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ABSTRACT

There is plenty of anecdotal evidence that driveay make small changes in their time
of travel to take advantage of lower levels of cestgpn. However, progress in modelling
such “micro” re-scheduling within peak period traffemains slow. While there exist

research papers describing theoretical solutidmxet are no techniques available for
practical use. Most commonly used assignment progiae temporally aggregate, while
packages which do allow some “dynamic assignmeypically assume a fixed demand

profile.

The aim of the paper is to present a more heunsé&thod which could at least be used
on an interim basis. The assumption is that theaskehprofile can be segmented into a
number of mutually exclusive “windows” in relatiom the “preferred arrival time”, while
on the assignment side, independently defined sdiqli&timeslices” are used in order to
respect some of the dynamic processes relatingetdtild-up of queues. The demand
process, whereby some drivers shift away from tipeaferred window, leads to an
iterative procedure with the aim of achieving rewdae convergence.

Using the well-known scheduling theory developedMigkrey, Small, and Arnott, de
Palma & Lindsey, the basic approach can be destribgtending from the simple
“bottleneck”, to which the theory was originally @ied, to a general network. So far,
insufficient research funds have been made availablest the approach properly. It is
hoped that by bringing the ideas into the publicndm, further research into this area
may be stimulated.
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Practical Modelling of trip rescheduling under congested conditions

John Bates, Transport Planning Consultant, Abingtidt

1 Introduction

The aim of this paper is to assist in the practggcification of models of transport
demand and supply which can be used as planninig. t¥éhile much of practical
transport modelling remains dominated by netwoddsen with assumptions of fixed
demand at any given time, there has been a groawugptance of the fact that the
(generalised) costs of travel affect the level emdnd, whether these costs derive from

deliberate policy (eg road pricing) or from capacihanges.

For practical purposes, therefore, a model needseflect both demand and supply
effects, and, while its validity may be disputed;cavenient working assumption is that
the two must be in equilibrium. In other words, teneralized cost that gives rise to a
given pattern of demand must be compatible withnigtevork’s ability (largely related to

highway congestion) to accommodate the demandhfttst.

Prompted initially by the findings of the SACTRA9@4) report, there has been ongoing
effort in the UK to develop reasonably standardireatielling approaches which allow

for demand responses in a way that is accessiljpeatttical modellers. There has been
reasonable agreement about the need to refleae#ponses of frequency, distribution

(or destination choice) and mode choice within tinand model, as well as route
choice (though this is handled routinely within thesignment module). It has proved
more difficult to make progress on the choice widiof travel, but here too some general

guidelines are being achieved.

One of the key issues of time of travel choiceheslével at which it may be considered.

Following a classification originally due to Batg®996), it has become common to make



a distinction between “macro” and “micro” shiftsh@re “macro time-shifting” allows for
the possibility of transferring between defineddat@eriods (typically 2 or 3 hours), as
between peak and interpeak, and “micro time-siyftmay be defined as relatively small
changes in arrival and/or departure time. Generaltycro-shifts are motivated by
changes in the temporgt ofile of journey times - ie, the variation in road joeyntime
between a fixed origin and destination, dependemttlee exact departure time. If
travellers have a preferred arrival (or departtireg, they will only shift from this if they
receive some benefit in the form of reduced travmles. Typically, this will have
implications for thearrival time, which, at least in the morning peak, is lifkeo be

critical.

Such variation in travel times is predominantly anifestation of the build-up and
dispersal ofqueues at various points in the network. Because thisessentially a
dynamic process, it is not possible to represensiitg “standard” assignment methods,
which are “time-aggregate” - some account of theetigment and dispersal of queues is
required. Ideally, this should be done using ayfdlynamic assignment in continuous

time.

There is plenty of anecdotal evidence that driveay make small changes in their time
of travel to take advantage of lower levels of cesigpn. However, progress in modelling
such “micro” re-scheduling within peak period traffemains slow. While there exist
research papers describing theoretical solutidmset are no techniques available for
practical use. As noted, most commonly used assghnprograms are temporally
aggregate, while packages which do allow some “ghyaassignment” typically assume

a fixed demand profile.

