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Abstract: We apply spatial interaction models using panel data to explain commuting 

behaviour in the Netherlands. Our main conclusion is that the distance-decay effect is not 

constant over time and that changes in this effect are region specific. In more densely 

populated regions the change in the distance-decay parameter is small suggesting that 

regional increases in congestion have a large negative effect on the increases in average 

commuting distance. The panel spatial interaction model we derive is well-suited for 

testing significance of the centrality index (an often used variable in spatial interaction 

models). Although evidence is found for competition effects in a pooled cross section 

framework, controlling for time invariant unobserved heterogeneity renders this relation 

spurious.   

 

1. Introduction 

Spatial interaction models, a certain type of gravity models, are popular tools to predict 

commuting flows between regions (Fotheringham and O’ Kelly, 1989). The focus of 

these models is on the distance-deterrence parameter, which measures, loosely speaking, 

the effect of the distance between two regions on the size of the commuting flow between 

these regions (conditional on the characteristics of the region, for example, the number of 

jobs). Previous studies have estimated the distance-deterrence effect based on cross-

section data on commuting flow for a specific short period (usually one year, see 

Fotheringham and O’ Kelly, 1989, for an overview). These studies usually acknowledge 

that it is open to debate to what extent the estimates can be generalised to other periods. 

This ambiguity is problematic as spatial interaction models are frequently used to 

evaluate the effect of new infrastructure projects on future commuting flows for different 

scenarios. To predict commuting flows in the future would be relatively straightforward 

if it can be assumed that the distance-deterrence effect is constant over time in the 

absence of infrastructure improvements. It is implausible however that the distance-

deterrence effect is constant over time, because the relative costs associated with the 

commuting distance are thought to fall over time. The main reason is that as average 

income grows over time, the costs of commuting relative to wages fall, implying that 

employees will choose to travel by faster, but more expensive, modes, which increases 

the average distance travelled (even when the average commuting time remains 
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constant).1 An increase in the average distance travelled implies an increase in 

congestion, which may weaken the original effect. Because congestion tends to be a local 

phenomenon, it is generally expected that the time-variation in the distance-decay 

parameter is locally specific. 

 Recently, Thorsen and Gitlesen (1998) have empirically evaluated alternative 

model specifications to predict commuting flows. Their main conclusion is that spatial 

interaction models are sensitive to the chosen specification and potentially misspecified 

due to measurement errors in the distance function. Estimates of the distance-deterrence 

parameter appear not to be independent of the chosen model specification.2 In the current 

paper, we will estimate the time-variation in the distance deterrence effect on commuting 

flows using panel data. By employing panel data, we are able to address both the 

specification issue and the problems associated with measurement errors. Surprisingly, 

the use of panel data in the current context is novel.3 Panel data estimation turns out to be 

extremely straightforward.4 

 The benefits of using panel data have been extensively discussed (Hsiao, 1985; 

Baltagi, 2002). We will see that in the context of spatial interaction modelling, the main 

advantage is that one may control for origin-destination specific heterogeneity. Common 

sense suggests that any variable that measures the economic distance between regions 

fails to capture the heterogeneity of the economic distances. For example, when 

economic distance is measured by the geographical distance between the centres of 

regions, then this measure not only ignores the heterogeneity due to variation in 

infrastructure, but fundamentally ignores the variation in the specific spatial form of both 

regions including the distribution of jobs and residences within the regions. As is well 

known, omission of heterogeneity leads to bias in the resulting estimates if the omitted 

                                                           
1 Another reason may be that the population density increases which may increase the costs per commuting 
distance due to increased congestion. 
2 Similarly, in the empirical literature on migration and competing destinations, which is based on spatial 
interaction models, it is generally reported that the estimates of the distance deterrence effects depends 
upon the chosen functional specifications (in particular, the inclusion of the competing destination 
parameter). 
3 Panel data applications of gravity models are common in the international trade literature (Brun et al., 
2002). 
4 While interpretation of the results is less ambiguous than estimates based on cross-section data. 
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variable correlates with the explanatory variables. Panel data estimation controls fully for 

time-invariant heterogeneity.5  

 

2. Panel data and spatial interaction models 

2.1 Spatial interaction models 

A common application of spatial interaction models in the field of commuting and 

infrastructure evaluation is the following doubly constrained gravity model 

(Fotheringham and O’Kelly, 1989), which will be the focus of our paper: 

