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Practical Modelling of trip rescheduling under congested conditions 

 

John Bates, Transport Planning Consultant, Abingdon, UK 

 

 

1 Introduction 

 

The aim of this paper is to assist in the practical specification of models of transport 

demand and supply which can be used as planning tools. While much of practical 

transport modelling remains dominated by networks, often with assumptions of fixed 

demand at any given time, there has been a growing acceptance of the fact that the 

(generalised) costs of travel affect the level of demand, whether these costs derive from 

deliberate policy (eg road pricing) or from capacity changes. 

 

For practical purposes, therefore, a model needs to reflect both demand and supply 

effects, and, while its validity may be disputed, a convenient working assumption is that 

the two must be in equilibrium. In other words, the generalized cost that gives rise to a 

given pattern of demand must be compatible with the network’s ability (largely related to 

highway congestion) to accommodate the demand at that cost. 

 

Prompted initially by the findings of the SACTRA (1994) report, there has been ongoing 

effort in the UK to develop reasonably standardized modelling approaches which allow 

for demand responses in a way that is accessible to practical modellers. There has been 

reasonable agreement about the need to reflect the responses of frequency, distribution 

(or destination choice) and mode choice within the demand model, as well as route 

choice (though this is handled routinely within the assignment module). It has proved 

more difficult to make progress on the choice of time of travel, but here too some general 

guidelines are being achieved. 

 

One of the key issues of time of travel choice is the level at which it may be considered. 

Following a classification originally due to Bates (1996), it has become common to make 
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a distinction between “macro” and “micro” shifts, where “macro time-shifting” allows for 

the possibility of transferring between defined broad periods (typically 2 or 3 hours), as 

between peak and interpeak, and “micro time-shifting” may be defined as relatively small 

changes in arrival and/or departure time. Generally, micro-shifts are motivated by 

changes in the temporal profile of journey times - ie, the variation in road journey time 

between a fixed origin and destination, dependent on the exact departure time. If 

travellers have a preferred arrival (or departure) time, they will only shift from this if they 

receive some benefit in the form of reduced travel times. Typically, this will have 

implications for the arrival time, which, at least in the morning peak, is likely to be 

critical. 

 

Such variation in travel times is predominantly a manifestation of the build-up and 

dispersal of queues at various points in the network. Because this is essentially a 

dynamic process, it is not possible to represent it using “standard” assignment methods, 

which are “time-aggregate” - some account of the development and dispersal of queues is 

required. Ideally, this should be done using a fully dynamic assignment in continuous 

time.  

 

There is plenty of anecdotal evidence that drivers may make small changes in their time 

of travel to take advantage of lower levels of congestion. However, progress in modelling 

such “micro” re-scheduling within peak period traffic remains slow. While there exist 

research papers describing theoretical solutions, there are no techniques available for 

practical use. As noted, most commonly used assignment programs are temporally 

aggregate, while packages which do allow some “dynamic assignment” typically assume 

a fixed demand profile. 

 

At the same time, the main demand responses noted earlier (destination choice etc) are 

also typically modelled on a time-aggregate basis, even if broad distinctions (eg between 

peak and off-peak) are reflected.  
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There are thus two essential questions. Firstly, how can a better understanding of the 

build-up of congestion within the peak be obtained, using reasonably accessible models? 

Secondly, are there potential errors imported into the overall demand-supply modelling 

process by not taking account of the profile within congested periods? The standard 

approach is to take a two or three hour matrix for the am peak, factor it to give a single 

hour (with practice varying between average and “peak”) and assign it, making use of 

standard congested network algorithms (equilibrium assignment). 

 

The aim of the paper is to present a more heuristic method which could at least be used 

on an interim basis. Currently this remains untested. It is hoped that by bringing the ideas 

into the public domain, further research into this area may be stimulated. 

 

The key assumption is that the demand profile can be divided into a number of mutually 

exclusive “windows” in relation to the “preferred arrival time”, while on the assignment 

side, independently defined sequential “timeslices” are used in order to respect some of 

the dynamic processes relating to the build-up of queues. The demand process, whereby 

some drivers shift away from their preferred window, leads to an iterative procedure with 

the aim of achieving reasonable convergence. There are some difficult decisions to make 

as to what it means to say that demand is allocated to any particular time period – do we 

mean that it starts within that period? 

