
1

Multidimensional Sequence Alignment Methods for Activity Pattern Analysis:
A comparison of dynamic programming and genetic algorithms

Chang-Hyeon Joh, Theo A. Arentze and Harry J.P. Timmermans1

Urban Planning Group
Eindhoven University of Technology

P.O. Box 513, Mail Station 20, 5600 MB, Eindhoven, The Netherlands, C.H.Joh@bwk.tue.nl

Abstract---Quantitative comparisons of space-time activity patterns are a critical element
in several streams of research in regional science. Traditionally, Euclidean distance and
the measures developed in botanical taxonomy have been widely used to measure the
similarity between activity patterns that involve several attribute dimensions such as
location, transport mode, accompanying persons, etc. Some other techniques, such as
pattern recognition in signal processing theory, have also been introduced for this purpose.
These measures however lack the ability to capture the information of the overall sequence
of activity patterns of multiple attributes. Recently, the Sequence Alignment Methods
(SAMs), developed in molecular biology that are concerned with the distances between
DNA strings, have been introduced in time use research. The SAMs captures the similarity
of activity patterns based on a single attribute only. Unfortunately, the extension of the uni-
dimensional SAM to a multidimensional method induces the problem of combinatorial
explosion. To solve this problem, this paper introduces effective heuristic methods for the
comparison of multidimensional activity patterns. First, the combinatorial nature of the
algorithm is discussed. The paper then develops alternative SAMs based on dynamic
programming and genetic algorithms, respectively. These two SAMs are compared using
empirical activity pattern data. The paper ends by discussing avenues of future research.

1. Introduction
Quantitative comparisons of space-time activity patterns are a critical element in several
streams of research in regional science, including activity pattern classification and simulation-
based travel demand forecasting. In classification studies, for example, a matrix of pairwise
distances between observed activity patterns is used as a similarity measure, providing the
input for a subsequent cluster analysis. The resulting classification is then typically correlated
with a set of spatial and/or socio-economic variables of interest. In activity-pattern simulation
modeling, the distance between observed and predicted activity patterns is used to assess the
goodness-of-fit of the model. These activity-based approaches are rapidly gaining increasing
attention, particularly in travel demand-forecasting research (e.g., Ettema and Timmermans,
1997). Because these approaches focus on the relationships between particular aspects of
activities and specific types of trips, the similarity between activity patterns is typically
measured by multiple variables, describing the pluriform nature of activity patterns.

Regardless of the objectives of the study, the measurement of similarity of activity patterns
involves operational decisions about what to compare and how to quantify the similarity.
Reflecting the notion that choices of (sets of) destinations, travel modes, departure times and
routes are likely to be made simultaneously (Gärling et al., 1997), a similarity measure that can
compare multiple elements at a time would be most desirable. Moreover, because activity

1 Chang-Hyeon Joh is Ph.D. candidate at the Eindhoven University of Technology. Theo Arentze is
postdoctorate at the Eindhoven University of Technology. Harry Timmermans is chaired professor of
Urban Planning Group at the Eindhoven University of Technology.

Paper prepared for presentation at the 39th ERSA Conference in Dublin, Ireland in August 1999.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7035926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

patterns involve by definition a sequence of activities, the similarity or goodness-of-fit measure
should allow one to measure sequential differences.

Previous measures can be classified into three different sets of measures. The first set
considers mainly the difference in element composition between activity patterns and compares
pairs of corresponding elements in two activity patterns. An example is Gower’s similarity
index (Burnett and Hanson, 1982; Pas, 1983), originally developed in botanical taxonomy
(Gower, 1971). The elements of corresponding positions of two activity patterns are compared
for each choice dimension or attribute. The sum of such differences across choice dimensions is
taken as a measure of similarity between the two activity patterns. This position-based
Euclidean distance measure does not capture the sequential information embedded in each
attribute sequence nor recognizes, if any, the bundles of elements that can be compared
concurrently.

The second set of measures is concerned with differences in both element composition and
sequential order between activity patterns, but compares each element separately. An example
is the feature extraction method based on the Walsh/Hadamard transformation (Recker et al.,
1985; Golob and Recker, 1989), originally developed in signal processing theory (Young and
Calvert, 1974). Each activity pattern is encoded by a pattern matrix consisting of column
vectors of attribute elements that respectively denote the temporal variation of the distance
from home and binary indices of different activity types and transport modes. Each column
vector is then transformed into a column of coefficients, each characterizing the element’s
sequence in terms of the degree of the correspondence against the sequences of various binary
Walsh functions. Finally, the column vectors of Walsh/Hadamard-transformed attribute
elements are cluster-analyzed to classify the activity patterns. This measure takes the sum of
the degree of difference in individual coefficients between attribute elements as a measure of
similarity of overall distance between activity patterns. Because the results of these
comparisons are summed independently, this approach excludes the possibility of collective
comparison of multiple elements across different attributes between activity patterns.

Unlike the previous measures, the measure to be developed in this paper, is concerned with
differences in both element composition and the sequential order of elements between activity
patterns, and compares bundles of elements across attribute dimensions simultaneously. This
approach is inspired by the introduction of a sequence alignment method (Wilson, 1998) in
time use research. This distance measure originally developed in molecular biology (Kruskal,
1983) uses the smallest number of changes (mutations) required to equalize two biological
sequences of information such as DNA, RNA or proteins as being a measure of (dis)similarity
between the sequences. Unfortunately, however, the existing methods can handle uni-
dimensional sequences only. A simple sum of the results of the conventional uni-dimensional
sequence alignment methods does not capture the sequential information of set of elements
across different attributes. In a previous paper, we therefore developed a multidimensional
extension of the sequence alignment method to capture the sequential information as well as the
accompanying relationships in multidimensional activity patterns (Joh, et al., 1997).

Although this measure is theoretically appealing, it has the disadvantage of very high
computing times, which is the result of the combinatorial nature of the multidimensional
comparison (Arentze, et al., 1998). The current paper therefore explores the possibility of
developing effective algorithms to compute a similarity measure in real time by comparing the
performances of multidimensional comparison methods based on different heuristics. These
algorithms were developed as part of the ALBATROSS project2 that seeks to develop an activity-
based model of transport demand in terms of a rule-based simulation model of activity
scheduling behavior.