 

ijijjjiiij udFDBOAP )(= ,  (1) 

 

where Pij denotes the number of commuters between region i and j, Oi denotes the size of 

the labour force in region i (origin), Dj denotes the number of employed workers in 

region j (destination) and F(dij) denotes the distance-decay, where F (F > 0) is assumed to 

be a decreasing function of the distance dij between the regions i and j. Ai and Bj are 

‘balancing factors’, which guarantee that the origin and distance totals are constrained, so 

j
i

ij DP =∑  and i
j

ij OP =∑ .6  Finally, uij denotes the random error with uij independent 

and identically distributed. In empirical applications, F(dij) is usually specified as 

exp(αdij) or dij
β (α, β < 0). In the following, we will assume that F(dij) = dij

β, but all the 

results can easily be adapted presuming different functional forms of F. So: 

 

ijijjjiiij udDBOAP β= .  (2) 

 

In the empirical literature, the first aim is to estimate β, the distance-decay parameter, 

which determines how the number of commutes depend on commuting distance. The 

main underlying assumption of this model is that Pij depends on factors related to region i 

                                                           
5 In the context of commuting flows, the disadvantages of panel data are minimal, because the usual 
problems of panel data are related to non-response, attrition and self-selectivity (Kasprzyk et al., 1989) are 
absent. The main restriction is that the method of collecting data over time remains the same. 
6 Thorsen and Gitlesen (1998) extend the above model by including an effect of labour market 
characteristics of Pii. Our estimation approach is insensitive to such an extension. 
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(Oi and Ai), factors related to region j (Dj and Bj) and depends on factors which are 

related to both region i and region j only through the commuting distance dij. Although 

such an assumption may be correct for some applications, it is plausible that other factors 

then dij, let’s call them cij, influence Pij. One example in the literature is that cij is a 

centrality index, which measures the competition from other regions or a contiguity 

variable, which measures if regions i and j are contiguous (Fotheringham and O’Kelly, 

1989, chapter 3). Hence, a more general formulation of the spatial interaction model is: 

 

ijijijjjiiij ucdDBOAP θβ= ,              i,j = 1..N. (3) 

 

The main empirical problem is that estimates of β depend on the correct specification of 

cij, which is often problematic. This issue can be avoided by means of panel data. 

A more general spatial interaction model is Alonso’s Theory of Movements. 

(Alonso, 1978; Fotheringham and O'Kelly, 1989). In this model the origin and destination 

totals are not constrained, but dependent on the balancing factors. For the commuting 

application this means that employment in each region is affected by accessibility to the 

labor force, and active population is affected by accessibility to jobs. Estimation of 

Alonso’s Theory of Movements falls apart into two stages (De Vries et al., 2002) The 

estimation of the distance-deterrence function is exactly the same as in the doubly 

constrained model. Estimation of the effect of accessibility on location is more 

complicated. As in this paper, we are only concerned with the effect of distance, the 

results are also valid for Alonso’s Theory of Movements. The same holds true for special 

cases of this model, such as singly constrained models. Estimation of the distance-decay 

parameter is the same for all these models. 

 Sen and Soot (1981) propose three methods to estimate β. The first method 

involves maximum likelihood, the other two methods involve a linearisation of (3) such 

that β can be estimated in a less cumbersome way. For simplicity of exposition, we will 

ignore the function cij. The first of these linearisation methods implies that (3) is written 

as: 
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jjiijiijjjiijiijjjiijiij ddddPPPP εεεεβ −−++−−+=−−+ ))ln()ln()ln()(ln()ln()ln()ln()ln(

 

where εij is independent and identically distributed IID(0, σ2). 

 

2.2 Spatial interaction models and panel data 

A more general formulation of the model, which allows for variation over time in the 

commuting flows is: 

 

ijtijijtijjtjtititijt uccdDBOAP ijt 0
0
θθβϕ= ,         i,j = 1,..N   j = 1,..T, (4) 

 

where we acknowledge that βijt may vary over time and may be origin and destination 

specific. The latter may be important because given the distance, the economic costs may 

be origin and distance specific, for example due to local differences in infrastructure. 