 

Using the well-known scheduling theory developed by Vickrey (1969), Small (1982, 

1992), and Arnott, de Palma & Lindsey (1994), the basic approach can be described, 

extending from the simple “bottleneck”, to which the theory was originally applied, to a 

general network.  
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2 Preliminaries 

 

2.1 Theoretical Background 

 

The key starting point is the “schedule delay” formula, initially developed by Vickrey 

(1969), and further extended in the work of Small (1982, 1992), and a series of papers by 

Arnott, de Palma & Lindsey (ADL: eg ADL (1994)). A major review is given in Bates 

(1996), available on the UK DfT Website. However, the key aspects will be briefly 

presented here. 

 

In the earliest expositions, all travellers wish to arrive at the same “preferred arrival time” 

(PAT), and the system is treated as having a single O-D pair. As long as the capacity of 

the network is sufficient, all travellers can arrive at PAT. However, once capacity 

problems occur, this is no longer possible, and some travellers will be early or late. 

 

The schedule delay formula is a functional form for the utility of arriving at times other 

than the PAT, taking account of the possible time advantages of so doing. If we denote τ 

as the actual arrival time, and ξ(τ) as the travel time for those who arrive at τ, then by far 

the most popular proposal for this utility is that due to Small (1982), a development of 

Vickrey (1969), whereby 

 

 U(τ) = – α ξ(τ) – β SDE – γ SDL – δ dL  (1) 

         

where all four terms α, β, γ, δ are positive, and the terms SDE ("Schedule Delay Early"), 

SDL ("Schedule Delay Late"), and dL ("dummy (0,1) for late arrival") are defined as 

 

  SDE  = Max (PAT–τ,0)    (2a) 

  SDL  = Max (τ–PAT,0)    (2b) 

  dL = 1 if τ >PAT, 0 otherwise.   (2c) 
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Note that the terms in the utility function [β SDE, γ SDL, δ dL] give the variations in utility 

associated with each possible arrival time per se: the sum of these terms constitute the 

schedule utility. Clearly this is at a maximum (of 0) when τ = PAT.  

 

It may be noted that δ, which represents a penalty for being late per se, is in fact omitted 

from many of the studies using this general formulation: implicitly, it is set to zero or 

subsumed within the γ parameter. For reasons of simplicity we henceforth ignore the δ 

parameter. 

 

If now we maximise the utility with respect to the arrival time τ, we obtain the well-known 

key demand-side first order conditions on the gradient of travel time ξ'(τ): 

 

 for early shift (τ < PAT) ξ'(τ) = β/α     (3a) 

 for late shift (τ > PAT)  ξ'(τ) = – γ/α    (3b) 

 

The interpretation of these conditions is that if shifting is to take place, the network will 

need to deliver the appropriate travel time gradients. It may be noted that in most of the 

theoretical work (by the authors previously cited), a particularly simple form of network is 

used - the so-called “bottleneck” model, whereby free-flow times are maintained as long as 

capacity is not exceeded, and thereafter a deterministic queuing process begins, in which the 

(additional) travel time is directly proportional to the length of the queue. This allows the 

departure time profile to be derived analytically. With a “real” network, this is no longer 

possible, and an iterative procedure is required. 

 

As noted, the theoretical work tends to assume a homogeneous population in respect of PAT 

and the utility parameters, though work has been done by Small and ADL to relax these 

restrictions. Ideally the demand should be expressed in continuous time, but, as noted 

earlier, for practical purposes we will assume that it can be expressed in terms of discrete 

“windows” of PAT. 
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For convenience of exposition, we assume that total demand over the whole of the peak 

period is fixed, and that outside this period (in what we refer to as the pre-peak and the post-

peak), the level of congestion is not affected by variations in demand, though we allow for 

the fact that it could be different between the pre- and post-peaks. 

 

2.2 Notation 

 

Based on the recommendations of Bates (1996), it is crucial to avoid any confusion 

between variables which are indexed by departure time and those which are indexed by 

arrival time, and this approach is therefore followed here. In essence, the key notation is 

set out in the following paragraphs: 

 

As a general convention, we use "t" to indicate departure time, and "τ" to indicate arrival 

time. The difference between these, τ – t, represents the journey time, or, perhaps better, 

journey duration. 

