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 ABSTRACT 
This paper discusses the application of space-time autoregressive integrated moving 

average (STARIMA) methodology for representing traffic flow patterns. Traffic flow 

data are in the form of spatial time series and are collected at specific locations at 

constant intervals of time.  Important spatial characteristics of the space-time process 

are incorporated in the STARIMA model through the use of weighting matrices 

estimated on the basis of the distances among the various locations where data are 

collected. These matrices distinguish the space-time approach from the vector 

autoregressive moving average (VARMA) methodology and enable the model builders 

to control the number of the parameters that have to be estimated.  The proposed models 

can be used for short-term forecasting of space-time stationary traffic-flow processes 

and for assessing the impact of traffic-flow changes on other parts of the network. The 

three-stage iterative space-time model building procedure is illustrated using 7.5 min. 

average traffic flow data for a set of 25 loop-detectors located at roads that direct to the 

centre of the city of Athens, Greece. Data for two months with different traffic-flow 

characteristics are modelled in order to determine the stability of the parameter 

estimation. 
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1. INTRODUCTION 

The space-time autoregressive integrated moving average (STARIMA) model 

class was first presented in the literature in the early eighties. Since then it has been 

applied to spatial time series data from a wide variety of disciplines such as river flow 

(Pfeifer and Deutsch 1981a), spread of disease  (Pfeifer and Deutsch 1980a), and spatial 

econometrics (Elhorst 2000, Giacomini and Granger 2001). The STARIMA 

methodology was illustrated in a series of papers by Pfeifer and Deutsch (1980a, 1980b, 

1981a, 1981b). As they point out: 

 “Processes amenable to modelling via this class are characterized by a single random 

variable observed at N fixed sites in space wherein the dependencies between the N time 

series are systematically related to the location of the sites.  A hierarchical series of 

 weighting matrices specified by the model builder prior to analysing the data is 

the basic mechanism for incorporating the relevant physical characteristics of the 

system into the model form. Each of the N time series is simultaneously modelled as a 

linear combination of past observations and disturbances at neighbouring sites. Just as 

univariate ARIMA models reflect the basic idea that the recent past exerts more 

influence than the distant past, so STARIMA models reflect (through the specification of 

the weighting matrices) the idea that near sites exert more influence in each other than 

distant ones.”   

NN ×

 To our knowledge it’s the first time that a purely inductive model is proposed 

for the spatiotemporal behaviour of traffic flow. Till now the vast majority of inductive 

techniques were univariate in nature; that is only historical data from a given location 

were used for modelling and predicting its future behaviour. Specifications have ranged 

from Kalman filtering (Whittaker et al., 1997), non-parametric regression (Davis and 

Nihan, 1991), regression with time varying coefficients (Rice and van Zwet, 2001), 

neural networks (van Lint and Hoogendoorn, 2002) and ARIMA models (Williams et 

al., 1997, Lee and Fambro, 1999). Limited amount of work has been performed using 

multivariate modelling techniques (Ben-Akiva et al. 1996, Stathopoulos and Karlaftis 

2002), all of them based on the state-space methodology and employed for short-term 

forecasting of traffic flow using a relatively small number of measurement locations. 

This paper presents how the STARIMA methodology can be tailored to model 

the traffic flow of a road network; the approach is similar to the one adopted by Deutsch 

and Ramos (1987) for vector hydrologic sequences.  In addition to its potential use for 
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short-term forecasting, this model class contributes to the understanding of the 

spatiotemporal evolution of traffic flow since it can be used to estimate how changes in 

traffic-flow patterns in some specific locations are propagated to the rest of the network.     

In the next session, an overview of the STARIMA model class and model 

building procedure is presented. Next, the experiment and the data are described 

followed by a report of the relevant model building details and an examination of the 

model coefficient estimates for different time periods.  Finally, we discuss the results 

and their implications for the applicability of STARIMA modelling. 

 

2. THE STARIMA MODEL CLASS AND MODEL BUILDING 

PROCEDURE 

2.1 PHYSICAL BASIS 

In traffic flow systems tree structures are the most common method for network 

representation. The direction of the vectors of the tree follows the permitted traffic 

direction, whereas traffic flow measurements are taken at specific points of the network 

(Figure 1). If we assume that the traffic flow process forms a “black-box” network, i.e. 

one that does not have access to any information other than past or present flows, then 

from Figure 1 it is clear that some measurement locations may not be connected through 

a path and therefore may act independently. If we also ignore any external effects and 

consider the distance between the measurement locations to be sufficiently long so as no 

congestion effects are introduced to disturb the flow pattern, no measurement location 

will be influenced by actions occurring downstream from it. Thus, downstream 

locations only depend on upstream locations but not vice versa. The question that has to 

be answered is how to exploit this structure in model identification and yet retain the 

statistical properties of the traffic flow process.   The spatial topological relationships of 

a network as the one presented in Figure 1 can be introduced through a hierarchical 

ordering for the neighbors of each measurement site. This is the basis for system 

structuring using STARIMA model building. We shall call W  a square  ll NN × th order 

weight matrix with elements  that are nonzero only in the case that the measurement 

locations i and j are “l

)(l
ijw

th order neighbors”.  First order neighbors are understood to be 

closer than second order ones, which are closer than third order neighbors and so on.     
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FIGURE 1. The typical road network tree structure for traffic flow. The dots represent  

         measurement locations and the arrows the direction of flow. 