Moreover, we recognise that the factor cij can be decomposed into a time varying factor 

cijt and a time-constant factor cij0. The latter factor mainly includes variables that are 

related to observed spatial particularities (e.g. contiguity). Further, we allow the effects of 

Oit and Djt on the commuting flows to depend on parameters α and ϕ.  In the empirical 

application, the research will focus on the change in βijt, whereas α, ϕ, θ, and θ0 will be a 

nuisance parameters of less interest. We emphasise that the current specification of the 

model is extremely general. For feasible estimation, we will put restrictions on the 

functional form of βijt. We will first assume that βijt obtains the following particular 

functional form: 

 

tijijt βββ += ,               (5) 

 

implying, that the change over time in βijt is not origin/distance specific and therefore the 

same for all commuting flows: 

 

tttijtijt βββββ ∆=−=− −− 11 .   (6) 
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In the empirical estimation, we will estimate ∆βt, the change in the distance-deterrence 

parameter. The above specification presumes that the change in the distance-deterrence 

function is not region specific, which may be unrealistic, because it does not allow for 

local changes in the distance-deterrence effect, e.g. due to new infrastructure or increased 

congestion. To allow for region-specific effects, the following less restrictive functional 

form may be more appropriate: 

 

itijijt βββ += .                                                                                                                  (7) 

 

This specification is more general than (5). Equation (7) presumes that the change in βit is 

origin specific. In this case: 

 

itititijtijt βββββ ∆=−=− −− 11 .                                                                                          (8) 

 

In the empirical analysis we will estimate ∆βt (based on (4) and (5)) and ∆βit (based on 

(4) and (8)). We will test whether ∆βit = ∆βt. 

Without loss of generality, we can structure uijt in the following way: 

 

ijtjtitijijt vvvvu ...= , (9) 

 

where vij, vit and vjt are unobserved variables, and vijt is an unobserved random variable 

which is independent and identically distributed. The explanatory variables in (4) are 

assumed to be independent of vijt. An example of vij is the time-invarying unobserved 

measurement error due to spatial particularities (e.g. the spatial forms of regions i and j, 

the presence of natural barriers between i and j) and the unobserved measurement error in 

the costs associated with distance (e.g. the presence of specific types of infrastructure). 

Note that vit reflects an unobserved time-varying deviation in the flows originating from 

region i, for example due to infrastructure improvements in region i. The variable vjt has a 

similar interpretation. 
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2.3 Fixed or random effects? 

In the panel data literature, there is a large literature on the assumptions of the type of 

unobserved variables vij, vit and vjt (Baltagi, 2001). These variables could either be 

assumed to be random or assumed to fixed parameters to be estimated. In the context of 

commuting flows, it makes sense to assume that vij, vit and vjt are fixed, because 

interference is based on a specific set of flows between regions (which cannot be 

interpreted as a random drawing from a large population of flows). One advantage of the 

fixed effect assumption is that the explanatory variables are allowed to be correlated to 

unobserved fixed variables. A disadvantage is that effects of time invariant variables 

(distance) are not identified. 

 

2.4 Estimation 

After taking the logarithm of both sides of (4), one can in principle estimate the model by 

means of ordinary least squares (OLS) to get estimates of ∆βt, α, ϕ, θ, θ0, vij, vit and vjt. 

However, if N or T is large, estimation will involve too many individual dummy 

variables (vij, vit and vjt already involve N2 + 2NT dummies; in our application this would 

mean 2400 dummies), and the matrix to be invented by OLS is usually too large. We 

propose here a specific solution which encompasses estimation methods applied in cross-

section spatial interaction models (Sen and Soot, 1981) and panel data models (Hsiao, 

1985). This method is to write (4), using odds ratios as: 
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 (10) 

Maybe rather surprisingly, equation (10) demonstrates that the change in the commuting 

flows between i and j (relative to the internal commuting flow for i) relative to the return 

flow from j to i (relative to the internal flow for j) does not depend on nuisance 
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parameters (vij, vit, vjt), the origin and distance size effects and does not depend on any 

observed (or unobserved) spatial particularity. 