 

Viewed from the arrival point of view, we write the journey duration, given arrival at 

time τ, as ξ(τ), and correspondingly, viewed from the departure point of view, we write 

the journey duration, given departure at time t, as Θ(t). The fundamental linking identities 

can then be written as: 

 

  τ ≡ t + Θ(t)   (4a) 

  t ≡ τ – ξ(τ)   (4b) 

  ξ(τ) ≡ Θ(τ–ξ(τ))  (4c) 

  Θ(t) ≡ ξ(t+Θ(t))   (4d) 

 

We assume a base demand matrix for the peak period T, in the sense that if free-flow 

times prevailed, this is the level of demand which we would assign using an time-

aggregate approach. It is convenient (though not entirely uncontroversial!) to act as if this 

represents all demand wishing to arrive within the peak period. 
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Since all calculations are on a matrix level, we will suppress any “ij” notation, but it is 

implicit throughout. 

 

3 Outline of the Approach 

 

3.1 Temporal disaggregation 

 

3.1.1 Segmenting by PAT 

 

We now assume that this base demand is segmented by PAT bands or “windows”. The 

notation allows for any number of such bands within the peak period, and we index the 

bands as “k”. There is an implication that the bands need to be relatively narrow, and 

there is probably value in keeping the intervals the same width. Then band k is defined on 

the interval Jk = [PATk1, PATk2], and the demand that falls within this band will be 

written as Ak. It is implied that: 

 

 Σk Ak = T   (5) 

 

and that the bands cover the whole peak period. 

 

The split into matrices Ak is independent of any network considerations, and is thus fixed. 

We are ignoring here how it would be done in practice, and from now on, we assume that 

the split has been achieved. For convenience, we may assume that the distribution within 

each PAT window is uniform. 

 

3.1.2 Assignment 

 

In order to introduce some “dynamics” into the procedure, a sequential assignment 

procedure is carried out for different timeslices within the peak period. The actual way in 
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which this is done will depend on the assignment program. Here we try to give a general 

description. 

 

It is convenient to assume that the separate time-slices relate to departure periods, 

though it is recognised that there are some questions of interpretation here. We will treat 

this as a technical issue, and not discuss it further at this stage. 

 

There is no requirement, in principle, for the assignment time-slices to bear any 

relationship to the PAT windows, and we treat them quite independently. We index the 

assignment time-slices by “r”. Once again, they need to be defined as abutting intervals 

which we write as Ir = [tr1, tr2]. For each assignment time-slice, we require a demand 

matrix Tr and we assume that the internal dynamics (eg queue-passing) are effectively 

handled, so that the assignments of successive time slices are not independent. 

 

The result is then a series of cost matrices which, since we concentrate on the journey 

duration only, we write as ΘΘΘΘr. In addition, we have the fixed matrices ΘΘΘΘ1 and ΘΘΘΘ2 from the 

pre-peak and post-peak assignments. 

 

3.1.3 Time Period Choice 

 

It is useful to view the departure time model as essentially carrying out the following task: 

 

 for each PAT segment k, calculate the proportion pk,h of total demand Ak allocated to 

each Arrival time window h 

 

Although it will need to be checked in actual circumstances, we expect the profile of 

continuous journey times ξ(τ) to gradually rise to a peak value, and thereafter decline. 

We will denote the arrival time associated with the highest ξ(τ) as τ*. Moreover, we may 

expect that the gradient on the “early” side (τ < τ*) will typically be shallower than that 

on the late side – this is related to the general expectation that β/α < γ/α, reflecting that 

most travellers would rather be early than late. 
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Consider the behaviour of travellers in PAT segment k, with interpolated average travel 

time ξk. These travellers have three possible choices for their acceptable arrival times h: 

 within PAT window for segment  h =k 

 earlier window    h < k 

 later window     h > k 

 

Which option they choose will depend on the gradient of ξ (and, of course, their values of 

the scheduling parameters – we are here assuming homogeneity in this respect). 