At the same time, the main demand responses naididrgdestination choice etc) are
also typically modelled on a time-aggregate basien if broad distinctions (eg between

peak and off-peak) are reflected.



There are thus two essential questions. Firstlyy ban a better understanding of the
build-up of congestion within the peak be obtaingesing reasonably accessible models?
Secondly, are there potential errors imported tht overall demand-supply modelling
process by not taking account of the prof¥ehin congested periods? The standard
approach is to take a two or three hour matrixtier am peak, factor it to give a single
hour (with practice varying between average andakpeand assign it, making use of

standard congested network algorithms (equilibragsignment).

The aim of the paper is to present a more heunsé&thod which could at least be used
on an interim basis. Currently this remains untkdsiteis hoped that by bringing the ideas

into the public domain, further research into #mea may be stimulated.

The key assumption is that the demand profile adibided into a number of mutually
exclusive “windows” in relation to the “preferredrigal time”, while on the assignment
side, independently defined sequential “timeslices€ used in order to respect some of
the dynamic processes relating to the build-upugfugs. The demand process, whereby
some drivers shift away from their preferred wingddeads to an iterative procedure with
the aim of achieving reasonable convergence. Taeresome difficult decisions to make
as to what it means to say that demand is allodatedhy particular time period — do we

mean that istarts within that period?

Using the well-known scheduling theory developed\bigkrey (1969), Small (1982,
1992), and Arnott, de Palma & Lindsey (1994), tlasib approach can be described,
extending from the simple “bottleneck”, to whiclettheory was originally applied, to a

general network.



2 Preliminaries

2.1  Theoretical Background

The key starting point is the “schedule delay” fatay initially developed by Vickrey
(1969), and further extended in the work of SmBEI82, 1992), and a series of papers by
Arnott, de Palma & Lindsey (ADL: eg ADL (1994)). éajor review is given in Bates
(1996), available on the UK DfT Website. Howevdre tkey aspects will be briefly
presented here.

In the earliest expositions, all travellers wiskatave at the same “preferred arrival time”
(PAT), and the system is treated as having a si@gI2 pair. As long as the capacity of
the network is sufficient, all travellers can aernat PAT. However, once capacity
problems occur, this is no longer possible, andestrawvellers will be early or late.

The schedule delay formula is a functional formtfee utility of arriving at times other
than the PAT, taking account of the possible timieaatages of so doing. If we denate
as the actual arrival time, ag¢lt) as the travel time for those who arriver athen by far
the most popular proposal for this utility is tlthie to Small (1982), a development of
Vickrey (1969), whereby

U(t) =—a (1) -3 SDE -y SDL -4 d_ Q)

where all four termst, 3, y, & arepositive, and the terms SDE ("Schedule Delay Early"),

SDL ("Schedule Delay Late"), and fdummy (0,1) for late arrival”) are defined as

SDE = Max (PAT%0) (2a)
SDL = Max {—PAT,0) (2b)
d = 1ift >PAT, 0 otherwise. (2¢)



Note that the terms in the utility functio@ SDE,y SDL, 6 d.] give the variations in utility
associated with each possible arrival tipee se. the sum of these terms constitute the

schedule utility. Clearly this is at a maximum (of 0) whes PAT.

It may be noted thal, which represents a penalty for being log¢e se, is in fact omitted
from many of the studies using this general formmta implicitly, it is set to zero or
subsumed within thg parameter. For reasons of simplicity we hencefatiore thed

parameter.

If now we maximise the utility with respect to tagival timet, we obtain the well-known

key demand-side first order conditions on the gnatdof travel time'(t):

for early shift ¢ < PAT)&'(1) =p/a (3a)
for late shift € > PAT) &'(1) = —yla (3b)

The interpretation of these conditions is tHashifting is to take place, the network will
need to deliver the appropriate travel time gradielh may be noted that in most of the
theoretical work (by the authors previously citeaparticularly simple form of network is
used - the so-called “bottleneck” model, whereleg{filow times are maintained as long as
capacity is not exceeded, and thereafter a detistiniqueuing process begins, in which the
(additional) travel time is directly proportiona the length of the queue. This allows the
departure time profile to be derived analyticallyith a “real” network, this is no longer

possible, and an iterative procedure is required.