The remainder of the paper is organized into four sections. Section 2 describes the
combinatorial nature of the multidimensional activity pattern-comparison problem. Having

2 ALBATROSS stands for A Learning-Based Transportation Oriented Simulation System.

3

explained the nature of the problem, the paper then discusses two alternative heuristic
approaches, one based on dynamic programming and the other on genetic algorithms. Section 4
then illustrates and compares the performances of these two approaches, using activity pattern
data collected in The Netherlands. The paper ends with a conclusion and discussions.

2. The Problem
Before discussing the algorithms we will briefly introduce the multidimensional pattern
comparison problem.

2.1 Multidimensional pattern comparison problem
Let us assume that the comparison of multidimensional activity patterns involves K qualitative
attributes. These attributes may include activity type, location, transport mode, accompanying
person, etc. Thus, each activity pattern consists of K attribute sequences, and each attribute
sequence consists of a set of elements. To limit the discussion, we do not concern ourselves in
this paper with quantitative attributes, such as activity duration.

Each attribute constitutes a sequence, whose elements can be represented by a set of
characters. Two activity patterns to be compared can then be represented by a pair of K-
dimensional source and target patterns.

source pattern s = s[s1 … sk … sK]’

with

sk. = sk.[sk0 … ski … skm]

and

target pattern g = g[g1 … gk … gK]’

with

gk. = gk.[gk0 … gkj … gkn]

where,
sk. and gk. are the vectors of the k-th attribute sequences of the source and target patterns,

respectively;
m and n are respectively the number of elements in the source and target activity patterns;
ski and gkj are the i-th and j-th element of the k-th attribute sequence of the source and target

patterns, respectively (i = 0, …, m; j = 0, …, n; k = 1, …, K); ski ∈ Ak, and gkj ∈ Ak.

Consequently, column vectors s.i = s.i[s1i … ski … sKi]’ and g.j = g.j[g1j … gkj … gKj]’ represent
activity type, location, transport mode, etc. of the i-th and j-th activity, respectively. In
particular, when the number of concerned attributes is given 1 (that is, K = 1), the comparison
problem becomes uni-dimensional, and there exist solutions, one of which known as
Levenshtein distance that is defined as the smallest number of changes made on the elements to
equalize two sequences. A set of equations defining the ‘weighted’ Levenshtein distance is:

),(),(knkmkk dd gsgs =
0),(00 =kkd gs

),(),(),(01-0 φkidkkikki swdd += gsgs i ≥ 1

4

),(),(),(1-00 kjikjkkjk gwdd φ+= gsgs j ≥ 1

)],(),(),,(),(),,(),(min[),(1-1-1-1- kjkikjkikjikjkikidkjkikjki gswdgwdswdd +++= gsgsgsgs φφ i,j ≥ 1

with

+=
==

=
otherwise)],(),([),(

 if 0),(
),(

kjikidkjkis

kjkikjkie
kjki gwswgsw

gsgsw
gsw φφδ

where,
ski and gkj are initial parts of sk and gk (ski=ski[sk0 … ski], and gkj=gkj[gk0 … gkj], where 0 ≤ i ≤ m,

and 0 ≤ j ≤ n);
d(ski,gkj) is the cost of equalization of ski with gkj, cumulated from the equalization of sk0 with

gk0;
d(sk,gk) is the cost of equalization of sk (= skm) with gk (= gkn); wd(ski,φ) is the cost for deleting

the i-th element of sk;
wi(φ,gkj) is the cost for inserting the j-th element of gk; w(ski,gkj) is the cost for replacing ski

with gkj (Subscripts e and s in we(ski,gkj) and ws(ski,gkj) indicate identity (equality) and
substitution, respectively.);

δ is a substitution coefficient.

d(ski,gkj) is therefore determined by the minimum among the cumulative costs for the deletion of
ski from ski, the insertion of gkj from gkj and the replacement (substitution or identity) of ski in ski

with gkj in gkj. An optimum alignment consists of an ordered set of operations (deletions,
insertions, substitutions and identities) applied to equalization of the initial parts of sk and gk,
from ski-gkj pair to skm-gkn pair. Note that there are often many ways to optimally align a pair of
sequence, as the cumulative costs to determine d(ski,gkj) are often the same between deletion,
insertion and replacement. (A detailed explanation of the uni-dimensional sequence alignment
methods can be found in e.g. Kruskal (1983) and Arentze et al. (1998).)

A multidimensional problem of interest in this paper is, however, concerned with two or
more attribute sequences (that is, K ≥ 2). In such cases, two sequences sk. and gk. can be
compared if and only if k = k’ (the same attribute). Furthermore, the number of elements may
differ between patterns (that is, m = n or m ≠ n), but is the same within a pattern (km = k’m,
and kn = k’n ∀ skn, gkn). The problem of multidimensional activity-pattern comparison then is
to find the minimum amount of effort required to change s = s[s1 … sK]’ into g = g[g1 … gK]’ in
the multidimensional space.

When determining the similarity of multidimensional activity patterns, different strategies
may be adopted, dependent on whether attributes are considered separately or as a set. The
MultiDimensional Sequence Alignment Method (MDSAM) proposed in this paper intends to
incorporate both strategies. The choice of a particular strategy varies with the alignment
situation during the comparison. To clarify our assumptions underlying the intended properties
of the MDSAM, consider two special cases. In the first special case, the attributes are perfectly
independent in the sense that the operations are applied independently to attributes. In this case,
the MDSAM can be defined as the sum of Uni-Dimensional Sequence Alignment Methods
(UDSAMs). In equation:

),()(
1

kkk

K

k
d=,d gsgs β

=
Σ (1)

where,

d(s,g) is a measure of the distance between s and g;

5

sk and gk are the k-th attribute sequence of s and g, respectively;
d(sk,gk) is the weighted Levenshtein distance between sk and gk;
βk is the weight of the k-th attribute sequence.

The weights, βk, may be different from attribute to attribute in the sense that certain activity
attributes, such as activity type, may be considered more important than others. Nevertheless,
this independent alignment case assumes that decisions regarding a particular attribute are
made independently from all other attributes.

In the second special case, all attributes are perfectly dependent in the sense that each
operation can be applied jointly to all K elements. This would be the case if, for example, each
activity type that is common to the compared activity patterns is accompanied by exactly the
same set of elements across all other dimensions between activity patterns compared. In this
case, the same operation can be applied jointly to the set of K elements. To deal with these
perfect contingent relationships between elements of different attributes, we introduce the
concept of ‘a segment,’ defined as a set of elements of different attributes that can be aligned
simultaneously.

