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1. Introduction

As it is now widely recognised, technology heterogeneity and the associated process of technological

diffusion have not received enough attention in the current empirical literature on economic

convergence.1  For instance, an often used assumption in the literature is that there are no systematic

technological differences across economies, so that whole observed convergence is ascribed to capital

deepening, as in the influential paper by Mankiw, Romer and Weil (1992). Other papers allow for

differences in individual technologies, as in Islam (1995) and (1988), but assume that such differences

are stationary, so that again technology catching-up is ruled out by assumption rather than tested.  As

Bernard and Jones (1996) put it, a consequence of this state of affairs is that we do not know enough

about “how much of the convergence that we observe is due to convergence in technology versus

convergence in capital-labour ratios” [p. 1043].2  A corollary of this situation is that there is no

consensus concerning what empirical methodology should be used to obtain such a measurement,

especially in the absence of reliable data on technology levels.3

The first part of this paper addresses this problem explicitly, since our main purpose is to assess

the role of technology heterogeneity and catching-up in the convergence in GDP per worker observed

across the European regions, for which no TFP data are available.

In order to design an appropriate empirical analysis for our purpose, we use a simple model in

which convergence in capital-labour ratios and in technology can occur simultaneously. More

specifically, while capital accumulation proceeds as in Solow’s growth model, technology accumulation

depends on a propensity to innovate, which may vary across economies. Stationary technology gaps can

emerge as the result of such differences. The difference between stationary and current gaps generates

technology diffusion, which in turn explain part of the growth rate differentials across economies. The

influence exerted by capital deepening and catch-up in convergence along the transitional path can be

identified.

This model yields the analytical framework we need to test, in the absence of TFP data, whether

(i) technology differences play no systematic role in convergence, as in Mankiw et al. (1992); or, in case

they exist, whether (ii) they are stationary, as in Islam (1995); or whether (iii) they are an active source

of income convergence through a technology catch-up process of the kind discussed by Abramovitz

                                               
1 See among many others Bernard and Jones (1996), Parente and Prescott (1994), Jones (1997), de la Fuente (1997), Lee,
Pesaran and Smith (1998) and Hall and Jones (1999). See also the seminal paper by Abramovitz (1986).
2 Another line of research on convergence in which this question tends to be ignored is represented by papers such as
Dowrick and Nguyen (1989) and Fagerberg and Verspagen (1996). Again, the whole observed convergence is assigned to
one source (catch-up, in this case) in a context where the other (capital deepening) is neglected on a priori grounds, rather
than tested.
3 As it is well known, simple models of catch-up (in which the sources of technology accumulation are left unexplained) and
the Solow model may turn out to yield predictions that are indistinguishable in cross-section and panel data [Barro and Sala-
i-Martin (1995), p. 275].
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(1986).

The transitional dynamics of our model shows that the main problem for empirical analysis is to

assess the precise role played by technological heterogeneity in convergence – that is, distinguishing

between hypotheses (ii) and (iii) above. This is so because if individual propensities to innovate

determine stationary technological differences, the former may act as a proxy for the latter whenever

catch-up is absent or exhausted. As a consequence, the panel data formulations corresponding to the

two hypotheses may turn out to be very similar. We suggest that one way to discriminate between (ii)

and (iii) is to test whether estimates of fixed-effects in sub-periods show the pattern implied by either

hypothesis.

We use this model to obtain preliminary evidence on the role of technological differences and

catch-up in the observed regional convergence in Europe. We use data on 109 European regions for

the 1978-93 period.  As a measure for the regions’ propensities to innovate, we compute an index based

on patent applications to the European Patent Office (EPO). Each patent is then assigned to its region

of origin according to the inventors’ residence.  Our panel estimates show that both the initial value of

regional GDP per worker and the regional propensity to innovate, as defined above, are statistically

significant with the expected signs (negative and positive, respectively).  In terms of our model, this

evidence corroborates the hypothesis that technological differences are explained by propensity to

innovate, and that they are relevant for the analysis of convergence across European regions.

Moreover, we find that technological differences are not stable over time. This evidence is consistent

with convergence being (partly) due to a process of technological catch-up.