As noted, the theoretical work tends to assumear@lgeneous population in respect of PAT
and the utility parameters, though work has beaeredany Small and ADL to relax these
restrictions. Ideally the demand should be exptessecontinuous time, but, as noted
earlier, for practical purposes we will assume thaan be expressed in terms of discrete

“windows” of PAT.



For convenience of exposition, we assume that ttgatand over the whole of the peak
period is fixed, and that outside this period (imatwve refer to as the pre-peak and the post-
peak), the level of congestion is not affected agations in demand, though we allow for

the fact that it could beifferent between the pre- and post-peaks.

2.2 Notation

Based on the recommendations of Bates (1996), d@rusial to avoid any confusion
between variables which are indexed by departane and those which are indexed by
arrival time, and this approach is therefore fokalhere. In essence, the key notation is

set out in the following paragraphs:

As a general convention, we use "t" to indicateadee time, andt” to indicate arrival
time. The difference between these; t, represents the journey time, or, perhaphett

journey duration.

Viewed from the arrival point of view, we write theurney duration, given arrival at
time 1, as(t), and correspondingly, viewed from the departwmtpof view, we write
the journey duration, given departure at time Q&% The fundamental linking identities

can then be written as:

T=t+0O() (4a)
t=1-§(1) (4b)
&() = 0(1=<(1) (4c)

O(t) = E(t+O(1)) (4d)

We assume a base demand matrix for the peak pé&riaal the sense that if free-flow
times prevailed, this is the level of demand whwé would assign using an time-
aggregate approach. It is convenient (though nitedyruncontroversial!) to act as if this

represents all demand wishingata ive within the peak period.



Sinceall calculations are on a matrix level, we will sugsr@ny “ij” notation, but it is

implicit throughout.

3 Outline of the Approach

3.1  Temporal disaggregation

3.1.1 Segmenting by PAT

We now assume that this base demand is segmentBPADyands or “windows”. The
notation allows for any number of such bands witthi@ peak period, and we index the
bands as “k”. There is an implication that the lsanded to be relatively narrow, and
there is probably value in keeping the intervaésgsame width. Then band k is defined on

the interval J = [PAT«, PATk], and the demand that falls within this band viaé

written as A. It is implied that:

Zk Ak =T (5)
and that the bands cover the whole peak period.
The split into matriced\ is independent of any network considerations,iarlus fixed.
We are ignoring herkow it would be done in practice, and from now on,agsume that
the split has been achieved. For convenience, weassume that the distributievithin
each PAT window is uniform.

3.1.2 Assignment

In order to introduce some “dynamics” into the mtare, a sequential assignment

procedure is carried out for different timeslicathum the peak period. The actual way in



which this is done will depend on the assignmeag@m. Here we try to give a general
description.

It is convenient to assume that the separate tlioessrelate todeparture periods,
though it is recognised that there are some questd interpretation here. We will treat
this as a technical issue, and not discuss itéulh this stage.

There is no requirement, in principle, for the gssient time-slices to bear any
relationship to the PAT windows, and we treat thguite independently. We index the
assignment time-slices by “r’. Once again, theydneebe defined as abutting intervals
which we write asI= [t, to]. For each assignment time-slice, we require aahem
matrix T, and we assume that the internal dynamics (eg gpassing) are effectively

handled, so that the assignments of successivestiogs arenot independent.

The result is then a series of cost matrices wisaiice we concentrate on the journey
durationonly, we write a®,. In addition, we have the fixed matric®s and®? from the

pre-peak and post-peak assignments.

3.1.3 Time Period Choice

It is useful to view the departure time model aeasally carrying out the following task:

for each PAT segment k, calculate the proportigyoptotal demand Aallocated to
eachArrival timewindow h

Although it will need to be checked in actual cimatances, we expect the profile of
continuous journey time&(t) to gradually rise to a peak value, and thereafemline.
We will denote the arrival time associated with kighest(t) ast*. Moreover, we may
expect that the gradient on the “early” side<(t*) will typically be shallower than that
on the late side — this is related to the genegpketation thaf/a < y/a, reflecting that

most travellers would rather be early than late.



