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Abstract 

The present experiment assessed whether prenatal stress (PS) can alter the ability of acute 

and chronic cocaine administration to increase and decrease the rewarding effectiveness of 

the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also 

whether PS can affect the extinction of the MFB stimulation response. Adult male offspring 

of female rats that received PS or no PS (nPS) were implanted with MFB stimulating 

electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute 

cocaine injection decreased ICSS thresholds dose-dependently. However, the 

threshold-lowering effects at any dose were not significantly different between groups. 

There was also no group-difference in the threshold-elevating effects of chronic cocaine 

administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance 

to the extinguishing of the response for brain-stimulation reward when acutely treated with 

cocaine, as compared to extinction without cocaine treatment. The results suggest that PS 

may weaken the ability for response inhibition under cocaine loading in male adult 

offspring. 
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Exposure to maternal stress during critical periods of brain development can have 

permanent and often profound influences on the physiology and behavior of offspring.  

Clinical research suggests links between maternal stress during pregnancy and many 

behavioral aberrations in later life, including attention/deficit hyperactivity disorder [9, 15, 

25, 29, 38], poor social interaction [30], cognitive dysfunction [46, 47], increased anxiety 

[46, 47] and substance abuse disorders [47]. In animals, especially rats, repeated maternal 

exposure to stress during the last week of gestation has been used to model prenatal stress 

(PS) and validated in a number of laboratories: This procedure results in behavioral 

modifications, strikingly similar to those in humans, ranging from stronger locomotor 

responses to a novel environment [10, 41], reduced propensity for social interaction [43], 

impaired sexual behavior [42, 45], and learning impairments in a reversal task on a Morris 

water-maze task [16, 39] to increased anxiety-like behaviors such as decreased visits to the 

“open-arms” on an elevated-plus maze [37, 41]. However, preclinical investigations of 

alterations in brain reward systems after gestational stress underlying substance use 

disorders are extremely limited. 

Drug self-administration and intracranial self-stimulation (ICSS) are useful operant 

methods for studying the reinforcing effects of addictive drugs in animal models.  Only a 

recent study by Kippin et al. [23] reported a modulatory effect of PS on cocaine 

self-administration. Specifically, offspring of female rats that were exposed to repeated 

maternal restraint stress during the last week of gestation exhibited, when allowed to press 

a lever for cocaine, elevated responding both during extinction and cocaine-primed 

reinstatement, but not during self-administration. This suggests that PS induces altered 
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responsivity of brain reward systems to cocaine. However, no studies have used ICSS 

measures to investigate the role of PS in cocaine vulnerability. As ICSS directly activates 

brain reward systems, its thresholds are believed to give an operational measure of brain 

reward function. Thus, the lowering of ICSS thresholds observed in the period immediately 

after cocaine administration [11, 22, 28] reflects an increase in brain reward function that 

may be responsible for the euphoric symptoms associated with cocaine addiction in humans 

[11].  Conversely, the elevation of ICSS thresholds seen in the period after acute effects of 

cocaine injection disappeared [1, 20, 28] reflects a decrease in brain reward function that 

may underlie postcocaine anhedonic/dysphoric symptoms in humans [11]. These findings 

suggest ICSS paradigms may be used to assess both the euphorigenic and dysphorigenic 

responses induced by cocaine [11].  

To test whether PS affects both responses, therefore, we first examined the 

dose-response effects of acute cocaine administration on ICSS, and then assessed changes 

in ICSS thresholds during the withdrawal periods between daily repeated cocaine injections. 

This was accomplished by determining the effects of cocaine on ICSS rate-frequency 

functions immediately after and 24 hrs after drug injection. Finally, since it has been 

reported that prenatally stressed animals can slow the extinguishing of the response during 

extinction with cocaine self-administration [23], we compared the responses in chronically 

drug-injected rats during extinction after ICSS training when treated with or without 

cocaine.  