As for the related literature, a number of papers deal with the role of technology heterogeneity

in European regional convergence but, to the best of our knowledge, no one tries to detect the

presence of technology diffusion in a context in which capital-deepening is also considered.  De la

Fuente (1995), (1997) develops an approach to convergence analysis similar to the one used here, but

he does not discuss how to detect technology diffusion with no TFP data.

The rest of the paper is organised as follows.  In section 2 we discuss our model. In section 3

we study its transitional dynamics and discuss how to discriminate among the competing hypotheses

about the sources of convergence. Our empirical evidence is presented and discussed in section 4.

Conclusions are in section 5.

2. A growth model with exogenous propensity to innovate

In this section we discuss the main features of a simple model4 in which the long run growth rate of the

leader economy depends on its propensity to innovate and the technological catch-up of the follower

                                               
4 As far as the leader economy is concerned, the model is a modified version of Shell (1966).
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depends on its own propensity to innovate.5 Stationary differences in technology levels emerge as long

as propensity to innovate differs across economies.  These differences are taken as given, and no

attempt is made to explain how they come about and what policies can modify a given situation.  Since

our aim is to evaluate the consequences of technology heterogeneity on convergence, this restricted

approach suits us well enough.

In the following, we first describe growth in the leader country, and then we turn to the

mechanism of catch-up.

2.1 The leader economy

We assume that good Y is produced by means of a Cobb-Douglas technology:

(2.1) ( ) αα −= 1ALKY ,

where K is capital, L labour and A an index of technology. Some definitions associated with this

production function will be used often in the following. They are as follows:

. ,  ,1 ALKzLKkAzAkLYy ≡≡==≡ − ααα

As for how innovation is accumulated, we start with the propensity to innovate, defined as

YR≡θ , where R is the total amount of the existing resources allocated to innovation, and 10 <≤ θ

[the further restriction ( ) 1<+ θs , where s is the propensity to save, is required for consumption to be

allowed in each period].  Technological knowledge increases in proportion to R, according to yA θ=& ,

so that the growth rate of technology is:

 (2.2) ααα θθ zAk
A

A
== − 

&
.

Technological progress is therefore a function of the per capita amount of resources allocated to

innovation in the economy6. Countries with similar propensities to innovate but with different levels of

per capita output have different innovation rates.

Assuming for simplicity that capital stock depreciation and population growth are both absent,

in this model capital accumulation per efficiency takes place according to  1−−= αα θzszz& . It is possible

to show that a stable steady-state exists in which the stationary value of z is 
θ
s

z =~ , and the stationary

value of the growth rate of technology is equal to:

                                               
5 Since in our model technology is regarded as a public good, strictly speaking the differences in the fraction of output
allocated to innovation should reflect differences in the policies adopted by the individual economies. See Shell (1966) and
Romer (1990).
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(2.3) ααθ s
A

A −= 1
&

.

In steady-state the leader economy grows at a constant rate endogenously determined by the

parameters that describe the technology and the propensities to invest in physical capital and in

innovation.

2.2 The follower economy

Few changes are necessary to characterise the follower economy.  In this economy, the flow of

technological spillovers accruing from the leader country depends on the resource allocated by the

follower to innovate or imitate, as in the following formulation:

(2.4) αθ z
A

A

A

A
 

.









=

∗

where now * refers to the leader. In the absence of any effort, there are no spillovers to be gained, and

no economic growth7.  In the following we assume that *0 θθ ≤< .  The balance growth of this system

is characterised by the following stationary values:

(2.5)
α

α

θ
θ −









=Α

∗∗ 1~
s

s
.

where ≡Α~ A*/A.  Clearly, if all the parameters are uniform across the economies, the stationary value

of the gap is one. Moreover,

 (2.6)
α−









=

∗∗ 1

1

~

~

s

s

z

z
.

As for g~ , ∗∗−∗ == gsg ~~ 1 ααθ . To sum up, in the long run, the two economies grow at the same rate

(with the growth rate of the follower converging to that of the leader). Differences in the propensity to

innovate ( θθ >∗ ) translate into the leader having a stationary technological advantage over the

follower. Finally, economies with different propensities to innovate, but similar propensity to save, end

up with the same stationary value of k/A. The system is globally stable around its intertemporal

equilibrium defined by the above stationary values of z , ∗z  and of AA∗ .