Consider the behaviour of travellers in PAT segnmemntith interpolated average travel
time &. These travellers have three possible choiceth&r acceptable arrival times h:
within PAT window for segment h =k
earlier window h<k

later window h>k

Which option they choose will depend on the grade$ig (and, of course, their values of

the scheduling parameters — we are here assummggdemeity in this respect).
Assuming a uniform interval size J for each PAT aaw, there will be no late shifting
if y (h—Kk) J +a &, <a & for h >k,

and no early shifting iB (k—h) J +a &, < a & for h <k

In other words, for early shifting (h < k), we regu

o (& —&n) <P (k-h) J = (& —¢&n) 2Ppla (k-h)J (6a)
while for late shifting (h > k), we require:
o (& —&k) 2 -y (h-k) J =  (&nh—&) s —y/a (h-k) J (6b)

This, of course, rules out, on the early side, simfting if the gradieng’ is negative, and

on the late side, any shifting if the gradiénis positive.

While these conditions are straightforward to derivtheir implications are less
straightforward. Suppose, for example, that we @rethe early side, considering the
choices for PAT segment k. The gradigft+ &-1) = B/a J, and the gradien&(— &k-»)

> 2 B/a J. However, the “incremental gradientx ( —&k—2) <B/a J.

This makes it clear that the conditions just stadeel not in fact complete. In these
circumstances, travellers will not shift all theyw@ window (k—2), since having got as

far as (k-1), the further shift cannot be justifi&ksentially, this is a consequence of



dealing with discrete intervals, rather than reiggira continuous condition on the
gradient. What is actually happening is that, sohexe between the midpoints of arrival
segments (k-1) and (k—2), the gradient falls betbes critical value. Without doing
further (non-linear) interpolation, it is not obu® how much, if any, of the total demand
for PAT segment k should be allocated to arrivgihsent (k—2). This uncertainty implies
that we should limit our expectations of the lesketonvergence that may be attained.

The essential equilibrium conditions on the demsidd can be stated as:

for each PAT segment k
Vin £ Vi* if pn=0

\7kh :\7k* if pk,hZO

where Vi, =B (k=h) J +a &, ifh< k
= o & if h = k
=y (h—k) J +a & if h >k )

It will be seen that these correspond with the daesh Kuhn-Tucker conditions for a

constrained optimisation problem.

These conditions also have to be compatible wehtrdvel times delivered by the network,
given the pattern of departure times. What we toegeneed is a procedure which will a)

deliver the quantitie§, and b) allow the quantitieg pto be calculated.
By summing over PAT windows, we can then obtainitiyglied actual arrival demand for

each arrival time window h. This can then be tiaesl into the departure demand timeslices

r, allowing for the travel timé.

10



3.2 General algorithmic approach

3.2.1 The equilibrium principle

An analogy can be constructed with equilibrium gissient in route choice. Suppose we
enumerate all possible routes, applying some “b&iscriterion to avoid “cycles”. The
equilibrium conditions tell us that all routes adty used must have the same cost. But
we do not deduce from this thalt the enumerated routes have the same cost! Ratéer,

have to compute how many of the enumerated ro@ed to be used.

Another useful way of envisagingoth problems (ie route choice and departure time
choice) is along the following lines. Assume a fixghape matrix but allow the total
demand to be variable, and consider what happemg adlow it to increase. When the
total demand is low, relative to the network capaall vehicles will select the single
minimum cost route for each O-D pair, and concontiya all vehicles will choose the
departure time which allows them to arrive at tHAT. As total demand increases, the
performance of the (free-flow) minimum cost routd#l wradually deteriorate, until it is
equal to the ¥ best route, and at this stage both routes wilbteeight into use. These
two routes will then “deteriorate” at the same naiil they reach the cost of the third
best route etc, so that the size of the set of tmates depends on the volume of demand.
Precisely similar developments relate to departtinee choice — the window of
acceptable arrival times expands with the volumdeshand.