All experiments were approved by the Hamamatsu University School of Medicine 

Animal Care and Use Committee, and were carried out with the National Institute of Health 
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Guide for the Care and Use of Laboratory animals (NIH Publications No.80-23). All efforts 

were made to minimize animal suffering and reduce the number of animals used.  

Pregnant Sprague-Dawley (Japan SLC Inc., Shizuoka, Japan) rats were individually 

kept under a12:12hr light/dark cycle (lights on at 0700h), with food and water ad libitum. 

PS treatment was performed daily from gestational days 13 to 19 (G13 - G19). The dams 

were put into a narrow animal holder and exposed to bright light for 45 min three times a 

day (started from 1000, 1300, and 1600h). Control dams were left undisturbed. The litters 

were nursed by their mothers, weaned at postnatal day 21, and housed three or four to a 

cage with their own littermates, maintaining the main treatment group segregation. 

Male offspring of females that received PS and no PS (nPS) at the age of 10 to 12 

weeks were used. The rats were pretreated intraperitoneally (i.p.) with atropine sulfate (0.05 

mg, i.p.), anesthetized for surgery with pentobarbital (50 mg/kg, i.p.) and positioned in a 

stereotaxic frame. A monopolar electrode (stainless steel wire that served as cathode, 0.2 

mm in diameter) was inserted into the medial forebrain bundle (MFB) at the level of the 

lateral hypothalamus (coordinates: anteroposterior -4.0 mm; mediolateral 1.6 mm; and 

dorsoventral 8.0 mm) [33]. A cortical screw served as anode.  Electrodes were secured to 

the skull with anchor screws and dental cement. Rats were allowed 7-10 days to recover 

from surgery. 

In Experiment I, PS (n=9) and no PS (nPS)  (n=8) rats were first trained to poke their 

nose into a hole in a wall of a transparent acrylic chamber (30.0 × 30.0 × 35.0 cm) for 

self-stimulation. The rewarding effect of ICSS was measured as previously described [8]. A 

fixed-interval (1 s) reinforcement schedule was used for this experiment. Each nose-poke 
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delivered a 0.3-s train of monophasic cathodal rectangular pulses with 0.1-ms duration. 

During the preliminary session the frequency was held constant at 65 pulses per second 

(pps) and the current intensity was progressively increased until the subjects showed 

vigorous self-stimulation. Rats were then tested using two alternating series of ascending 

and descending current intensities varied in steps of 50 µA. The current-threshold of each 

rat was defined as the value of stimulus that evoked 50% of the maximal rate of 

self-stimulation. These intensity values (120-240 µA) were then held constant for the 

subsequent testing of the frequency-threshold. The rats were again tested using two 

alternating series of ascending and descending pulse frequencies. The frequencies increased 

by 0.1 log unit steps (e.g., 26, 33, 41, 52, 65, 82, 103, 130, 163, 206 pps). Each frequency 

was tested within a 120-s trial. During each testing trial, rats received 10 priming 

stimulations at the beginning and nose pokes were recorded only in the last 60 sec. A 120-s 

warm-up trial (65 pps) followed by a 120-s extinction trial was given before the testing 

trials. Drug tests began when the rate–frequency curves were stable for at least three 

consecutive days (once daily). A baseline rate-frequency curve was measured (for 40 min) 

at 3 hr before the drug administration. Cocaine hydrochloride (cocaine: Dai-Nippon Ltd., 

Osaka, Japan) was dissolved in 0.9% saline and administered in a volume of 1.0 ml/kg of 

body weight. Cocaine doses (2.5, 5, 10, 20, or 30 mg/kg i.p.) were based on the salt form. 

The rate-frequency curve was measured again immediately after drug injection. In each 

group, vehicle and all drugs doses were tested in an ascending order for each rat, and a 

3-day interval was allowed between injections. 