 

Assuming a uniform interval size J for each PAT window, there will be no late shifting  

   if γ (h–k) J + α ξh < α ξk for h > k,  

and no early shifting if β (k–h) J + α ξh < α ξk for h < k 

 

In other words, for early shifting (h < k), we require: 

 α (ξk – ξh) ≤ β (k–h) J   ⇒ (ξk – ξh) ≥ β/α (k–h) J   (6a) 

 while for late shifting (h > k), we require: 

 α (ξh – ξk) ≥ –γ (h–k) J ⇒ (ξh – ξk) ≤ –γ/α (h–k) J  (6b) 

 

This, of course, rules out, on the early side, any shifting if the gradient ξ’ is negative, and 

on the late side, any shifting if the gradient ξ’ is positive.  

 

While these conditions are straightforward to derive, their implications are less 

straightforward. Suppose, for example, that we are on the early side, considering the 

choices for PAT segment k. The gradient (ξk – ξk–1) ≥ β/α  J, and the gradient (ξk – ξk–2) 

≥ 2 β/α  J. However, the “incremental gradient” (ξk–1 – ξk–2) < β/α  J.  

 

This makes it clear that the conditions just stated are not in fact complete. In these 

circumstances, travellers will not shift all the way to window (k–2), since having got as 

far as (k–1), the further shift cannot be justified. Essentially, this is a consequence of 
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dealing with discrete intervals, rather than requiring a continuous condition on the 

gradient. What is actually happening is that, somewhere between the midpoints of arrival 

segments (k–1) and (k–2), the gradient falls below the critical value. Without doing 

further (non-linear) interpolation, it is not obvious how much, if any, of the total demand 

for PAT segment k should be allocated to arrival segment (k–2). This uncertainty implies 

that we should limit our expectations of the level of convergence that may be attained. 

 

The essential equilibrium conditions on the demand side can be stated as: 

 

for each PAT segment k 

 khV  ≤ *Vk  if pk,h = 0 

 khV  = *Vk  if pk,h ≥ 0 

 

where  khV   = β (k–h) J + α ξh   if h <  k 

  =  α ξk     if h = k 

  = γ (h–k) J + α ξh   if h > k   (7) 

 

It will be seen that these correspond with the standard Kuhn-Tucker conditions for a 

constrained optimisation problem. 

 

These conditions also have to be compatible with the travel times delivered by the network, 

given the pattern of departure times. What we therefore need is a procedure which will a) 

deliver the quantities ξh and b) allow the quantities pk,h to be calculated.  

 

By summing over PAT windows, we can then obtain the implied actual arrival demand for 

each arrival time window h. This can then be translated into the departure demand timeslices 

r, allowing for the travel time ξξξξk.  
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3.2 General algorithmic approach 

 

3.2.1 The equilibrium principle 

 

An analogy can be constructed with equilibrium assignment in route choice. Suppose we 

enumerate all possible routes, applying some “sensible” criterion to avoid “cycles”. The 

equilibrium conditions tell us that all routes actually used must have the same cost. But 

we do not deduce from this that all the enumerated routes have the same cost! Rather, we 

have to compute how many of the enumerated routes need to be used. 

 

Another useful way of envisaging both problems (ie route choice and departure time 

choice) is along the following lines. Assume a fixed shape matrix but allow the total 

demand to be variable, and consider what happens as we allow it to increase. When the 

total demand is low, relative to the network capacity, all vehicles will select the single 

minimum cost route for each O-D pair, and concomitantly, all vehicles will choose the 

departure time which allows them to arrive at their PAT. As total demand increases, the 

performance of the (free-flow) minimum cost route will gradually deteriorate, until it is 

equal to the 2nd best route, and at this stage both routes will be brought into use. These 

two routes will then “deteriorate” at the same rate until they reach the cost of the third 

best route etc, so that the size of the set of used routes depends on the volume of demand. 

Precisely similar developments relate to departure time choice – the window of 

acceptable arrival times expands with the volume of demand. 

 

In practice, of course, the interdependence of links in a network makes this more 

complex, so that, for example, what was the third best route under free-flow conditions 

need not be the same as the third route which is actually brought into use as the volume 

increases. Further, we have appealed to the network “capacity” which is difficult to 

define in practice. Nonetheless, none of this subtracts from the essential validity of the 

principle described. 
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We have described the “raw material” of the procedure, and what is now required is to 

describe the interfaces which permit the algorithm to proceed. For ease of illustration, we 

will assume a single homogeneous segment of demand with respect to the schedule 

parameters α β γ. However, the approach can in principle be extended to multiple 

populations with different schedule parameters. 