Aligning several elements of different attributes at the same time implies that the operations
applied to each element in a segment are integrated across attributes. The problem then is how
to determine the aggregate weighting value of the segment. Unless the weights of K attributes
are all the same, the alignment costs depend on the aggregation method used. We argue that the
maximum weight across attributes of which the elements are aligned together may be the most
appropriate alternative for our purpose. This reflects the notion that people’s aggregate
decision in activity scheduling may be dominated by the most important attribute. The
MDSAM for the perfect dependency case can then be measured as the sum of segment-based
operation weights:

K

d
=,d kk

K

k

),(
)(max

1

gs
gs β

=
Σ (2)

where βmax is the maximum weight across K attributes. (Note that every segment includes K
elements, one from each attribute, because each common activity type shares all other K−1
attribute elements between s and g.)

These special cases are, however, extremes. In reality, attributes may well be partly
dependent, which means that a segment may have less than K elements and represents a variety
of accompanying relationships between attributes. In general, the MDSAM introduced in this
paper will allow reductions in alignment costs by segment-based operations of accompanying
attributes. The stronger the interdependency between attributes, the higher the reduction. For
example, let O be a set of operations that is applied simultaneously to align attributes k = k1

and k = k2 with costs d(sk,gk). Then, the costs of segment alignments would be
max(βk1,βk2)×d(sk,gk). In the independent case, on the other hand, the costs would be
(βk1+βk2)×d(sk,gk). The cost reduction through the segment alignments is therefore
(βk1+βk2)×d(sk,gk) − max(βk1,βk2)×d(sk,gk) = min(βk1,βk2)×d(sk,gk). The similarity measure based
on this MDSAM is then defined as the alignment costs that minimize the sum of uni-
dimensional alignment costs, reduced by the costs saved because of the relationships between
accompanying attributes.

In general, there will be many ways to align uni-dimensional attribute sequences.
Consequently, the combination of uni-dimensional operations across attributes will result in a
number of multidimensional operation sets that define which operations have been applied to
equalize the multidimensional activity patterns. The similarity measure can therefore be defined
as:

C* = min [C1, …, Cu, …, CTU] (3)

6

with

p
Op

u cC
u∈

Σ= (4)

and

=

=
=

),(if

),(if

max

max

k

k

k

k

jpw

ipw
c

i

d

p
i

d

β

β
(5)

and

Ou = {p|p = d(i,k) ∨ i(j,k)} (6)

where,

Ou is the u-th multidimensional operation set;
Cu is the alignment costs based on Ou;
TU is the number of all possible multidimensional operation sets;
wd and wi are the weighting values of deletion and insertion operations, respectively;
d(i,k) and i(j,k) are respectively the deletion and insertion operations applied to the i-th and j-

th elements of the set of attribute dimensions included in the set k;
βk

max is the maximum weight across attributes in the set k.

We assume that wd = wi , and that the costs for substituting a source element with a target one
is the same as the sum of the costs for deleting the source element and inserting the target
element. Consequently, a substitution operation [s(i,j,k)] is not included in equations (5) and
(6), as it is always decomposable into a deletion and insertion. That is, s(i,j,k) = d(i,k) +
i(i,k).

2.2 Combinatorial nature of the problem
Each set of elements sharing the same operation composes a segment in the activity pattern and
is aligned as if it is one element. The MDSAM problem is then to find the set of segments
inducing the smallest sum of operation weights. There is, however, no existing method that
aligns all attributes at the same time and finds the segment sets that guarantee optimality. For
example, one may try a multidimensional distance measure that first aligns each attribute and
then integrates the resulting uni-dimensional operation sets across attribute dimensions.
Unfortunately, this alignment procedure does not always provide the optimum solution.
Consider for example the following comparison of two sequences of lengths m=4 and n=5,
respectively.

source pattern 1 4 7 8 (attribute 1)
1 4 2 3 (attribute 2)

target pattern 1 2 3 4 5 (attribute 1)
1 2 3 4 5 (attribute 2)

7

Assuming that β1 = β2 = 1, and wd = wi = 1, the uni-dimensional optimum alignments can be
represented in terms of comparison tables (Fig. 1). The uni-dimensional operation sets are {d4,
d5, i3, i4, i6} and {d3, i5, i6} for attribute 1 and attribute 2 respectively, where, for
example, d5 and i3 denote the deletion of the fifth source element and insertion of the third
target element, respectively. The corresponding multidimensional operation set is O = {d3(2),
d4(1), d5(1), i3(1), i4(1), i5(2), i6(1,2)}, which results in a multidimensional alignment
cost of 7, using equations (4) and (5). However, by aligning the second attribute sequences

attribute 1 attribute 2
pos 0 1 2 3 4 5 pos 0 1 2 3 4 5

null 1 2 3 4 5 g null 1 2 3 4 5 g
0 null 0 1 2 3 4 5 0 null 0 1 2 3 4 5
1 1 1 0 1 2 3 4 1 1 1 0 1 2 3 4
2 4 2 1 2 3 2 3 2 4 2 1 2 3 2 3
3 7 3 2 3 4 3 4 3 2 3 2 1 2 3 4
4 8 4 3 4 5 4 5 4 3 4 3 2 1 2 3

s s

Fig. 1: Comparison tables of two attribute dimensions. The vertical, horizontal and diagonal moves
represent the deletion, insertion and identity operations, respectively, and the ordered set of moves
from cell (0,0) to (4,5) constitutes a trajectory of the alignments in each comparison table.

pos 0 1 2 3 4 5
null 1 2 3 4 5 g

0 null 0
1 1 0 1 2
2 4 2 3
3 2 4
4 3 5

s
Fig. 2: A non-optimum trajectory of attribute 2.

differently as in Fig. 2, the uni-dimensional operation set for attribute 2 becomes {d4, d5, i3,
i4, i6}, and we obtain the multidimensional operation set as O = {d4(1,2), d5(1,2), i3(1,2),
i4(1,2), i6(1,2)}. The multidimensional alignment costs are therefore equal to 5. The
alignment of attribute 2 in the second case is not optimal, and hence, the uni-dimensional
alignment costs are bigger than the optimum. Thus, the non-optimal uni-dimensional alignment
induces a smaller multidimensional alignment cost that is optimal.