In Experiment II, another cohort of PS (n=7) and nPS (n=5) rats had ICSS threshold 
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tests 24 hr after daily drug administration. First, once the rate–frequency curves were stable 

for at least three consecutive days, the rats were intraperitoneally injected with vehicle for 

five consecutive days to obtain a baseline. Next, rats were injected with 20 mg/kg of 

cocaine for five consecutive days and then with 40 mg/kg of cocaine for five additional 

days. The rats were removed from the test chamber immediately after the ICSS session, and 

injected with vehicle or cocaine in their home cage. Because previous studies demonstrated 

that 40 mg/kg was the cocaine dose that induces a generalized motor seizures after repeated 

daily drug exposure and electrical brain stimulation [24], a combination of 20 mg/kg, a 

lower dose, and then 40 mg/kg of the drug, a higher dose, was used for repeated cocaine 

administration to minimize this possibility. All subjects twice underwent a training trial of 

65 pps and extinction trial of 1 pps, at the end of chronic cocaine exposure. Each session 

consisted of three series of 10-min training and 10-min extinction. Half the animals were 

injected first with vehicle and then with 10 mg/kg of cocaine, while the remaining rats 

received drugs in the reversed order. The effect of PS on the extinction of nose-poking for 

ICSS was examined with and without cocaine treatment.  

Group differences in the stimulation currents required for maintaining reliable 

responding between PS and nPS animals were evaluated using a Student’s t-test. ICSS 

thresholds were obtained by fitting the Gompertz growth model to the data [32]: y=αe-e
b(Xi–X) 

(α, b and Xi represent the maximum rate, an index of the slope, and threshold respectively). 

The percentage changes in mean threshold value and maximum rate of responding 

produced by vehicle or cocaine for PS and nPS rats were analyzed using mixed design 

two-way analysis of variance (ANOVA)  (prenatal treatment x cocaine dose). The numbers 
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of responses during training and during extinction for PS and nPS rats were also analyzed 

using mixed design two-way ANOVA (prenatal treatment x cocaine dose). Significant 

effects were further analyzed using post hoc Bonferroni tests. 

At the end of each experiment, ICSS rats were overdosed with pentobarbital (100 

mg/kg, i.p.), perfused intracardially with a 10% formalin-saline solution, and brains were 

removed. Brains were subsequently sectioned at 30 µm using the frozen technique, and 

sections were stained with hematoxylin eosin to estimate locations of the electrode tips.  

The electrode tips in nPS and PS rats that received the rewarding stimulation were 

confirmed to be located within or near the MFB. Distribution of electrode placements was 

essentially identical in both groups of animals (data not shown).  

In Experiment I, nPS rats maintained reliable responding at 183.8±10.9 µA 

(mean±SEM), whereas PS rats maintained it at 185.6±13.3 µA; these currents did not differ 

significantly between groups (t=0.10, df=15, ns). Cocaine caused acutely dose-dependent 

leftward shifts of the rate-frequency functions regardless of prenatal treatment (Fig. 1A). 

These shifts in the mean ICSS thresholds, expressed as percentages of the pre-drug baseline, 

revealed a significant main effect of cocaine dose (F(5,75)=19.82, p<0.001) but not of 

prenatal treatment (F(1,15)=0.29, ns) and also no interaction effect of cocaine dose and 

prenatal treatment (F(5,75)=1.72, ns)(Fig. 1B). That is, in both nPS and PS rats, acute 

cocaine injection did not have significant effects at 2.5, 5 and 10 mg/kg, but it significantly 

decreased ICSS thresholds at 20 (p<0.001) and 30 mg/kg (p<0.001) when compared with 

threshold values after vehicle (cocaine 0 mg/kg). However, the threshold-lowering effects 

at any dose were not significantly different between groups. On the other hand, the mean of 
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maximal response rates did not reveal any significant main effects of cocaine dose 

(F(5,75)=0.55, ns)  as well as prenatal treatment (F(1,15)=2.83, ns), and no interaction 

between cocaine dose and prenatal treatment (F(5,75)=0.80, ns) (data not shown). 