Hence, defining ∆ as a change over time such that ∆xt = xt – xt-1 taking logarithms, and 

making use of (6), it appears that:  

 

∆ln(Pijt) - ∆ln(Piit) + ∆ln(Pjit) - ∆ln(Pjjt) = ∆βt[ln(dij) – ln(dii) + ln(dji) - ln(djj)] + θ[ ∆ln(cijt) 

- ∆ln(ciit) + ∆ln(cjit) - ∆ln(cjjt)] + random error.7                                                             (11) 

                                                             

Readers familiar with the panel data literature will realise that although estimates of ∆Βt 

obtained based on (10) are consistent, one can easily obtain more efficient estimators. 

Equation (10) has been based on the change in the commuting flow between two periods, 

but it can easily be seen that it is more efficient to focus on the change in the commuting 

flow compared to the average commuting flow over the whole period (since the variation 

in the average flow is less than the variation in the flow from one year). 

One can see that the time-invariant variables that are associated with time-invariant 

coefficients are not identified and do not affect ∆βt. The time-varying factor cijt can be 

measured in several ways but it is common to specify cijt as cjt (or cit) see Fotheringham, 

1983; 1986; Fotheringham et al., 2001; Pellegrini and Fotheringham, 1999; Ishikawa, 

1987). For example, it may refer to the average education of the labour force in a region. 

In this case, using equation (11) simplifies into: 

 

∆ln(Pijt) - ∆ln(Piit) + ∆ln(Pjit) - ∆ln(Pjjt) = ∆βt[ln(dij) – ln(dii) + ln(dji) - ln(djj)] + random 

error.                                                                                                                                (12) 

 

 So estimation of ∆βt is not affected by the cjt (or cit). Based on equation (12), ∆βt can be 

estimated by means of OLS. In a similar way, ∆βit can be estimated. 

 

                                                           
7 Presuming that Ft(dij) = exp(αtdij) and the factor cijt enters also exponentially as ijtcexpθ

, it appears that 
we obtain the same equation as above, the only difference being that the first term on the right side is 
replaced by ∆αt[dij – dii + dji – djj] and the second by θ[∆cijt - ∆ciit +∆cjit -∆cjjt]. 
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Alternatively, if the choice set of destinations is not constant over regions (Fotheringham 

and O’Kelly, 1989; Thorsen and Gitlesen, 1998): cijt may be specified as follows: 

 

0          j,k and ik where          , <≠≠= ∑ γγ

k
ikktijt dDc  

 

3. Commuting in the Netherlands 1992 – 2001  

3.1 Description of the data 

The commuting flow data we use come from ten sequential labour force surveys (1992 to 

2001), which contain each about one percent of Dutch households. The locations of 

residence and workplace of each employee are both known. We have calculated regional 

commuting flows for 40 (COROP) regions. Each region contains, on average, about 

160,000 employees. In 1992, 83 % of the employees live and work in the same region. In 

2001, 78 % of the employees live and work in the same region. So, in the Netherlands 

during the nineties, the population of employees which work in the region of residence 

has decreased substantially. 

The measurement of distance is usually a sensitive issue, as spatial interaction models are 

sensitive to the measurement error in the distance function (Thorsen and Gitlesen, 1998). 

One of the main advantages of panel data analysis is that the consistency of the estimates 

is not affected by time-invariant measurement error (as demonstrated in (10) because vij 

is not identified).  

In the current application, we have used the average commuting distance by car in 1995, 

which overestimates the average commuting distance for most commuting flows.8 

Although the measurement error is systematic, it is time invariant, and will therefore not 

affect the consistency of the estimates. 

As a preliminary exercise to estimating the panel data model based on (12), we have 

estimated a spatial interaction model employing a cross-section analysis based on 

equation (3). 

So, we have estimated ten times the distance-decay parameter (and not the change in this 

parameter as in the panel data analysis), which requires us to specify the spatial 

                                                           
8 We would like to thank AVV Transport Research Center for providing these data. 
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particularities of the region. In this analysis, we included dummies for adjacent regions 

and for commuting flows to the region of residence. Further, we used weights as 

proposed by Sen and Soot (1981). Then 10 distance parameter estimates are plotted in 

Figure 1. The full results can be received upon request from the authors. 
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Figure 1: distance decay over time 

 
An ordinary least squares regression on these estimates yields that the distance decay 
parameter increased with 0.029 each year. 
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3.2 Estimation results 

In this section we estimate a trend in the distance decay parameter on Dutch commuting 

data for the period 1992 – 2001. To this aim, we derived various econometric models in 

section 2. The basic model is given in equation (2) and we use the first of the two 

linearizations given.9 10 We apply OLS, fixed effects and random effects estimators. 