In practice, of course, the interdependence ofsliitk a network makes this more
complex, so that, for example, what was the thedtlyoute under free-flow conditions
need not be the same as the third route whichtisty brought into use as the volume
increases. Further, we have appealed to the netiaagacity” which is difficult to

define in practice. Nonetheless, none of this suérfrom the essential validity of the

principle described.

11



We have described the “raw material” of the procedand what is now required is to
describe the interfaces which permit the algoritbrproceed. For ease of illustration, we
will assume a single homogeneous segment of dematdrespect to the schedule
parametersa 3 y. However, the approach can in principle be extdntte multiple

populations with different schedule parameters.

3.2.2 Interfaces

The equilibrium conditions were set out in 3.1.2\&h in terms of the travel tindg, that

is, the travel time viewed from the standpoint loé farrival time window. However, we
do not have direct access to this — we only hagevitiues from the assignment, which
relates to different period definitions. Since veevdr assumed that these yi€ldrather than
&, these need to be converted (essentially usingtitgedd above). The details of this
conversion will depend on the assignment packageekample, with CONTRAM the
actual arrival timeg are known, s@ can be obtained directly. However, we treat teisia
technical issue which is in principle soluble. Have are effectively assuming that a
package such as SATURN will be run for succesgimae-slices”, with “queue-passing”.

Assuming therefore that we ha§erelating to an arrival timeg, for each assignment time-
slice, we now use linear interpolation to transthtse into the requirdg values defined at
the midpoint of each PAT segment. We can proceedltulate the utilities for each arrival

timeslice, and hence the allocation of demand,raggdg for each PAT segment.

Because of the assignment time-slice procedunaitleef calculation is required to map the
contributions of each PAT segment to the assignriiergslices. We are now implicitly
working in terms ofdeparture times. Summing over each PAT segment k, we cakula
what proportion of the total demand A falls in easlsignment time-slice r, thus giving us
the required assignment matridgs

We may illustrate the essential progress of thatitns as follows:

12



Tr e er e Er e Ek e Qk e Tr

assign convert interpolate arrival time choice  convert/interpolate

The quantity Qx represents the cumulative distribution of arrivas time 1. The

corresponding cumulative distribution of departaetsme t is written as Q

There are three essential elements in the procedure

Firstly, the skimmed quantities from the assignmes#d to be converted to arrival time

windows: this involves the use of identity (4a) amigrpolation.

Secondly, separately for each of the PAT windowsyethod is required to allocate the
total demand among the possible arrival time wirgld@iven the inherent approximation
in the method, a straightforward procedure suchM&A* would seem to be appropriate.
To implement this, within each iteration n the aatitime with maximum utility must be

chosen, and the demand then averaged with the astifrom the preceding iteration
according to the proportion 1:n—1. After addingossrall PAT windows, this leads to an

estimate of the total allocation to each arrivahadaw.

Thirdly, the implied cumulative distribution of aral times needs to be converted back
to a departure time window basis: this again ingslinterpolation, together with identity
(4b).

3.3 Proposed Algorithm (using MSA)

In any iteration, assume that we have travel tisteratesé, for each PAT segment k:
these have been obtained by a) conversion of thigrasent cost matrice®, to &, by
associating the costs with the appropriateival times, and b) interpolating across the

entire peak period.

! “Method of Successive Averages”

13



Then, for each segment k, evaluate the “averagdhydor each arrival window h:

Vi =B (k=h)J+a &, ifh< k
= o & ifh=k
=y (h=K) J +a & it h>k (8)

Find h for whichV,, is maximised, and allocate the entire demand égment k to the

“auxiliary” (or “target”) estimate:

Ykn = Ak for h min, 0 otherwise 9

Combine with previous estimateg xusing “MSA” weights
X'ih = (1A). Xich + A Yin (10)

where, according to the MSA approacdh,s taken as the reciprocal of the iteration
number. Note that this maintains the property tfateach PAT segment B, X'xp =

Ay, ie all the base demand is allocated to someaamindow h.