 In Experiment II, nPS and PS rats required 172.0±9.7 µA and 165.7±13.4 µA, 

respectively, to sustain reliable responding; these currents did not differ significantly 

between treatments (t=0.35, df=10, ns). The rate-frequency function was slightly shifted to 

the right in both nPS and PS animals, as determined 24 hrs after daily cocaine 

administration (Fig. 2A). The data were averaged over the last three consecutive days for 

baseline and each cocaine treatment. However, the mean ICSS thresholds revealed no 

significant main effects of cocaine dose (F(2,20)=1.42, ns) and prenatal treatment 

(F(1,10)=0.99, ns), and no interaction effect of cocaine dose and prenatal treatment 

(F(2,20)=0.43, ns). After the chronic cocaine exposure, all animals were given extinction 

trials of responding for ICSS with or without cocaine treatment. Nose-poking for ICSS was 

allowed to stabilize during 10-min training trials before each rat was exposed to 10 min of 

extinction trials (responding without ICSS reward). Cocaine (10 mg/kg) did not increase 

the response rate during training trials in PS as well as nPS rats. The total number of 

nose-pokes over three training trials did not show any statistical difference between vehicle 

and cocaine (F(1,10)=2.38, ns), between prenatal treatments (F(1,10)=0.10, ns), and also 

interaction between drug and prenatal treatments (F(1, 10)=0.21, ns) (Table 1).  On the 

other hand, the drug clearly increased the response rate during extinction trials in PS but not 

nPS rats (Fig. 2B). The total number of nose-pokes over three extinction trials revealed a 

significant interaction between cocaine dose and prenatal treatment (F(1,10)=7.28, p=0.02) 
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and marginal main effect in cocaine dose (F(1,10)=4.49, p=0.06),  but no main effect in 

prenatal treatment (F(1,10)=1.86, ns) was found. Following cocaine treatment, the total 

number of nose-pokes during extinction trials was significantly high only in PS rats, 

compared with vehicle-treated trials (p<0.01), as shown in Fig. 2B. 

The results of this study demonstrated for the first time that prenatal stress augments 

responding during extinction of ICSS with but not without cocaine treatment in male adult 

offspring. However, our results also revealed that prenatal stress affected neither the 

stimulant effects of the rewarding impact of the MFB stimulation induced acutely by 

exposure to cocaine, nor its depressant effects during the withdrawal periods in repeated 

drug exposures.  

PS is well known to alter the hypothalamic-pituitary-adrenal (HPA) axis in ways that 

weaken its negative feedback in later life [48].  That is, repeated stress to pregnant rats by 

activating the HPA axis causes excessive secretion of glucocorticoid hormones in the 

mother and fetus [44]. High levels of corticosterone cross the placenta and blood-brain 

barriers to reach the fetal brain [2, 3] and results in dysregulation of the fetal HPA axis [48]. 

Consequently, the offspring of mothers that were prenatally exposed to stress evidently 

exhibit a prolonged elevation of plasma corticosterone following an acute restraint stress in 

adulthood.  

Several findings have shown that the HPA axis is crucial for cocaine reinforcement [35, 

36]. Cocaine self-administration cannot be acquired at low doses (0.125 mg/kg/infusion or 

lower) unless the level of corticosterone is increased above a threshold critical for cocaine 

reward [12, 13, 14]. Conversely, adrenalectomy effectively prevents the increase in cocaine 
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self-administration by footshock-induced corticosterone [14]. Like stress, ICSS activates 

the HPA axis leading to elevated levels of corticosterone in circulating blood [7, 40].  

Based on these combined results, one can speculate that PS and the resulting heightened 

corticosterone secretion might increase the sensitivity of brain-stimulation reward to 

cocaine in offspring.  