In general, the accompanying relationships between attributes may be quite variable,
leading to different MDSAM results that the integration of uni-dimensional optimum
alignments cannot perfectly project. To date, the only known way to guarantee the optimality of
the multidimensional comparison result is to try all possible alignments of each attribute,
generate all possible combinations of the alignments across attributes and then find the
minimum costs. Unfortunately, the enumeration of all possible alignments of even a single
attribute already requires an enormous amount of computing time. In this paper, we therefore
suggest employing heuristic approaches. In particular, two such approaches or algorithms will
be developed in the following section.

8

3. Alternative Methods
Enumerating all possible solutions is, while guaranteeing the optimality of the final solution,
not a realistic approach in terms of computing time. Given the nature of the problem, the
alternative approach must seek acceptable results within acceptable computing times by
reducing the solution search space. To accomplish this, two alternative heuristic algorithms are
introduced in this section. One is a genetic algorithm, and the other is based on a dynamic
programming technique used for uni-dimensional sequence alignments.

3.1 A heuristic method based on genetic algorithms
Genetic Algorithms (GA) consitute a heuristic approach, inspired by Darwinian evolution
theory. Its solution representation and search mechanism is modeled in analogue to
evolutionary processes of biological species. In this approach, a possible solution is represented
as an organism consisting of one or more chromosomes. A chromosome is a string of genes
containing genetic information. GA does not search the entire space of a possibly infinite
number of solutions, but considers only a population: a pre-defined, tractable number of
organisms. It starts with initializing the population (called the 0-th generation) by using a
random generator and evaluates all organisms of the population according to some
mathematical function, resulting in a fitness value of each organism. A certain number of
organisms are then probabilistically selected from the population, based on their fitness values.
The higher the fitness of an organism, the greater the probability of being selected. GA then
generates a new population by applying genetic operators such as reproduction, crossover and
mutation to the selected organisms. These cyclic procedures of evaluation-selection-application
of genetic operators continue over generations until the evaluation result meets a pre-defined
stop condition. In a pseudo code (Buckles and Petry, 1992), the principle underlying a genetic
algorithm can be expressed as follows:

begin
 initialize population
 evaluate initial population
 while not (stop condition) do
 begin
 select organisms
 select a genetic operator
 generate new population by applying a genetic operator
 evaluate newly generated population
 end
end

This structure is common to all genetic algorithms. The specific challenge in any application
domain concerns the specification of a representation scheme of the possible solutions, the
specification of the fitness function, the choice of genetic operators, and the choice of stop
condition. Note that each generation selects and applies only one genetic operator. Equally
important is a list of parameters, to be set by the researcher, that controls the overall
algorithmic flow. It includes the number of generations, the size of a population, the selection
probabilities of genetic operators in each generation, the number of organisms to be selected
from a population, the probabilities of reproduction and crossover to each selected organism,
and the mutation probability of each gene of the selected organism. We will develop a Genetic
Algorithms-based MultiDimensional Sequence Alignment Method (GA-MDSAM) by
incorporating some context-specific modifications of these principles.

3.1.1 Representation scheme: The terms underlying GA are used as follows for our problem at
hand:

9

generation à generation
population à population
organism à trajectory set (consisting of K uni-dimensional trajectories)
chromosome à trajectory
gene à move (vertical, horizontal and diagonal)

where: a set of moves in the comparison table constitutes a trajectory of alignments of an
attribute; a set of trajectories composes a trajectory set as a solution of multidimensional
alignments that will be converted into a multidimensional alignment cost; a set of trajectory sets
constitutes a population of the current generation.

The resulting representation of a population can then be denoted as:

E(t) = {E1, …, Eu, …, EU} (7)

with

Eu = [E1u … Eku … EKu]’ (8)

and

] [)(1 knmlkkku XXXE += (9)

where,

E(t)is the population of the t-th generation (t ≥ 0);
Eu is the u-th trajectory set of E(t) and is an ordered set of K trajectories (K > 0);
U is the number of trajectory sets in E(t) (0 < U << TU);
Eku is the k-th trajectory of Eu and is an ordered set of moves of the comparison table;
Xlk is the l-th move of the k-th trajectory and is encoded as V, H or D respectively representing

the vertical, horizontal or diagonal move.

It is important to note that when two K-dimensional activity patterns of lengths m and n are
compared, the number of operations is fixed and equal to m+n for all trajectories. In other
words, GA-MDSAM employs a ‘fixed-format’ representation scheme although the lengths of
actual trajectories in the comparison tables may vary because the lengths of the trajectories
having diagonal moves of identity operation are shorter than those of off-diagonal moves. This
representation scheme intends to separate population generation procedures (initialization and
genetic operator application) from evaluation procedures. Any comparison of two sequences
must yield a trajectory that ends with the last pair of source and target elements (m and n) in
the comparison table. However, a randomly generated fixed-format trajectory may not satisfy
this condition. The population generation procedures do not check the end condition when
generating trajectory sets because this non-supervised search can improve the results in later
generations by not narrowing the search space and keeping the diversity of the solutions even
though it may decrease the efficiency, particularly in early generations. In fact, some
preliminary experimentation demonstrated that a supervised search strategy is not better than
the non-supervised search strategy.

3.1.2 Fitness function and trajectory-set selection: GA-MDSAM assumes that the trajectory sets with
lower multidimensional alignment costs are the better ones and hence, takes the best-of-
generation solution (Koza, 1992) as the fitness of each generation. The fitness function, also
called objective function, is therefore defined by equations (3) - (6) in section 2.1. In particular,
each trajectory Eku of Eu of the t-th generation, consisting of vertical, horizontal and diagonal

10

moves, is converted into the corresponding uni-dimensional operation set that contains deletion
and insertion operations. A substitution is automatically decomposed into a deletion and an
insertion, as mentioned in section 2.1. The uni-dimensional operation sets are then integrated
into multidimensional operation sets by equation (6). The fitness values Cu of individual
trajectory sets Eu are determined by equations (4) and (5). Finally, the fitness of population C*

at the t-th generation is then determined by equation (3). Note that the number of
multidimensional operation sets of GA-MDSAM (U) of each generation is however a much
smaller one than that of the exhaustive MDSAM (TU) expressed in equation (3).