 

3.2.2 Interfaces 

 

The equilibrium conditions were set out in 3.1.2 above, in terms of the travel time ξh, that 

is, the travel time viewed from the standpoint of the arrival time window. However, we 

do not have direct access to this – we only have the values from the assignment, which 

relates to different period definitions. Since we have assumed that these yield Θr rather than 

ξr, these need to be converted (essentially using Identity 4d above). The details of this 

conversion will depend on the assignment package: for example, with CONTRAM the 

actual arrival times τ are known, so ξ can be obtained directly. However, we treat this as a 

technical issue which is in principle soluble. Here we are effectively assuming that a 

package such as SATURN will be run for successive “time-slices”, with “queue-passing”. 

 

Assuming therefore that we have ξr relating to an arrival time τr for each assignment time-

slice, we now use linear interpolation to translate these into the required ξk values defined at 

the midpoint of each PAT segment. We can proceed to calculate the utilities for each arrival 

timeslice, and hence the allocation of demand, separately for each PAT segment. 

 

Because of the assignment time-slice procedure, a further calculation is required to map the 

contributions of each PAT segment to the assignment timeslices. We are now implicitly 

working in terms of departure times. Summing over each PAT segment k, we calculate 

what proportion of the total demand A falls in each assignment time-slice r, thus giving us 

the required assignment matrices Tr.    

 

We may illustrate the essential progress of the iterations as follows: 

 



 13 

Tr  →  ΘΘΘΘr  →  ξξξξr   →  ξξξξk  →   ΩΩΩΩk  →   Tr 

 assign   convert   interpolate    arrival time choice      convert/interpolate       

 

The quantity ΩΩΩΩk represents the cumulative distribution of arrivals at time τ. The 

corresponding cumulative distribution of departures at time t is written as Qt. 

 

There are three essential elements in the procedure. 

 

Firstly, the skimmed quantities from the assignment need to be converted to arrival time 

windows: this involves the use of identity (4a) and interpolation. 

 

Secondly, separately for each of the PAT windows, a method is required to allocate the 

total demand among the possible arrival time windows. Given the inherent approximation 

in the method, a straightforward procedure such as MSA1 would seem to be appropriate. 

To implement this, within each iteration n the arrival time with maximum utility must be 

chosen, and the demand then averaged with the estimate from the preceding iteration 

according to the proportion 1:n–1. After adding across all PAT windows, this leads to an 

estimate of the total allocation to each arrival window. 

 

Thirdly, the implied cumulative distribution of arrival times needs to be converted back 

to a departure time window basis: this again involves interpolation, together with identity 

(4b). 

 

3.3 Proposed Algorithm (using MSA) 

 

In any iteration, assume that we have travel time estimates ξk for each PAT segment k: 

these have been obtained by a) conversion of the assignment cost matrices Θr to ξr by 

associating the costs with the appropriate arrival times, and b) interpolating across the 

entire peak period. 

                                                
1 “Method of Successive Averages” 
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Then, for each segment k, evaluate the “average” utility for each arrival window h: 

 

 khV   =  β (k–h) J + α ξh   if h <  k 

  =  α ξk     if h = k 

  = γ (h–k) J + α ξh   if h > k   (8) 

 

Find h for which khV  is maximised, and allocate the entire demand for segment k to the 

“auxiliary” (or “target”) estimate: 

 Yk,h = Ak for h min, 0 otherwise   (9) 

 

Combine with previous estimates Xk,h using “MSA” weights 

 X’ k,h = (1–λ). Xk,h + λ. Yk,h    (10) 

 

where, according to the MSA approach, λ is taken as the reciprocal of the iteration 

number. Note that this maintains the property that, for each PAT segment k, Σh X’ k,h = 

Ak, ie all the base demand is allocated to some arrival window h.  

 

The “segmented arrival time matrices” X’k,h need to be stored for the following iteration. 