We first examined acute dose-response effects of cocaine administration on ICSS in 

male adult offspring by determining the effects of cocaine on ICSS rate-frequency 

functions. However, PS failed to alter the lowest dose of cocaine (20 mg/kg, i.p.) for 

inducing a significant decline of ICSS thresholds, and no significant difference in ICSS 

thresholds was found between PS and nPS rats at any dose of cocaine (Fig.1).  Results also 

showed that cocaine did not alter the maximal rates of responding at any dose examined, 

suggesting that ICSS thresholds observed here were largely unaffected by 

performance-altering effects of drug manipulations such as increased locomotion and/or 

stereotypy evident at a high dose.  It is worth noting that other behavioral models, such as 

self-administration and conditioned place preference paradigms also provided results 

consistent with the present finding: When both nPS and PS rats were trained to 

self-administer cocaine intravenously at doses of 0.25, 0.5 and 1.0 mg/kg/infusion, there 

was no difference in the number of sessions required to reach the self-administration 

criterion between groups [23]. In addition, nPS and PS rats developed a dose-dependent 

conditioned place preference, and no significant difference was observed between groups at 

cocaine doses of 2.5, 5 and 10 mg/kg, i.p. (our unpublished data). In parallel with these 

results, the present findings indicate that PS and the resulting impaired activity of HPA axis 
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might not affect the stimulant effect of the rewarding effectiveness of the MFB stimulation 

induced acutely by cocaine in male adult offspring. 

Next, we assessed daily changes in ICSS thresholds during the withdrawal periods after 

repeated exposures to cocaine administration. According to the literature, adrenalectomy 

blocks acquisition of cocaine self-administration [14, 26], whereas repeated treatment with 

corticosterone decreases ICSS thresholds in adult rats [4], suggesting that PS and the 

resulting elevated levels of corticosterone may enhance the rewarding value of stimuli such 

as drugs and stimulation. Results showed that both PS and nPS rats tended to develop 

elevations of ICSS thresholds daily determined at 24 hrs post-cocaine administration. 

Moreover, no significant difference in ICSS thresholds was found between PS and nPS rats 

after either 20 or 40 mg/kg of cocaine was repeatedly administrated (Fig. 2A). This finding 

suggests that PS and the resulting weakened negative feedback of the HPA axis might not 

affect the cocaine-induced depressant effect of brain-stimulation reward in male adult 

offspring. It is unexpected, however, that the present study failed to duplicate a previous 

result in the nPS rats showing that daily repeated administration of cocaine at a high dose 

of 40 mg/kg over seven consecutive days dampened the sensitivity of the brain reward 

systems by post-drug elevation of ICSS thresholds [24]. The reason for this difference in 

response is not clear, but may be due to differences in drug regimen.  Although rats in the 

present study were treated with 20 mg/kg once-daily for 5 days followed by further 5 days 

of treatment with 40 mg/kg once-daily, the treatment period of 40 mg/kg cocaine (5 days 

exposure) was shorter than that in the previous study (7 days exposure) which showed that 

only the post-cocaine increase in reward thresholds for brain stimulation seen on Day 7 was 
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significantly higher from baseline [24]. In addition, it is also important to note that brain 

reward systems may respond differentially to self vs imposed drug injections. Indeed, ICSS 

thresholds are elevated after chronically self-administered cocaine injections more reliably 

than by chronically experimenter-administered cocaine injections [1, 22, 28].  

As mentioned above, PS and the resulting dysregulation of the HPA axis most likely 

does not affect the potentiation as well as depression of brain stimulation reward appearing 

shortly and long after cocaine administration, respectively. Nonetheless, we found 

noticeable evidence that chronically drug-administered PS rats exhibited high levels of 

responding during extinction trials than did nPS rats when acutely treated with cocaine, 

whereas responding during extinction was unchanged in both groups when treated with 

vehicle. Thus, this evidence is partially in accordance with a recent finding showing that PS 

rats increased lever-pressing during extinction of cocaine self-administration relative to nPS 

rats [23].  The mechanisms by which PS enhances non-reinforced responding during 

extinction are unclear but may involve alterations of the mesolimbocortical dopamine 

system as well as the HPA axis. Indeed, PS decreases corticosteroid receptors in 

hippocampus [3, 17] and frontal cortex [27] of male offspring, areas that are strongly 

involved in the regulation of the negative feedback of the HPA axis [18, 19]. On the other 

hand, PS increases dopamine receptors in these brain areas [5, 6] and also enhances basal 