Now the problem is how to evaluate particular trajectory sets whose uni-dimensional
trajectori(es) do not end with the element pair (m,n). We will handle this problem by simply
ignoring the moves that do not satisfy this requirement and, if necessary, adding alternative
moves. Consider, for example, a trajectory of alignments, involving two sequences of lengths 3
and 4 (Fig. 3). The trajectory resulting from a population generation procedure is Eku = [D V H
V D V V] in the comparison table of the LHS of Fig. 3, where n(Eku) = 3+4 = 7. The underlined
elements in the trajectory vector are the moves not in the comparison table, which hence, are
ignored. Instead, new moves are added for evaluation in the RHS of Fig. 3, and the resulting
trajectory is assumed to be Eku = [D V H V H H]. Note that the trajectory itself is not changed,
but the evaluation procedure assumes an imaginary trajectory only for evaluation purposes.
The generated trajectory is unchanged even if part of it falls outside the comparison table, and
will be input for the population generation procedure of the next generation. This is because
GA-MDSAM employs a non-supervised search strategy that strictly separates the population
generation from evaluation procedures to maintain the diversity of trajectory-set candidates. In
addition, unlike the vertical and horizontal moves that are always converted into deletion and
insertion operations, it is checked whether the diagonal move implies identity (si=gj) or
substitution (si≠gj), and the move is decomposed into vertical and horizontal moves if it is
known as substitution.

Trajectory sets for generating new populations are selected probabilistically, based on their
fitness values. This so-called roulette wheel selection scheme (Goldberg, 1989), is known to
result in better solutions, and can be expressed as:

'

'

'

'

'

'

)(

u

u
U

u
U

u

u

u
U

u

u

C

C

C

C

ES
Σ

Σ

Σ

= (10)

where,

S(Eu) is the selection probability, also called survival rate, of the u-th trajectory set.

Note that equation (10) holds for each selection of a trajectory set in the current generation. In
other words, the selection of trajectory sets is made with replacement, and gives higher and
higher chances to better solutions to be selected.

g0 g1 g2 g3 g4 g g0 g1 g2 g3 g4 g
s0 s0

s1 s1

s2 à s2

s3 s3

s s

11

Fig. 3: An ‘illegal’ trajectory and a correction of it for the evaluation
3.1.3 Genetic operators: GA-MDSAM employs reproduction, crossover and mutation operators,
commonly used in GA. It is well known however that these genetic operators may vary
considerably, depending on the data. For example, Syswerda (1991) argued that “constructing
operators can be tricky, and experimentation is often necessary to get them right. The
chromosome should be broken up in a way that is “natural” for the problem at hand.” We
therefore explored several combinations of genetic operators of different forms to identify the
best form for our problem.

First, we explored three different kinds of crossover operators: one-point crossover, two-
point crossover and uniform crossover, as illustrated in Fig. 4. One-point crossover is an
operator that exchanges one piece of information between two selected trajectories, designated
by a single cutting point somewhere in the sequence. Two-point crossover is an operator that
exchanges one or two pieces of information between two selected trajectories, designated by
two cutting points somewhere in the sequence. Uniform crossover is an operator that exchanges
the information of each corresponding position between two selected trajectories by chance. It
is a crossover operator, possibly involving multiple cutting points (Davis, 1991b).

Secondly, we explored two kinds of mutation operators: point mutation and order-based
mutation. Point mutation is an operator that changes by chance the kind of a move. Order-
based mutation (Syswerda, 1991) is an operator that randomly selects two moves and
exchanges them within a single trajectory.

Finally, we explored the reproduction operator as it is commonly used in conventional GA.
Once a selection of trajectory sets has been made on the basis of fitness values, the
reproduction operator simply copies the selected trajectory sets to the next generation.

3.1.4 Stop condition: In general, three different stop conditions can be identified. First, the number
of generations for a run is often a priori given (Koza, 1992). Secondly, a certain threshold
value of the fitness of an organism may be employed. Finally, a certain degree of stability or

one-point crossover

Eku à

Eku’ à

two-point crossover

Eku à

Eku’ à

uniform crossover

Eku • • • à

Eku’ • • • à

 selected trajectories newly generated trajectories

Fig. 4: Illustration of different crossover operators. The vertical lines represent crossover points; each
cell represents a vertical, horizontal or diagonal move. Note that the number of cells (moves) of a

12

trajectory is m+n, and that that each crossover event works on a pair of trajectories for the same
attribute. That is, k = k’ in any pair of Eku and Ek’u’ where u ≠ u’.
convergence rate across consecutive generations can be specified. We decided to use a certain
number of generations as the stop condition. The exact number was based on some preliminary
experiments that we conducted.

3.1.5 Parameters: Three additional parameters are particularly relevant. First, we specified the
choice probability of the diagonal move in initializing the population and in mutating trajectory
sets. Because we have vertical, horizontal and diagonal moves, a choice probability of 1/3
given to every move may be considered reasonable. However, many of diagonal moves involve
substitution rather than identity, and the equal choice probability rule is not fair for the
problem at hand. We therefore introduced an additional parameter of diagonal move choice that
was assigned a value greater than 1/3.

Secondly, we defined a parameter to select the best trajectory set(s) for the next generation.
The best trajectory set of the current generation contains all the efforts accumulated from the
first generation. When the best combination(s) of a generation is not selected, the algorithm
may put in the same effort again and again over generations. To prevent this inefficiency, we
introduced a second additional parameter, which defines the number of best trajectory sets to
be preserved for the next generation, instead of being selected by chance.

Finally, we were concerned about the possible limitation of conventional genetic operators
with respect to their ability to derive better trajectory sets from the selected ones. In our
application context, the genetic operations with fixed format representation may produce a
trajectory set that is worse than the selected one. To increase the possibility to find a locally
better trajectory set, we generated several offspring around the selected trajectory set and
picked the best. This nearest neighbor heuristic selects the locally superior alternatives at each
search step (Rich and Knight, 1991; Reeves and Höhn, 1996). Of course, not all neighbors of a
selected trajectory set were tried as all possible crossover or mutation of a trajectory set would
cost too much computing time. Instead, we examined a few neighbors by introducing a
parameter for the number of neighbors.

In summary, GA-MDSAM can now be detailed as follows:

begin
 t = 0 // t indicates the t-th generation //

 initialize E(t)
 calculate C*(t)
 Best_Fitness = C*(t)
 while not (t = T) do
 begin
 select a genetic operator
 create E1(t) by selecting and copying a subset of E(t)
 t = t+1
 create E1(t) by applying the selected genetic operator to E1(t−1)
 create E2(t) by selecting and copying a subset of E(t−1)
 create E(t) by summing E1(t) and E2(t)
 calculate C*(t)
 if C*(t) < Best_Fitness then Best_Fitness = C*(t)
 end
end

where C*(t) denotes the fitness of E(t).

