their values as rescaled by Harris (1999) are: 1) household income under 
£5,000 (rescaled to 1.2 to accommodate social security thresholds); 2) between £5,000 and £9,999 (rescaled to 
2); 3) between £10,000 and £14,999 (rescaled to 3); 4) between £15,000 and £19,999 (rescaled to 4); 5) between 
£20,000 and £29,000 (rescaled to 5.5); 6) between £30,000 and £39,999 (rescaled to 7.5); 7) household income 
over £40,000 (rescaled to 10). 
ii Estimations in this section were performed using SpaceStat 1.8 (Anselin, 1992) which, in addition to 
calculation of spatial statistics, is also a convenient environment for performing aspatial multiple regression. 
iii The significance of individual coefficients is based on the standard normal distribution because the estimation 
method is based on asymptotic considerations. Hence the z-value column of Table 2, which is actually an 
asymptotic t-test. 
 
iv For instance, in the so-called queen’s case, a first order adjacency neighbourhood matrix would consider as 
neighbours of an area all other units that share a border or a vertex with it. By definition a location or unit is not 
contiguous to itself. Higher order adjacency matrices follow a recursive definition. Hence, a second order 
adjacency matrix would take as second order neighbours of a location all of the first order neighbours of its first 
order neighbours. 
v The expressions for the mean and standard deviation of I vary depending on the assumptions made about the 
data and the nature of the spatial autocorrelation. The approach taken here is to assume that, asymptotically, 
Moran’s I follows a standard normal distribution. 
vi Estimations in sections 4.1 to 4.3 were calculated using SpaceStat 1.8. 
vii Note that the expected value is the same for all spatial weights as it is only dependent on the number of 
observations, i.e. -0.001 = 1/844. Conversely, the standard deviation (column SD in Table 3) is a function of the 
spatial weights matrix and so it is different for each one, with the SD decreasing for higher order matrices. 
viii See Fotheringham and Brunsdon (1999) and Brunsdon et al., (1999) for a discussion on how this technique 
can be used to explore local variability in some cases. 
ix GWR version 2.0, the software used to estimate the models in this section, allows the selection from a number 
of criteria for determining the bandwidth. 
x The variables reported here are the dependent variable in later models (INC) and four socio-economic 
attributes from the Census dataset found to be statistically significant in explaining its variability out 50 
variables originally considered.  