                                                                                                                                                           
6 The flow of innovation depends on y rather than on the absolute value of output to avoid the counterfactual growth effect
associated to the scale of the labour force, which is typical of this class of models [see Barro and Sala-i-Martin (1995) p. 151-
2].
7 For a similar assumption in a different context – where technology adoption depends on the level of the stock of human

Benhabib and Spiegel (1994). See also Bernard and Jones (1996).
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A follower economy off its steady-state is generally characterised by ∗∗ < zzzz ~~  and

Α>∗ ~
AA .  As a consequence, its convergence path is influenced simultaneously by the capital

deepening mechanism emphasised by the Solow model, and by the technological catch-up process. In

the following section, we use a log-linear approximation of the system to assess the role of each

component along the transitional path.

3. Transitional dynamics

In this section we log-linearize the system around the steady-state values of z and AA∗ , and find the

solution to the resulting differential equations.8  In addition to this, we simplify the notation by

assuming that the propensity to save in all economies is equal to the leader’s one, *s , so that θθ ∗=Α~

[see (2.5)] and ∗∗= θsz~ in all economies.  We obtain:

(3.1)
( ) ( ) ( ) ( ) ( )[ ] ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )θθθα

τ
ττατα

τατ

∗−−−∗∗−−

−−∗−∗

∗∗∗

∗∗

−−−−−+

+−+−+=−

ln1ln1ln1

ln1ln1~lnln
~

1

~1~1

1

~1
11

~

12

ggg

gg

etyese

tAetAtAegtyty

where 1t  is an initial point of time, 12 tt > , 12 tt −≡τ . In cross-section, 2t  and 1t  are respectively the

final and the initial period. In panel data formulation, τ defines the length of the time spans in which

the total period of observation is divided.

Our next task is to discuss how the econometric evidence based on equation (3.1) can be used

to discriminate among the hypotheses (i)-(iii) listed above. To start with, let us notice that, in the

absence of reliable data on technology levels, we are forced to follow Islam’s (1995) methodology in

order to allow for individual heterogeneity in those levels across economies. Let us rewrite equation

(3.1) using a panel data formulation:

(3.2) ittititittiit yyy ωθϕβκµ ++−+=− −−− 1,1,1, lnlnlnln ,

where ( ) ( ) ( )( ) ( )( ) ∗−−−∗−−∗−∗ ∗∗∗∗

−−−−+−+≡ θατκ ταττατ ln2ln1ln1~ ~1~~1
1

~ gggg
t eesetAeg , ( )2lnln tyyit ≡ ,

( )11, lnln tyy ti ≡− , ( ) ταβ
∗−−−≡ ge

~11 , τϕ
∗−−≡ ge

~
1  and ( )( ) ( )1

~1~
ln tAee gg

it
τατµ

∗∗ −−− −≡ .  In this

formulation, tκ  varies across time periods and is constant across individual economies, itµ  describes

the degree of technology heterogeneity at a certain point in time, and itω  is the error term with mean

equal to zero. For the time being let us assume that fixed-effect (LSDV) estimates of (3.2) can be

                                               
8 For the sake of simplicity, the transitional dynamics discussed below is obtained by ignoring the interaction between  z and
the gap along the transitional path. While some precision is lost, the picture we get is sufficiently detailed for our purpose.
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obtained,9  with the individual intercepts yielding an approximate measure of itµ , although this term is

not strictly time-invariant.10

For the sake of our discussion on how to distinguish among the various hypotheses, let us

consider a case in which the signs of the coefficients of the explanatory variables are significant and in

accordance with the predictions of the model. This type of evidence can be interpreted as follows. First,

since hypothesis (i) implies that the propensity to innovate is irrelevant for convergence analysis, it

predicts that its coefficient is zero. So we can rule out hypothesis (i) in favour of the other hypotheses.