13

Note that E1(t) consists of the trajectory sets newly generated by the single or multiple
applications of a genetic operator to each of the selected trajectory sets and that E2(t) includes
the best trajectory set(s) of the (t−1)-th generation.

3.2 A heuristic method based on dynamic programming
GA-MDSAM separates the solution search procedure from the solution evaluation procedure
and keeps the solution search context-free. This non-supervised, general-purpose search
scheme may find better solutions by avoiding the premature application of knowledge about
uni-dimensional alignments to the integration of operation sets. In theory, the uni-dimensional
optimum alignments are not necessarily an appropriate basis for the multidimensional
integration of operation sets in terms of the optimality of the solutions, as we have discussed in
section 2.2. In practice, as the uni-dimensional optimum trajectories involve the largest number
of cost-free identity operations, we may expect that their integration will result in a solution
that is near to the multidimensional optimum. However, there are often many possible optimum
trajectories as mentioned in section 2.1, and the number of combinations of trajectories across
attributes to consider may become intractably large. As tracing all possible uni-dimensional
optimum trajectories would cause the problem of combinatorial explosion, we therefore suggest
employing a more simplified heuristic approach that considers, for each attribute dimension,
only one optimum trajectory along the diagonal region of the comparison table. The rationale
underlying this heuristic approach lies in the expectation that the integration of diagonal-
oriented optimum trajectories across attribute dimensions will also lead to a good solution, as
most uni-dimensional optimum trajectories run along the diagonal region of the comparison
table (Kruskal and Sankoff, 1983). More similar trajectories of different attribute dimensions
have more similar operation sets, and more similar operation sets of different attribute
dimensions result in more occasions of operation integration in the multidimensional space.
Examples of the diagonal region of the comparison table are illustrated as shadowed cells in
Fig. 5. Among the uni-dimensional optimum trajectories, the optimum trajectory along the
diagonal region is the one that has the largest number of identity operations whose coordinates
fall in the diagonal region.

Equations (3) - (6) in section 2.1 representing the general solution of the MDSAM problem
involved the existence of multiple uni-dimensional operation sets and hence, assumed the
existence of multiple multidimensional operation sets. Although reducing the number of
multidimensional operation sets, GA-MDSAM searches multiple opportunities for the solution
because it also involves multiple uni-dimensional operation sets. In contrast, the proposed
Diagonal-directed Optimum-Trajectory-based MultiDimensional Sequence Alignment Method
(DOT-MDSAM) considers only one multidimensional operation set, as it is involved with only
one uni-dimensional operation set for the operation integration. Consequently, the proposed
DOT-MDSAM can also be expressed by equations (3) - (6) in section 2.1, in which the
number of multidimensional operation sets, TU, is assumed to be 1. The only uni-dimensional
operation set of each attribute dimension by which equation (6) induces a single
multidimensional operation set is then defined as:

g0 g1 g2 g3 g g0 g1 g2 g3 g4 g5 g6 g
s0 s0

s1 s1

s2 s2

s3 s3

s s

Fig. 5: Diagonal region of the comparison table

14

Ok = {p|p = d(i,k) ∨ i(j,k)} (11)

with

Ok = conv(Qk) (12)

and

Qk = {q|q = e(i,j,k)1, …, e(i,j,k)r, …,
kRkji),,(e } (13)

and

F(Qk) = F(*
kv

Q) = max[F(
k

Q1), …, F(
kvQ), …, F(

kVQ)] (14)

and

F(
kvQ) =

v

k

r

R

r
eΣ (15)

and

vr
e =

 ∈

otherwise 0
)},,({),,(if 1 kjiDkji

vr
ee

(16)

where,
Ok is the cost-taking deletion and insertion operation set of the k-th attribute dimension;
Qk is the cost-free identity operation set of an optimum alignment of the k-th attribute

dimension;
conv(Qk) is a procedural function that converts Qk into Ok;
e(i,j,k)r is the r-th identity operation applied to the i-th source element and the j-th target

element of the k-th attribute dimension;
Rk is the number of identity operations of the optimum trajectory of the k-th attribute

dimension;

kvQ is the identity operation set of the v-th optimum trajectory of the k-th attribute

dimension;
Vk is the number of optimum trajectories that can be traced in the comparison table of

the k-th attribute dimension;
F(

kvQ) is a ‘diagonal’ function measuring how much
kvQ is involved with the diagonal

region of the k-th attribute dimension, denoted by D{e(i,j,k)};

vr
e is a dichotomous value denoting whether the coordinate of the r-th identity operation

of the v-th optimum trajectory falls in the diagonal region;

vr
kji),,(e is e(i,j,k)r of the v-th optimum trajectory.

More specifically, the value of
vr

e in equation (16) is determined as:

vr
e =

 +−≤≤

otherwise 0
)|(| if 1 pnmqp (17)

15

where p and q are the positions of the shorter pattern and the longer pattern appeared in

vr
kji),,(e , respectively.

Converting Qk into Ok can be easily done by comparing the coordinates of two adjacent identity
operations. All the source and target elements in-between these are identified as the elements
that are respectively deleted and inserted. When there are multiple

kvQ ’s, with the maximum

value of the ‘diagonal’ function, one of such
kvQ ’s is arbitrarily selected as *

kv
Q .

4. Illustration
The illustration compares the MDSAMs using the two different heuristics developed in section
3. The comparison is conducted in terms of how close the results of each heuristic are to the
‘true’ similarities, and in terms of the computing time required to reach the solution. More
specifically, because different combinations of parameters yield different GA-MDSAMs, we
compare the DOT-MDSAM and a set of GA-MDSAMs. GA-MDSAMs can be differentiated
in terms of the kinds of crossover and mutation operators, and the number of neighbors of each
selected trajectory sets. According to these criteria, twelve GA-MDSAMs were compared
(Table 1). Table 2 gives a summary of some other operational decisions. Based on preliminary
experiments, the analyses were restricted to 400 generations and 100 trajectory sets. The
probability of diagonal move choice was given a higher probability than the probability of a
horizontal or vertical move. Likewise, the probability of crossover selection was set higher than
the probability of either a reproduction or a mutation.