The “segmented arrival time matrices”xX'need to be stored for the following iteration.
However, for the assignment the PAT index k is remuired. Thus we proceed by
calculating:

X'«h =Zk X'kh (11)

This gives the total arrival demand in each arrivaidow h. We now need to translate
this back to departure time windows. This can baedby means of the interpolated
values of¢ at the boundaries of the arrival time windows. Example, for arrival time
window h, the boundaries are [PRATPAT,], so that the corresponding departure time
points are [PAT1 —&( PATh1), PATh — &( PATh)]. This gives the cumulative demand in

terms of the departure time.
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We can now interpolate again to apportion the ctovihe departure time windows. The
difference between the cumulative curve at thet-s@rd end-points of each window

gives the amount of demand to be assigned inithastice.

In this way, all the demands »{’ are allocated to a departure timeslice. Notesbate of
the allocations may beutside the span of the peak assignments: these will eot b
assigned, but assumed to have the appropriategpuimme characteristics of the pre- or

post-peak.

The temporally dependent assignments are now daoug, yielding new estimated,

and the iterative sequence continues.

The stabilising properties of the MSA algorithm glibensure that the profile @ft)
demonstrateseasonable continuity, even if true convergence is hard toieee. While it
would be feasible to adopt more powerful forms pfimisation (eg the Frank-Wolfe
method), it may be doubted whether this would bethvat, given the fact that an
essentially continuous process is being treateal discrete problem. A more promising
alternative might be to attempt a stochastic atlooaover the possible arrival time

windows, by means of a logit model, for example.

Note also that if the gradieft never reaches the critical value [@f1, on the early side,

or —y/a, on the late side, then no shifting will take pglaln this case, the entire demand for

PAT segment k will be allocated to the arrival tim@dow for k.

Finally, as noted, that the same approach couldsed if we allowed a further demand

segmentation by schedule parameters.

15



3.4 lllustration

The travel time choice module requires similar diti&s to be calculated on both

departure time and arrival time windows, and thi&tan is potentially confusing.

At least for the purposes of illustration, it islpfel to consider the variables in tabular
form, along the following lines (the values for s in the tables are arbitrary, but

intended to be indicative):

Tablel Departure Time Intervals (for assignment) [minutes]
from interpolate
assignment
r Start End midpoint GC Duration Arrival Cumulative Hence
-1 Iy fr G(fr ) @(t_r ) [Tr]r Q(lr) Tr
0) 0 <0 ff ff 0 0.0825
1 0 15 7.5 20 27.5 0.18027 0.0978
2 15 30 22.5 21.5 44 0.30125 0.1210
3 30 45 37.5 23.5 61 0.45013 0.1489

Note that the arrival column is still in terms bktdeparture time windows, and hence is
written [tr]. The columns beyond the bold vertical line antyavailable subsequent to

the choice of arrival time windows.
The figure below plots the travel durati@ against the midpoint of interval r. It then

plots the same value against the implied arrivaéticalculated by adding the duration to

the interval midpoint. This is therefore a repreagon of§(T).
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Figure 1: travel duration ©(t) and &(T)

Table?2

h (k) Start End

A OWODNPRF

Jh-1

0

10
20
30

Arrival Time Intervals (for time period choice)

h

10
20
30
40

interpolated

midpoint GC Duration Departure
T M(Th) &(Th) [th]n

5 20 -15

15 20 -5

25 20 5

35 20.6818 14.3182

200

[minutes]

midpoint
Cumulative Q(T,)
Qn

0
0.03 0.015
0.08 0.055
0.14 0.110
0.21 0.175

Note that the departure column is still in termshaf arrival time windows, and hence is
written [th].

The next stage is to interpolate the points onéth curve to obtain an estimate at the

midpoint of thearrival time windows. This can usually be done with good accuracy, as

17



shown in the next figure. Note that we also cakeulthe implied departure time

associated with the arrival time midpoint (by sabting the interpolated value &ft).