Second, since (3.2) is obtained under hypothesis (iii), the latter is clearly supported by this type of

evidence. However, the same evidence does also corroborate hypothesis (ii).11  To see how this

problem arises, let us evaluate our model under hypothesis (ii) – i.e., with the process of  technology

diffusion exhausted and convergence due entirely to capital-deepening. Under this hypothesis,

( ) ( ) θθ ∗∗ =Α= ~
tAtA  in each period of time (including t=0), ( ) ( ) ( )11

~0lnln tgAtA ∗+= , and the

following panel data formulation can be obtained:

(3.3) itittitiit vyyy +−+=− −− 11, lnlnln βχρ

where ( )( ) ( )0ln1
~1 Ae g

i
ταρ

∗−−−≡ , ( )( ) ( )( ) ( )∗∗−−−−∗ ∗∗

−+−≡ θαχ τατα setetg gg
t ln1~ ~1

1

~1
2  and itv  is the

error term with mean equal to zero. Notice that under hypothesis (ii) we obtain proper time-invariant

individual intercepts, defined by iρ  [see also Islam (1995), p. 1149]. More importantly, since

technological differences are supposed to be at their stationary values θθ ∗=Α~ 12, then in

principle ( )0A  and θ  are perfectly correlated across economies. As a consequence, a significant

positive value of ϕ  does not yield clear-cut evidence in favour of the hypothesis that technology

diffusion is part of the observed convergence.13 At this stage all we could say is that technology

heterogeneity, due to differences in propensity to innovate, is relevant for convergence analysis.

                                               
9 The use of LSDV estimates for convergence analysis has been criticised by Durlauf and Quah (1999) on the grounds that
allowing A(0) to differ across economies makes it particularly difficult to understand whether β-convergence implies a
reduction of the gap between the poor and the rich (p. 52-3).  This criticism does not necessarily apply to our case, in which
we concentrate on how to discriminate between two sources of convergence.
10 Under hypothesis (iii) the initial degree of technology heterogeneity cannot be regarded as strictly time-invariant. The
reason is that technology diffusion is present, technology growth rates differ along the transitional path leading to their
common steady-state value. Consequently, itµ  includes the term ( )1tA  and cannot be properly defined as an individual
intercept. We will come back to this point below.
11 To the best of our knowledge, up to now this problem has not yet been discussed in the empirical literature on
convergence.
12 Recall that we are assuming that the propensity to save is uniform across all economies.
13 More generally, finding that a technological variable such as R&D or patents exert a statistically significant positive effect
on growth does not offer indisputable evidence that catch-up is part of the observed convergence. See  Fagerberg,
Verspagen and Caniels (1997) and Fagerberg and Verspagen (1996), among many others, for a different viewpoint on the
interpretation of evidence of this type.
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Therefore, in order to evaluate whether technology convergence is present, we have to search

for testable implications of the model that could allow us to discriminate between the two competing

hypotheses.  To this aim, consider again the term itµ  in (3,2), associated with hypothesis (iii).  We have

already noticed that itµ  cannot be regarded as a proper fixed-effect, while the opposite is true for iρ  in

equation (3.3).  This difference can be exploited empirically as follows.

First, since under hypothesis (iii) technology gaps are not at their stationary values, in general we

should expect that 22 ~
µµ σσ ≠ .14 As a consequence, convergence of 2

µσ  to its stationary value should be

detectable over subsequent periods if hypothesis (iii) is true – abstracting from random disturbances.

On the other hand, under hypothesis (ii) 2
ρσ  is time-invariant, since – abstracting again from random

disturbances – it is assumed to be at its steady-state value 2~
ρσ .  Second, , under hypothesis (iii) the

correlation between the fixed-effects and the propensity to innovate should increase over time, as the

current technology gaps approach their stationary values.  Consequently, we could split the whole

period under observation in several sub-period, obtain LSDV estimates of (3.2) and (3.3), and then use

the estimated individual intercepts to test the two above implications of the model.15

Finally, a third implication worth noticing is that the correlation between the individual

intercepts and the growth rates of y is positive under hypothesis (ii) [Islam (1995)], and negative under

hypothesis (iii).  All these implications will be tested in our empirical analysis, to which we now turn.