We conducted 2485 pairwise comparisons of 71 three-dimensional activity patterns
consisting of activity type, location and transport mode sequences. As the exhaustive search
requires considerable amount of computing time, only this small number of activity patterns
was analyzed. The set of 71 activity patterns was arbitrarily selected from 2974 activity
patterns collected in two cities (Hendrik-Ido-Ambacht and Zwijndrecht) in The Netherlands.
The activity patterns distinguish forty-eight activity types and five transport modes (car, walk,
bike, car passenger and public transport mode including bus, train, tram, and subway). Activity
locations are encoded by four-digit zip codes, except for the home location that is encoded ‘0’.
In addition, the analysis in this section includes an extra code representing the attribute
elements that were not identified. The substitution operation was applied to the alignment of the
unknown element. The analysis also included an extra activity type, ‘in-home activities.’ This
activity type was identified if pre-specified thirteen particular activity types among forty-eight
activity types were conducted at home. Once identified, each set of consecutive in-home
activities was encoded as a single in-home activity. The average length of the 71 activity
patterns that were adjusted in this way was 6.80 with a maximum of 17 and a minimum of 1
activities, while the average of the 2974 activity patterns was 6.78 with a maximum of 21 and
a minimum of 1.

Table 1. GA-MDSAMs to test
one-point crossover two-point crossover uniform crossover
point

mutation
order-based

mutation
point

mutation
order-based

mutation
point

mutation
order-based

mutation
1 neighbor (1-1-1) (1-2-1) (2-1-1) (2-2-1) (3-1-1) (3-2-1)
5 neighbors (1-1-5) (1-2-5) (2-1-5) (2-2-5) (3-1-5) (3-2-5)
Note: The first numeral in the bracket represents the kind of crossover: 1=one-point, 2=two-point and
3=uniform. The second numeral denotes the kind of mutation: 1=point, 2=order-based. The last
numeral indicates the number of neighbor trajectory sets to try.

16

Table 2. Parameters commonly used for twelve GA-MDSAMs
parameter value parameter value

generations 400 trajectory set
proportion for reproduction

30 %

trajectory sets 100
best trajectory sets 1 trajectory set

proportion for crossover
40 %

vertical move choice prob. 20 %
horizontal move choice prob. 20 % trajectory set

proportion for mutation
20 %

diagonal move choice prob. 60 %
reproduction selection prob. 20 % reproduction application prob. 100 %
crossover selection prob. 70 % crossover application prob. 100 %
mutation selection prob. 10 % mutation application prob. 1 %

Table 3 provides the overall results of the comparison of DOT-MDSAM and the GA-
MDSAMs. It is clear from the table that DOT-MDSAM outperforms GA-MDSAMs in both
terms of costs and computing time. DOT-MDSAM yields 2018 correct results (81.2 % of total
2485 pairwise comparisons) in just 11 seconds. In contrast, on average, the percentage of
correct predictions of GA-MDSAMs is only 73.1 %. It implies that most of the different
combinations of uni-dimensional trajectories induce the same set of operations in the
multidimensional space and that DOT-MDSAM therefore likely provides the true similarities
or at least the similarities that are very close to the true ones within a short time. In comparison
with DOT-MDSAM, even the best of GA-MDSAMs yields only 1938 correct results (78 % of
the total), while consuming much more computing time (more than two hours).

Interestingly, there are some notable differences in performance between GA-MDSAMs.
The proportion of correct results, the average deviation from the true similarities and the
computing time all vary considerably between GA-MDSAMs. Table 4 compares GA-
MDSAMs in terms of the kind of crossover operator, the kind of mutation operator and the

Table 3. Performances of DOT-MDSAM and GA-MDSAMs (2485 comparisons for each measure)
MDSAMs =I rangeII aver diffIII computing timeIV

exhaustive search - - - 62hrs 47min 32sec
DOT-MDSAM 2018 (81.2%) 0 - 3 .232 11sec
GA-

MDSAMs
(1-1-1) 1776 (71.5%) 0 - 7 .596 56min 13sec

(1-1-5) 1879 (75.6%) 0 - 6 .480 1hr 52min 42sec
(1-2-1) 1729 (69.6%) 0 - 10 .641 55min 31sec
(1-2-5) 1833 (73.8%) 0 - 6 .516 1hr 49min 42sec
(2-1-1) 1751 (70.5%) 0 - 6 .602 56min 40sec
(2-1-5) 1862 (74.9%) 0 - 7 .496 1hr 54min 17sec
(2-2-1) 1703 (68.5%) 0 - 7 .662 55min 49sec
(2-2-5) 1818 (73.2%) 0 - 6 .542 1hr 51min 14sec
(3-1-1) 1826 (73.5%) 0 - 6 .530 59min 54sec
(3-1-5) 1938 (78.0%) 0 - 4 .404 2hrs 11min 6sec
(3-2-1) 1767 (71.1%) 0 - 6 .575 59min 9sec
(3-2-5) 1909 (76.8%) 0 - 5 .433 2hrs 8min 6sec

best 1938 (78.0%) 0 - 4 .404 55min 31sec
worst 1703 (68.5%) 0 - 10 .662 2hrs 11min 6sec

average 1816 (73.1%) 6.33 .540 1hr 26min 42sec
I: Heuristic MDSAM costs are the same as the true costs obtained by the exhaustive search.
II: Range of deviation of each measure’s results from the true similarities.
III: Average deviation from the true similarities.
IV: Computations based on a 350MHz Pentium II processor.

17

Table 4. Performances of GA-MDSAMs by different parameters
parameter (value) < computing time

crossover one-point
two-point
uniform

680.75 (27.39%)
701.50 (28.23%)
625.00 (25.15%)

1hr 23min 32sec
1hr 24min 12sec
1hr 34min 34sec

mutation point
order-based

646.33 (26.01%)
691.83 (27.84%)

1hr 28min 29sec
1hr 26min 35sec

neighbors 1
5

726.33 (29.23%)
611.83 (24.62%)

 57min 13sec
1hr 57min 52sec

 Note: The figures are averaged on each of the concerned parameters

number of neighbor trajectory sets. Table 4 indicates that among the crossover operators,
uniform crossover yields better results although it consumes slightly more time. There appears
to be no clear difference however between the mutation operators, which might reflect that only
a few mutations have taken place. Table 4 also demonstrates that multiple neighbor searches
perform much better than the single neighbor search of conventional GA at the expense of a
considerably more computing time.