Weights as proposed by Sen and Soot (1981) are used (averaged over time), reflecting the 

fact that large flows are measured more accurately. Results are shown in table 1 (standard 

errors between brackets). 

 

panel estimators  pooled 

OLS FE RE 

distance decay -3.908 

(0.032) 

- -3.908 

(0.056) 

trend in dist. decay 0.0295 

(0.0058) 

0.0295 

(0.0024) 

0.0295 

(0.0024) 

centrality index -0.133 

(0.064) 

0.031 

(1.070) 

-0.128 

(0.182) 

Table 1: estimation results 

 

In the first specification, where no individual effects are allowed for, effects of distance 

and a trend in this effect appear to be highly significant. The hypothesis that the distance 

decay parameter does not vary over time is thus rejected against a positive trend. We find 

a negative coefficient for the centrality index, which is significant at the five percent 

level. This might indicate competition or congestion effects. 

The second and third specification control for unobserved heterogeneity by allowing for 

individual effects. In the fixed effects specification, the distance decay parameter is not 

identified since this estimator is based on variation over time and not over individuals 

(space). The trend in distance decay estimate does not change compared to the OLS 

specification, but it is more efficient. However, the centrality index now turns out to be 

                                                           
9 Before taking logs, we have added 1 to all flows. 
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insignificant. Apparently, the relation found in the OLS specification was spurious, and 

due to unobserved heterogeneity. 

The random effects model assumes that unobserved heterogeneity is independent from 

explanatory variables, in our case distance. This seems a reasonable assumption. 

Estimates are then obtained from an optimal combination of time series and cross section 

information, so that the effects of time invariant variables like distance are also identified. 

Again we find the same coefficients for distance decay and trend as in the OLS 

specification, but the random effects estimator is more efficient. Just like in the fixed 

effects specification, the centrality index is insignificant. 

 

3.3 Regional variation 

We finally consider region specific distance decay coefficients and trends in the random 

effects model. Hypotheses that regional differences in these variables are statistically 

insignificant are strongly rejected. Figure 1 shows regional distance decay parameters in 

a map of The Netherlands. Commuting distances are relatively large in the west of the 

country, where population and economic activity are concentrated, and in the province of 

Groningen. In figure 2 we present a map of regional trends in distance decay. Again, 

regional differences are substantial. The increase in average commuting distances is 

smallest in the west of the country. In the introduction to this paper we have argued that 

average commuting distance should increase over time. Since roads in this region are 

often congested, a marginal increase in distance would come at a higher price.  

 

                                                                                                                                                                             
10 For relyability of the data, we consider commuting flows over a distance smaller than 100 km only. This 
leaves us with 494 of the 1600 possible flows. 
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Figure 1: regional distance decay 
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0.06  to 0.21
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-0.007 to 0

 

Figure 2: regional trends in distance decay 

 

It appears that growth in the distance decay parameter was smaller in the west and centre 

of the country than it was in the north and south. A potential explanation would be that 

traffic congestion is considerable in the former regions. In the introduction to this paper 

we have argued that average commuting distance should increase over time. In congested 

areas a marginal increase of the commuting distance comes at a higher price. 

 

4 Conclusions 

This paper has proposed a spatial interaction model framework for estimating 

interregional commuting panel data. A central question was whether the distance decay 

parameter is constant over time. This question is of major importance for the analysis of 

infrastructure projects. A main finding of our empirical research is that a significant trend 

in the distance decay parameter exists, people indeed commute over increasing distances. 
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This finding is consistent with several micro analyses (eg. Rouwendal and Rietveld, 

1994), but our results are established using data on aggregate flows. Also, we show that 

trends in the distance deterrence parameter vary over regions. 

A major advantage of using panel data is the correction for possible omitted variable 

biases. In a regional context, biases could stem from measurement errors in the distance 

matrix or spatial particularities within or between regions. Since distance and most of 

these particularities can be considered time invariant, they do not affect a fixed effects 

estimator. The panel spatial interaction model we propose is thus very suitable for testing 

the impact of a centrality index. The relation be found in cross section analyses turns out 

to be spurious when we correct for unobserved (inter)regional heterogeneity.  
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