Travel duration plotted against arrival time - original and interpolated

40
35 I,
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—e— interpolated
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duration

10

T T T T T T T T T T T T T T T T T T T
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Arrival time

Figure 2: interpolation of &(T)

We can now calculate the arrival time with the maximn utility (separately for each PAT
segment k), and by means of the MSA procedure,irolttee current estimate of the
demand for each arrival time window. These canuransed over PAT segments, and
from this we can infer @umulative arrival time distributionQ(t), here given as a
frequency. This can be plotted both against thevadrtime window midpointand the
implied departure time (as an estimate of Q(t))nake figure below:

18



Cumulative demand

[

@
By

B

=)

- / / —o—vs Arrival Time
5

/ / ——vs Departure time
64

-20 30 80 130 180 230

time (Departure t or arrival 1)

Figure 3: cumulative demand Q(t) and Q(1)

The final requirement is to interpolate the cumu@atiemand points on the Q(t) curve to
obtain an estimate at the midpoint of theparture time windows. Once again, this can

usually be done with good accuracy, as shown iméx figure.
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Cumulative demand against departure time: original and interpolated
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Figure 4: interpolation of Q(t)

We are now back to Table 1, above. Given the cutiwaldistribution, we can obtain the

proportion of demand to be allocated to each asségn time slice r.

3.5 Convergence

There is a distinction to be made between true emgeance measures (which determine
how close taequilibrium we are) and stopping measures, which merely report

whether the algorithm is making progress.

The implication of the equilibrium condition is th# for any ij pair and PAT segment Kk,

Vmax = Max, V,,,, we should have

Zh Xk,h (VMaX—\Tkh) =0 O IJ, k (12)

while the same quantity could be > 0 if the prodess not converged. Hence the overall

quantity:
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Zij Zk Zn Xich (Vmasx—Vi, ) (13)

is an indicator of convergence, the smaller théebet

It is usual to scale such quantities to obtaid-Ke” quantity such as:
zzzx My ~Vi)

ZZ%X - (Vviaxi

(14)

Note that while this is a single overall measureould be broken down to inspect the
convergence of individual ij pairs and, within theadividual PAT segments k. It would
also be possible to substitute the denominatohbyquantity>; > Z, Xy n: this would
then give the average “gap”, in units of utilityefle, minutes), between the optimum and
the current position, and would give a more inteitindication of the seriousness of any

such gap.

It is also possible to construct comparable indicabetween successive iterations. We

give a number of examples, all of which can behfertdisaggregated by ij pair and PAT

segment:
(n) i (n-1) (n) (n-1)
lZJlethl(X” -Xd4 ) ZZZ X =X
;M or ;M ’
222 X PIDIPIN
ij kh ij k h
DI CTA N S
ij k h kh
ZZZX“” |
i () ()i (n=1) ()
Z%% X|I<Jh VklrJ1 _XILJh VkIrJ1
y 7 oy etc., where n denotes the iteration number.
SEIXETIV
ij k h
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4 Conclusion

A method has been described, essentially heuristtoncept, for reflecting the changes
in travel (departure) time which may occur withive tpeak period as a result of changes
in the network (essentially a function of the rasfodemand to capacity). While it makes
use of general principles, it is intentionally pdated in terms of tools which are

reasonably available within current modelling picet

The method has not been tested, and it may bagattd that its convergence properties
will be relatively weak. Nonetheless, it is hopdattit could provide a method for
investigating a phenomenon which is well attestgidploorly understood — the “flattening
of the peak” as demand grows, and the “returnégotak” which occurs when additional
capacity is introduced. It is hoped that the re&tsimplicity of the approach will

encourage other researchers to try and implement it

The method could also provide a potentially be¢t&trmate of the time-aggregate costs
which could be used elsewhere in the demand modlighough it has not been
specifically discussed, one reasonable candidatengy achieved adequate convergence
of the allocation of peak period demand, is to wale a flow-weighted average of the
costs over the arrival time slices. In this waysitilso possible to reflect the scheduling
costs, along the lines discussed by Small (1992).

Finally, we should note an important feature of tneral approach. While it is
convenient to state the conditions in terms ofgteglient of travel time, the treatment of
discrete PAT segments means that a cerbsolute difference is required to induce
shifting. By the nature of things, a given absoldiierence is more likely to occur for
longer trips than for shorter, and it is therefaseful to look at certain combinations of
trip length (eg, for a typical urban area, InreCentral, Outer to Central, Through trips
etc.).
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