However, for the assignment the PAT index k is not required. Thus we proceed by 

calculating: 

 X’ *,h = Σk X’ k,h   (11) 

 

This gives the total arrival demand in each arrival window h. We now need to translate 

this back to departure time windows. This can be done by means of the interpolated 

values of ξ at the boundaries of the arrival time windows. For example, for arrival time 

window h, the boundaries are [PATh1, PATh2], so that the corresponding departure time 

points are [PATh1 – ξ( PATh1), PATh2 – ξ( PATh2)]. This gives the cumulative demand in 

terms of the departure time. 
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We can now interpolate again to apportion the curve to the departure time windows. The 

difference between the cumulative curve at the start- and end-points of each window 

gives the amount of demand to be assigned in that timeslice. 

 

In this way, all the demands X’*,h are allocated to a departure timeslice. Note that some of 

the allocations may be outside the span of the peak assignments: these will not be 

assigned, but assumed to have the appropriate journey time characteristics of the pre- or 

post-peak. 

 

The temporally dependent assignments are now carried out, yielding new estimates Θr 

and the iterative sequence continues. 

 

The stabilising properties of the MSA algorithm should ensure that the profile of ξ(τ) 

demonstrates reasonable continuity, even if true convergence is hard to achieve. While it 

would be feasible to adopt more powerful forms of optimisation (eg the Frank-Wolfe 

method), it may be doubted whether this would be worth it, given the fact that an 

essentially continuous process is being treated as a discrete problem. A more promising 

alternative might be to attempt a stochastic allocation over the possible arrival time 

windows, by means of a logit model, for example. 

 

Note also that if the gradient ξ’ never reaches the critical value of β/α, on the early side, 

or – γ/α, on the late side, then no shifting will take place. In this case, the entire demand for 

PAT segment k will be allocated to the arrival time window for k. 

 

Finally, as noted, that the same approach could be used if we allowed a further demand 

segmentation by schedule parameters. 
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3.4 Illustration 

 

The travel time choice module requires similar quantities to be calculated on both 

departure time and arrival time windows, and the notation is potentially confusing.  

 

At least for the purposes of illustration, it is helpful to consider the variables in tabular 

form, along the following lines (the values for entries in the tables are arbitrary, but 

intended to be indicative): 

 

Table 1 Departure Time Intervals (for assignment) [minutes] 

    from 
assignment 

 interpolate  

r Start 
Ir–1 

End 
Ir 

midpoint 
 rt  

GC 
)t(G r  

Duration 
)t( rΘ  

Arrival 
[τr]r 

Cumulative 
Q(Ir) 

Hence 
Tr 

         
(0)  0 < 0 ff ff 0 0.0825  
1 0 15 7.5  20 27.5 0.18027 0.0978 
2 15 30 22.5  21.5 44 0.30125 0.1210 
3 30 45 37.5  23.5 61 0.45013 0.1489 
..         
..         

 
Note that the arrival column is still in terms of the departure time windows, and hence is 

written [τr]. The columns beyond the bold vertical line are only available subsequent to 

the choice of arrival time windows. 

 

The figure below plots the travel duration Θr against the midpoint of interval r. It then 

plots the same value against the implied arrival time, calculated by adding the duration to 

the interval midpoint. This is therefore a representation of ξ(τ).  
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Travel duration plotted against departure and arrival times

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180 200

time (departure or arrival)

d
u

ra
ti

o
n

f(Dep time)

f(Arr time)

Θ(t)

ξ(τ)

 

Figure 1: travel duration ΘΘΘΘ(t) and ξξξξ(ττττ) 

 

Table 2 Arrival Time Intervals (for time period choice) [minutes] 

 
    interpolated   midpoint 
h  (k) Start 

Jh–1 

End 
Jh 

midpoint 

hτ  
GC 

)( hτΓ  
Duration 

)( hτξ  
Departure 
[th]h 

Cumulative 
Ωh 

Ω( hτ ) 

       0  
1 0 10 5  20 -15 0.03 0.015 
2 10 20 15  20 -5 0.08 0.055 
3 20 30 25  20 5 0.14 0.110 
4 30 40 35  20.6818 14.3182 0.21 0.175 
..         
..         

 

Note that the departure column is still in terms of the arrival time windows, and hence is 

written [th]. 

 

The next stage is to interpolate the points on the ξ(τ) curve to obtain an estimate at the 

midpoint of the arrival time windows. This can usually be done with good accuracy, as 
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shown in the next figure. Note that we also calculate the implied departure time 

associated with the arrival time midpoint (by subtracting the interpolated value of ξ(τ). 