4. Empirical evidence

Data.  Data on regional GDP and employment are obtained by the CRENoS data set on 109 regions of

12 European countries for the period 1978-93.16 A more complex problem is how to compute an index

of regional propensities to innovate. In our paper, such an index is obtained as follows.  First, patent

applications collected by the European Patent Office (EPO) are assigned to individual regions by

identifying the region of residence of the inventors.17 Second, the total numbers of patents in a region

are divided by the same region’s GDP. By doing so, we obtain an index of propensity to innovate at the

regional level for the years 1978-93.  We use the inventor’s residence, rather than the proponent’s

residence, because the latter generally corresponds to the firms’ headquarters, and therefore it might

underestimate the peripheral regions’ propensity to innovate.  For the same reason, the index we use is

                                               
14 However, in the absence of “absolute convergence” in technology levels the case 22 ~

aa σσ =  is not ruled out (similarly, β-

convergence does not necessarily imply σ-convergence unless steady-state values are uniform across individuals).
15 The problem represented by itµ  not being a proper time-invariant effect should be less pronounced when shorter time-
spans are considered.
16 The data used in this paper are downloadable at http://www.crenos.unica.it. For details on the data set see Paci (1997).
17 For the case of patents with more than one inventors, we have proportionally assigned a fraction of each patent to the
different inventors' regions of residence.
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likely to be more adequate than an alternative one based on expenditure in R&D. Moreover, the

correlation between our index and an index based on regional R&D in 1990 turns out to be equal to

0.91.

Our index of the regional propensity to innovate appears to be far from uniform across the

European regions.  This feature is apparent in Figure 1, where European regions are classified into five

groups according to the average value of the index recorded for the period 1978-93. Some clusters of

more innovative regions are evident in the Figure, especially in Germany, southern Britain, central

France and northern Italy. Moreover, most southern European regions (Portugal, Spain, Greece and

southern Italy) show a very low propensity to innovate.  In the present paper, we do not try to build

this specific spatial feature into our analysis of convergence, but this spatial component is likely to be

crucial for future research on European regional convergence. From the point of view adopted in this

paper, the major consequence of the observed heterogeneity of our index across regions is that

discriminating between (i) and (ii)-(iii) should be possible in spite of the absence of data on TFP.

Estimation results. Our LSDV estimates, based on equation (3.2), are presented in Table 118. We have

computed three five-year panels for the sub-periods 1978-83, 1983-88, 1988-93. The dependent

variable y is the average growth rate of GDP per worker over each time span. The explanatory variables

– labour productivity and propensity to innovate – are included as levels in the initial year of each time

span. The regression results for the entire period are shown in Regression 1, Table 1. The initial level of

labour productivity has the expected negative coefficient and is highly significant. More importantly,

our index of propensity to innovate turns out to be statistically significant with the expected positive

sign. In terms of our model, this evidence yields some preliminary support to the idea that

technological differences are explained by heterogeneity in propensity to innovate, and that they are

relevant for the analysis of convergence across European regions. The relevance of the propensity to

innovate as an explanatory variable in the growth equation is confirmed by the regressions included in

Table 2, which are explicitly based on the hypotheses (i) and (ii). Their explanatory power appears

remarkably lower than in regressions 1-3 in Table 1. More specifically the goodness of fit increases

from 2% in the model with only the initial productivity level, to 12% when we add the fixed effects to

allow for differences across regions in technological levels, to 51% when we also add our measure of

the propensity to innovate.

                                               
18 Since we are dealing with a dynamic model, the LSDV estimator is asymptotically consistent. Given that our panel is
characterised by τ=3, our estimates are likely to be biased. In particular, the absolute value of the coefficient on capital
deepening is likely to be biased upward [see Hsiao (1986)].
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Discussion. We begin by noticing that our main result in Table 1 (Regression 1) is at odds with

hypothesis (i), according to which convergence should not be influenced by variables reflecting

systematic differences in technology levels.19

As for the other hypotheses, we should recall from our discussion in section 3.1 that a positive

and significant coefficient of the propensity to innovate is consistent both with convergence being

(partly) due to technological catch-up, and with the competing hypothesis (ii), in which technological

differences are stationary. Further and more detailed inspection of our results is therefore required in

order to identify which hypothesis is better supported by our evidence. As we have maintained above,

relevant information can be obtained by carefully analysing the estimated fixed-effects in Regression 1,

Table 1.