[23] as well as cocaine-stimulated dopamine transmission in the prefrontal cortex of 

cocaine-experienced male rats [23].  Moreover, PS males show a reduction in spine density 

and dendritic complexity in hippocampus [20] and medial prefrontal cortex [31]. Damage 

to the hippocampus [21, 49] or the medial prefrontal cortex [34] could display a high 
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resistance to extinction in some appetitive learning situations. Thus, altered responsiveness 

of the HPA axis and the dopamine system in these brain regions may contribute to the 

behavioral deficit observed here in PS rats.  

In summary, the present findings showed that gestational stress potentially increases 

resistance to extinction of responding for a brain-stimulation reward under cocaine loading 

in male adult offspring. It is thus suggested that PS might decrease the ability to inhibit 

inappropriate responding, which becomes obvious under cocaine administration. 
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Figure legends 

Fig. 1. Effects of acute cocaine administration to potentiate rewarding effects of ICSS 

(Experiment I). (A) Rate of nose-poking as a function of stimulation frequency during 

pre-drug baseline and after vehicle or cocaine (30 mg/kg, i.p.) for PS (n=9) and nPS (n=8). 

Each data point denotes the mean±SEM of reinforced responses. (B) Effects of cocaine on 

ICSS thresholds in PS (n=9) and nPS (n=8) rats. Cocaine caused dose-dependent decreases 

in ICSS thresholds (mean±SEM) in all animals. However, the threshold-lowering effects of 

cocaine were not different between groups. ***p<0.001  

 

Fig. 2. Effects of repeated cocaine administration to dampen rewarding effects of ICSS and 

responding in ICSS extinction trials (Experiment II). (A) Effects of chronic cocaine 

administration on the ICSS thresholds in nPS (n=5) and PS (n=7). Immediately after the 

ICSS session rats were daily injected with cocaine at 20 mg/kg (i.p.) for successive 5 days 

and then at 40 mg/kg (i.p.) for another successive 5 days. ICSS threshold was measured at 

24-hr post-cocaine. Data were presented as the mean±SEM of values averaged over the last 

3 successive days for each injection. (B) Effects of 10 mg/kg cocaine on non-reinforced 

nose-pokes during extinction trials of ICSS responding. Each bar denotes the mean±SEM 

of total nose-poke responses over 3 extinction trials. **p<0.01 
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Table legend 

Table 1. Effects of 10 mg/kg cocaine on reinforced nose-pokes during training trials of 

ICSS 

Values given are mean±SEM number of total nose-pokes over 3 training trials with or 

without cocaine. Although cocaine increased ICSS rates, there was no significant difference 

in responding between treatments in both groups. 

  

 

	 



Group 
Drug 

treatment 
Training (10 min/trial) 

Total 
1 2 3 

nPS (n=5) 
Vehicle 289.0±32.5 271.2±45.7 266.2±31.4 826.4±83.7 
Cocaine 313.2±32.1 322.8±28.7 293.8±43.3 929.8±96.8 

PS (n=7) 
Vehicle 318.9±23.0 321.4±23.2 276.3±41.4 877.1±69.6 
Cocaine 339.0±27.3 376.4±23.1 326.6±42.2 948.7±84.1 

Table 1. Effects of cocaine on the rate of ICSS 

Values given are mean±SEM number of nose-pokes per 10 min with or without cocaine (10 mg/kg, i.p.). 

Although cocaine increased ICSS rates, there was no significant difference in responding between 

treatments in both groups. 
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