 

Travel duration plotted against arrival time - original and interpolated
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Figure 2: interpolation of ξξξξ(ττττ) 

 

We can now calculate the arrival time with the maximum utility (separately for each PAT 

segment k), and by means of the MSA procedure, obtain the current estimate of the 

demand for each arrival time window. These can be summed over PAT segments, and 

from this we can infer a cumulative arrival time distribution Ω(τ), here given as a 

frequency. This can be plotted both against the arrival time window midpoint and the 

implied departure time (as an estimate of Q(t)), as in the figure below: 



 19 

Cumulative demand 
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Figure 3: cumulative demand Q(t) and ΩΩΩΩ(ττττ) 

 

 

The final requirement is to interpolate the cumulative demand points on the Q(t) curve to 

obtain an estimate at the midpoint of the departure time windows. Once again, this can 

usually be done with good accuracy, as shown in the next figure. 
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Cumulative demand against departure time: original and interpolated
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Figure 4: interpolation of Q(t) 

 

We are now back to Table 1, above. Given the cumulative distribution, we can obtain the 

proportion of demand to be allocated to each assignment time slice r. 

 

3.5 Convergence 

 

There is a distinction to be made between true convergence measures (which determine 

how close to equilibrium we are) and stopping measures, which merely report on 

whether the algorithm is making progress. 

 

The implication of the equilibrium condition is that, if for any ij pair and PAT segment k, 

VMax = Maxh khV , we should have 

 

 Σh Xk,h (VMax– khV ) = 0 ∀ ij, k   (12) 

while the same quantity could be > 0 if the process had not converged. Hence the overall 

quantity: 
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 Σij Σk Σh Xk,h (VMax– khV )   (13) 

is an indicator of convergence, the smaller the better. 

 

It is usual to scale such quantities to obtain a “δ-like” quantity such as: 

 
∑∑∑

∑∑∑ −

ij k h

ij
khMax

ij
kh

ij k h

ij
kh

ij
khMax

ij
kh

)V.(X

)VV.(X

     (14) 

 

Note that while this is a single overall measure, it could be broken down to inspect the 

convergence of individual ij pairs and, within that, individual PAT segments k. It would 

also be possible to substitute the denominator by the quantity Σij Σk Σh Xk,h: this would 

then give the average “gap”, in units of utility (here, minutes), between the optimum and 

the current position, and would give a more intuitive indication of the seriousness of any 

such gap. 

 

It is also possible to construct comparable indicators between successive iterations. We 

give a number of examples, all of which can be further disaggregated by ij pair and PAT 

segment: 
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 etc., where n denotes the iteration number. 
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4 Conclusion  

 

A method has been described, essentially heuristic in concept, for reflecting the changes 

in travel (departure) time which may occur within the peak period as a result of changes 

in the network (essentially a function of the ratio of demand to capacity). While it makes 

use of general principles, it is intentionally postulated in terms of tools which are 

reasonably available within current modelling practice. 

 

The method has not been tested, and it may be anticipated that its convergence properties 

will be relatively weak. Nonetheless, it is hoped that it could provide a method for 

investigating a phenomenon which is well attested but poorly understood – the “flattening 

of the peak” as demand grows, and the “return to the peak” which occurs when additional 

capacity is introduced. It is hoped that the relative simplicity of the approach will 

encourage other researchers to try and implement it. 

 

The method could also provide a potentially better estimate of the time-aggregate costs 

which could be used elsewhere in the demand model. Although it has not been 

specifically discussed, one reasonable candidate, having achieved adequate convergence 

of the allocation of peak period demand, is to calculate a flow-weighted average of the 

costs over the arrival time slices. In this way it is also possible to reflect the scheduling 

costs, along the lines discussed by Small (1992). 

 

Finally, we should note an important feature of the general approach. While it is 

convenient to state the conditions in terms of the gradient of travel time, the treatment of 

discrete PAT segments means that a certain absolute difference is required to induce 

shifting. By the nature of things, a given absolute difference is more likely to occur for 

longer trips than for shorter, and it is therefore useful to look at certain combinations of 

trip length (eg, for a typical urban area,  Inner to Central, Outer to Central, Through trips 

etc.). 
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