Our preliminary inspection concerns the interpretation of the individual intercepts adopted in

this paper. As we have repeatedly noticed, these coefficients are expected to yield a measure – however

indirect – of the technology level of each individual economy.20  The data shown in Table 3 are clearly

consistent with this interpretation. In this Table we report the ten highest and lowest fixed-effect

coefficients for the whole period 1978-93. It appears that the European region with highest technology

level is Hamburg, followed by Brussels and Ile the France. Among the top ten economies there are also

4 northern Italy regions. All the regions with low technology belong to southern European countries

like Portugal (3 regions) Greece (6 regions) and Spain (1 region). We have also reported the average

coefficient values for each country (we have excluded the one-region countries). Germany displays the

highest value, followed by Belgium, while in the bottom positions we find Spain, Portugal and Greece.

Our next step is to use the estimated individual intercepts to test three implications – discussed

in section 3.1 – capable of discriminating between hypothesis (ii) and (iii).

First, hypothesis (iii) implies that the variance of the individual technology levels is not at its

stationary value. The opposite is implied by hypothesis (ii), abstracting from random disturbances. The

results of our estimates for two sub-periods – 1978-88 and 1983-93 – are reported in Regressions 2 and

3 in Table 1. The variance of the individual intercepts for our 109 European regions shows remarkable

changes over time, decreasing from 0.0047 in the first sub-period to 0.0024 in the second one. This

result must be interpreted with caution, since there are other random or systematic factors

(heterogeneity in the propensity to save and in human capital, for instance) that may affect the variance

of the fixed effects over time. Moreover, due to the limited number of time-series observations, we

                                               
19 Our conclusion would be wrong if our measure of the propensity to innovate turned out to be (a) uncorrelated with the
(uniform) technology levels, and (b) positively correlated with the (heterogeneous) propensity to accumulate human capital,
which we do not include in our regression. While the condition (b) is likely to hold in reality, it is hard to rationalise the
existence of such a correlation in a world in which technology growth is exogenous and technology levels are homogeneous
across individuals.
20 In section 3 we have assumed the propensities to invest in physical and human capital to be uniform across all economies.
This is not necessarily so in our dataset. As a consequence, the individual intercepts of Regression 1 might reflect these
elements as well as the current heterogeneity in technology levels. On this more below.
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have estimated our model using only two time spans for each regression, with the overlapping of the

central years 1983-88. However, the change over time of the fixed-effect variance is high and this is

hardly consistent with the hypothesis of technological differences being stationary over time. The

observed decrease in the variance is clearly consistent with the main prediction of the model under

hypothesis (iii), since we expect the initial variance in technology levels to be larger than the steady-state

one in a typical process of technology catch-up.  This result is confirmed when we estimate equation

(3.3), which is obtained explicitly under the hypothesis that the differences in technology levels are

stationary. In this case too (regressions 7-9 in Table 2) the variance of the individual intercepts

decreases over time, contradicting hypothesis (ii).

Second, under hypothesis (iii) the correlation between the individual intercepts and the

propensity to innovate should increase over time, as the current technology gaps approach their

stationary values. Indeed, such a correlation does increase over time in our sample (from 0.61 to 0.70).

This evidence again is consistent with hypothesis (iii) alone.

Third, the correlation between the individual intercepts and the growth rates of y is positive

under hypothesis (ii) and negative under hypothesis (iii). Notice that these implications are obtained by

assuming homogeneity across individuals of variables such as propensity to save and human capital,

which correlate positively with growth but cannot be measured in our current dataset.  Therefore, the

presence in our sample of some degree of heterogeneity in these variables would be reflected in the

estimated individual intercepts. In this case, the above-defined implication associated with hypothesis

(ii) would be reinforced in the same direction, while the implication of a negative correlation associated

with hypothesis (iii) would be weakened. Our evidence shows that the correlation between individual

intercepts and growth rates is not significantly negative for the whole sample, and significantly negative

for the lagging regions. We conclude that this piece of evidence too yields additional support for

hypothesis (iii) as opposed to hypothesis (ii).

To sum up, the evidence discussed so far is likely to be generated by a process that does involve

technological catch-up.

5. Conclusions

Building on a simple endogenous growth model, in this paper we carry on an empirical analysis to

assess the role of technology heterogeneity and catching-up in the convergence process observed across

the European regions during the 1978-93 period. All our results are obtained in the absence of total

factor productivity data for the individual economies. Our findings reject the hypothesis that

technology is uniform across European regions, and strongly indicate that technology heterogeneity,

due to differences in propensity to innovate, is relevant for convergence analysis. Moreover, we provide
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detailed evidence in favour of the hypothesis that the current differences in technology levels are not

stationary and that they are the source of a process of technological catching-up.