 

 The weights  are taken so that and W  is the identity matrix since 

each site is its own zeroth order neighbour. Applying this rule to the network of Figure 

1 and assigning equal weights to the l

)(l
ijw ∑

=
=

N

j

l
ijw

1

)( 1 0

th order neighbours of each site yields the 

following weight matrices for spatial lags 1 and 2: 
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Additional features such as the distances of each neighbouring pair of sites are usually 

incorporated into the weighting matrices through an appropriate selection of weights. 

 

2.2. THE STARIMA MODEL 

The STARIMA model class expresses each observation at time t and location i 

as a weighted linear combination of previous observations and innovations lagged both 

in space and time. The basic mechanism for this representation is the hierarchical 

ordering of the neighbours of each site and a corresponding sequence of weighting 

matrices as presented in the previous section. The specification of the weighting 
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matrices is a matter left to the model builder to capture the physical properties that are 

being considered endogenous to the particular spatial system being analysed. 

If is the  vector of observations at time t at the N locations within the 

road network then the seasonal STARIMA model family is expressed as, 

tZ 1×N
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klΦ  and klφ  are respectively the seasonal and nonseasonal autoregressive parameters at 

temporal lag k and spatial lag l; similarly klΘ and klθ  are the seasonal and nonseasonal 

moving average parameters at temporal lag k and spatial lag l; P and p are the seasonal 

and nonseasonal autoregressive orders; Q and q are the seasonal and nonseasonal 

moving average orders.  and kΛ kλ  are the seasonal and nonseasonal spatial orders for 

the kth autoregressive term;  and  are the seasonal and nonseasonal spatial orders 

for the k

kΜ km

th moving average term; and D and d are, respectively, the number of seasonal 

and nonseasonal differences required, where ∇  and ∇  are the seasonal and 

nonseasonal difference operators, such that i.e., 

D
S

d
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seasonal lag S. Finally,  is the random, normally distributed, error vector at time t 

with statistics: 
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Equation (1) is referred to as a seasonal multiplicative STARIMA model of order 

.  ( ) ( Sm QDPqdp ΜΛ× ,,,,λ )

 When there is no seasonal component (quite unlikely in traffic flow) and d=0 the 

model collapses to the easier to interpret STARMA model which is of the form 
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where p is the autoregressive order, q is the moving average order, kλ  is the spatial 

order of the kth autoregressive term, is the spatial order of the kkm th moving average 

term, klφ  and klθ  are parameters to be estimated and W  is the l NN ×  matrix for spatial 

order l and  is the random normally distributed innovation or disturbance vector at 

time t. 

ta

 STARMA models can be viewed as special cases of the Vector Autoregressive 

Moving Average (VARMA) models (Lutkerpohl 1987,1993). The VARMA models use 

general  autoregressive and moving-average parameter matrices to represent all 

autocorrelations and cross-correlations within and among the N time series. If the 

diagonal elements in these matrices are assumed to be equal (as in the case where the N 

series represent a single random process operating at different sites) and the off-

diagonal elements are assumed to be a linear combination of the W  weight matrices 

then the general VARMA family collapses to the STARMA model class. The VARMA 

model class on the other hand, can be viewed as a special case of the state-space model, 

which is the only multivariate technique presented in the literature of traffic-flow 

modelling so far. It’s obvious from (1) and (3) that the STARIMA methodology 

provides a great reduction in the number of parameters that have to be estimated 

compared to the VARMA or the state-space model classes and thus facilitates the 

performance of applications of large spatial scale (large number of measurement 

locations).  

NN ×

l

 

2.3.  MODEL IDENTIFICATION 

Model identification is the first of the three stages of the iterative procedure commonly 

attributed to Box et al. (1994). The model form of the STARIMA class is tentatively 

chosen after an examination of the space-time autocorrelation and space-time partial 
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autocorrelation functions that can be viewed as the 2-dimensional analogues of the usual 

autocorrelations and partials used to identify univariate ARMA models The sample 

space-time autocorrelation at spatial lag l and temporal lag s is calculated via  
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For the space-time analogue of the Yule-Walker equations the space-time covariance 

function is needed 
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Premultiplying both sides of the general STAR model 
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Taking expected values and dividing both sides by N yields  
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since  for s>0. This system is the space-time analogue of the Yule-Walker 

equations for univariate time series. The set of last coefficients obtained from 

solving the system of equations as l=0,1,..,λ for k=1,2,… forms the space-time partial 

correlation function of spatial order λ. Analogously to univariate time series STARMA 

processes are characterized by a distinct space-time partial and autocorrelation function. 