Yet, the point mutation and multiple neighbor searches are worse than DOT-MDSAM in
terms of the correctness of the results and computing time. It is therefore safe to say that DOT-
MDSAM, a heuristic method that utilizes context-specific information of uni-dimensional
sequence alignments, outperforms GA-MDSAM, a general-purpose search heuristic method
that does not use context-specific information.

5. Conclusion and Discussion
This paper aimed at developing more efficient algorithms to measure the similarities between
multidimensional activity patterns within acceptable computer times by utilizing heuristics that
appropriately reduce the multidimensional solution search space. In particular, the paper
developed two alternative multidimensional sequence alignment methods. The first employed
genetic algorithms. The second alternative was developed on the basis of a dynamic
programming technique. The major difference between the two alternatives is that the latter
utilizes context-specific information in producing the solution, while the former does not rely
on such information.

The illustration compared the performances of the suggested methods. It clearly showed
that the heuristic utilizing the dynamic programming technique outperforms the genetic
algorithms-based heuristic, both in terms of the correctness of the results and computing time.
In other words, the dynamic programming method reduces the search space very drastically
and effectively so that, in our application context, it outperforms even the most powerful
heuristic of blind search method, which GA probably is.

Based on these observations, we conclude that the future research should focus on some
further elaboration of multidimensional sequence alignment methods based on the dynamic
programming heuristic. First, we assumed that the weighting value of a substitution is the
simple sum of deletion and insertion weighting values. Although this assumption is not
problematic in the present context, a generalized method with a flexible substitution weight is
still required. Secondly, in this paper we considered only categorical attributes. The problem of
handling quantitative attributes has to be solved given the importance of activity duration,
which is inherently quantitative in nature. Finally, we selected a uni-dimensional trajectory
arbitrarily among the optimum trajectories in the diagonal region of the comparison table. We
may however further improve the results of the suggested heuristics by systematically
comparing all optimum trajectories in the diagonal region. This would not require that much

18

extra computing time as the number of optimum trajectories may be relatively small, compared
to the number of entire optimum trajectories.

References

Arentze, T. A., F. Hofman, C. H. Joh and H. J. P. Timmermans, 1998, Experiences with developing
ALBATROSS: A Learning-Based Transportation Oriented Simulation System, in K. J. Beckmann
(ed.), Verkehr und Mobilität, Aachen: Institut für Stadtbauwesen, Stadt Region Land 66, 61-70.

Buckles, B. P. and F. E. Petry, 1992, An overview of genetic algorithms and their applications, in B.
P. Buckles and F. E. Petry, Genetic Algorithms, Washington: IEEE Computer Society Press, 1-4.

Burnett P. and S. Hanson, 1982, The analysis of travel as an example of complex human behavior in
spatially-constrained situations: definition and measurement issues, Transportation Research A,
16, 87-102.

Davis, L., 1991a, Performance enhancements, in L. Davis (ed.), Handbook of Genetic Algorithms,
New York: Van Nostrand Reinhold, 23-42.

Davis, L., 1991b, Further evolution of the genetic algorithm, in L. Davis (ed.), Handbook of Genetic
Algorithms, New York: Van Nostrand Reinhold, 43-53.

Ettema, D. F. and H. J. P. Timmermans, 1997, Theories and models of activity patterns, in D. F.
Ettema and H. J. P. Timmermans (eds.), Activity-Based Approaches to Travel Analysis, Oxford:
Pergamon, 1-36.

Gärling, T., R. Gillholm, J. Romanus and M. Selart, 1997, Interdependent activity and travel choices:
behavioral principles of integration of choice outcomes, in D. F. Ettema and H. J. P. Timmermans
(eds.), Activity-Based Approaches to Travel Analysis, Oxford: Pergamon, 135-149.

Goldberg, D. E., 1989, A gentle introduction to genetic algorithms, Genetic Algorithms in Search,
Optimization, and Machine Learning, Amsterdam: Addison-Wesley, 1-25.

Golob, T. F. and W. W. Recker, 1987, Dynamic analysis of complex travel behavior using a sub-
sample of the Dutch National Mobility Panel, Analyses of Panel Data: Proceedings of the Round
Table Conference on the Longitudinal Travel Study, The Hague: Projectbureau Integrale
Verkeers- en Vervoersstudies, 173-193.

Gower, J. C., 1971, A general coefficient of similarity and some of its properties, Biometrics, 27, 857-
871.

Joh, C. H., T. A. Arentze, F. Hofman and H. J. P. Timmermans, 1997, Activity pattern similarity:
towards a multidimensional sequence alignment, Paper presented at the IATBR Meetings in
Austin, Texas, U.S.A.

Koza, J. R., 1992, Genetic Programming: On the Programming of Computers by means of Natural
Selection, London: MIT Press.

Kruskal, J. B., 1983, An overview of sequence comparison, in D. Sankoff and J. B. Kruskal (eds.),
Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, London: Addison-Wesley, 1-44.

Kruskal, J. B. and D. Sankof, 1983, An analogy of algorithms and concepts for sequence comparison,
in D. Sankoff and J. B. Kruskal (eds.), Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison, London: Addison-Wesley, 265-310.

Pas, E. I., 1983, A flexible and integrated methodology for analytical classification of daily travel-
activity behavior, Transportation Science, 17, 405-429.

Reeves, C. R. and C. Höhn, 1996, Integrating local search into genetic algorithms, in V. J. Rayward-
Smith, I. H. Osman, C. R. Reeves and G. D. Smith (eds.), Modern Heuristic Search Methods,
Chichester: John Wiley & Sons, 99-115.

Recker, W. W., M. G. McNally and G. S. Root, 1985, Travel/activity analysis: pattern recognition,
classification and interpretation, Transportation Research A, 19(4), 279-296.

Rich, E. and K. Knight, 1991, Problems, problem spaces, and search, in E. Rich and K. Knight,
Artificial Intelligence, London: McGraw-Hill, 29-62.

Syswerda, G., 1991, Schedule optimization using genetic algorithms, in L. Davis (ed.), Handbook of
Genetic Algorithms, New York: Van Nostrand Reinhold, 332-349.

Young, T. Y. and T. W. Calvert, 1974, Image analysis and character recognition, in T. Y. Young and
T. W. Calvert, Classification, Estimation and Pattern Recognition, New York: American
Elsevier, 311-354.

19

Wilson, C., 1998, Activity pattern analysis by means of sequence-alignment methods, Environment
and Planning A, 30, 1017-1038.