One interesting development of the approach proposed in this paper would be to explore the

possibility that the stock of human capital take part in the determination of the stationary technology

gap – as in Benhabib and Spiegel (1994) –, together with the propensity to innovate. Finally, the

possibility that there exist a spatial component in the distribution of the propensity to innovate across

individual economies should also be considered within the framework adopted here.
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Figure 1. Propensity to innovate across the European regions. 1978-93

θ = patents / GDP (in 10.000 units of PPP); annual average

Ranges and (frequency); European Union average: θ = 28.6):

θ θ 10≤ θ θ θ>50 (17)
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Table 1.
Propensity to innovate, capital deepening  and growth in the European regions

Estimation method: LSDV (least squares dummy variables)
Panels: 1978-83, 1983-88, 1988-93.  Cross-section observations:109
Dependent variable: annual average growth rate of labour productivity in each time span
yi t1 = labour productivity in the initial year of each time span
θi t1 = propensity to innovate in the initial year of each time span
t statistics in parentheses
significance levels: a=1%, b=5%

Explanatory variables Regr. 1 Regr. 2 Regr. 3

1978-93 1978-88 1983-93

yi t1 -0.163 -0.239 -0.167
(-14.1)a (-11.2)a (-13.2)a

θi t1 0.0085 0.0082 0.0026
(13.1)a (9.27)a (1.14)

adj. R2 0.51 0.69 0.59
F-test 447a 592a 416a

Fixed effects' variance 0.0019 0.0047 0.0024

Number of panels 3 2 2
Number of observations 327 218 218
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Table 2.
Capital deepening  and growth in the European regions

Panels: 1978-83, 1983-88, 1988-93. Cross-section observations:109;
Dependent variable: annual average growth rate of labour productivity in each time span
yi t1 = labour productivity in the initial year of each time span
t statistics in parentheses
significance levels: a=1%, b=5%

Hypothesis (i) Hypothesis (ii)

Explanatory variables Regr. 4 Regr. 5 Regr. 6 Regr. 7 Regr. 8 Regr. 9

1978-93 1978-88 1983-93 1978-93 1978-88 1983-93

Constant 0.02 0.02 0.03
(3.51)a (2.12)b (4.69) a

yi t1 -0.008 -0.004 -0.009 -0.14 -0.34 -0.16
(-2.77)a (-1.61) (-2.89)a (-9.40)a (-14.0)a (-14.9)a

adj. R2 0.02 0.01 0.03 0.12 0.44 0.58
F-test 7.6a 2.6 8.34a

Fixed effects' variance 0.0019 0.011 0.0024

Estimation method: OLS OLS OLS LSDV LSDV LSDV

Number of panels 3 2 2 3 2 2
Number of observations 327 218 218 327 218 218



17

Table 3.
Descriptive statistics of the fixed effects coefficients from Regr. 1 Table 1.

10 highest coefficients 10 lowest coefficients
(proxy for high technological levels) (proxy for low technological levels)

RANK REGIONS F.E. COEFF. RANK REGIONS F.E. COEFF.

1 Hamburg 0.487 109 Alentejo 0.259
2 Brussels 0.467 108 Voreio Aigaio 0.260
3 Ile de France 0.462 107 Ipeiros 0.271
4 Bremen 0.455 106 Centro (P) 0.284
5 Valle d’Aosta 0.442 105 Extremadura 0.285
6 Emilia Romagna 0.439 104 Ionia Nisia 0.295
7 Luxembourg 0.437 103 Dytiki Ellada 0.296
8 Lombardia 0.431 102 Algarve 0.301
9 Trentino Alto Adige 0.431 101 Thessalia 0.307
10 Hessen 0.428 100 Kriti 0.308

Ranking of European Countries in decreasing order of estimated fixed effects coefficients

RANK COUNTRY F.E. COEFF.

1 Germany 0.411
2 Belgium 0.411
3 Italy 0.394
4 France 0.386
5 United Kingdom 0.374
6 Netherlands 0.370
7 Spain 0.357
8 Portugal 0.310
9 Greece 0.309