Purely autoregressive STAR (  processes exhibit space-time autocorrelations that tail 

[ ] 0=′− tst aZE

klφ ′
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off both in space and time and partial autocorrelations that cut off after p lags in time 

and λ lags in space whereas STMA ( )mq

0

 processes exhibit autocorrelations that cut off 

after q lags and partials that decay over time and space. Mixed models exhibit partials 

and autocorrelations that tail off with both time and space. For a thorough discussion on 

these matters the reader should consult Pfeifer and Deutsch (1980a, 1980b). 

≠

klW
0

(θ

tZ

 

2.4. ESTIMATION AND DIAGNOSTIC CHECKING 

STARIMA (p,d,q) models with q are non-linear in form so parameter estimation is 

performed using any of a variety of non-linear optimisation techniques. As discussed in 

Pfeifer and Deutsch (1980a), gradient methods have found use, as has linearization, an 

iterative technique that at each stage “linearizes” the non-linear model using Taylor’s 

expansion and solves approximate normal equations for the next guess at the optimum 

parameters. Normally, one has to minimize the expression 
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where the first few alphas are functions of observations and errors at times before the 

initial epoch observed; this difficulty is sidestepped by substituting zero, the 

unconditional mean for all values of  and tα  with t<1.  

 The first phase of diagnostic checking is the examination of the residuals from 

the fitted model; these should be distributed normally with zero mean, have a spherical 

variance–covariance matrix and autocovariances at nonzero lags equal to zero. Usually 

the sample space-time autocorrelations and partials of the residuals are computed and 

compared to their theoretically derived variance. If the residuals are approximately 

white noise, the sample space-time autocorrelation functions should all be perfectly 

zero; otherwise they may follow a pattern that can be represented by a STARMA 

model, which may be coupled with the one initially proposed and lead to a better 

updated model.    

 The second phase of the diagnostic checking involves checking the statistical 

significance of the estimated parameters based on the approximate confidence intervals 

proposed by Pfeifer and Deutsch (1980a). The insignificant parameters should be 

removed and the resulting simpler models should be again estimated and passed through 
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the diagnostic checking stage until all parameters are statistically significant and the 

residuals meet the required constraints. 

 

3. THE APPLICATION 

3.1. THE STUDY AREA 

The urban area of Athens, the capital of Greece, has an area of 60 km2 and a 

population of approximately four million people. Total daily demand for travel is about 

5.5 million trips with about 1 million occurring during the 2-hour peak period 

(Stathopoulos and Karlaftis, 2002). In the last ten years traffic flows have been 

increasing by about 3.5% annually. Travel times in such a congested network can be 

very long and the potential for travel time savings though Intelligent Transportation 

Systems Technologies are high.  

A set of 88 loop detectors (Figure 2) has been installed by the Ministry of 

Environment and Public Works at major roads of the Athens network to measure traffic 

volume and road occupancy. The measurements take place every 90 seconds and are 

immediately transmitted to the Urban Traffic Control Center where they are used by the 

Siemens MIGRA traffic control system to adjust street lights timing, stored in databases 

for further analysis and displayed on a web site (http://test.AthensTraffic.gr) that shows 

real time traffic conditions in Athens (Kotzinos, 2002).  An indicator of data quality 

ranging from 1 to 3 is transmitted as well since often electronic or system failures result 

in measurements that might not be accurate.    

 

3.2. THE DATA ANALYSED 

In this study, it’s the dataset provided by 34 loop detectors located on major 

arterials leading to the center of the city that is being modelled. In 9 of them the 

measurements were of questionable quality during the time-period under investigation 

so the information they provided was discarded. The 25 loop detectors that remain are 

highlighted in Figure 2 and more formally presented in Table 1. 
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FIGURE 2. Loop detectors at the Athens road network. The ones used in this study are highlighted 

with different color and a label. 

 

LABEL ROAD INTERSECT. STR. 
M1 Mesogion ERT 
M2 Mesogion Ipirou 
M3 Mesogion Paritsi 
K1 Kifisias Karella 
K2 Kifisias 28 Oktovriou 
K3 Kifisias Ethn. Antistas. 
K4 Kifisias 25 Martiou 
KAP Kapodistriou El. Venizelou 
TRAL Veikou Tralleon 
GAL Galatsiou Veikou 
P1 Patision Kiprou 
P2 Patision Derigni 
P3 Patision Ipirou 
SEP Tr. Septemvriou Marni 
L1 Liosion Sepolion 
L2 Liosion Pl. Vathis 
AL Alexandras Panormou 
BM1 Vas. Sofias Mesogion 
BM2 Vas. Sofias Mesogion 
BM3 Vas. Sofias Alexandras 
BM4 Vas. Sofias Alexandras 
KAT Katehaki Alimou 
MIX Mihalakopoulou Sinopis 
A Amalias Vas. Sofias 
S Sigrou Frantzi 

                                   TABLE 1. Location of the loop detectors under study 
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FIGURE 3.  A subset from the dataset for the period 31 July-27 August. 

 
FIGURE 4.  A subset from the dataset for the period 11 February-10 March. 

 

 
FIGURE 5.  A subset from the differenced, mean-corrected data for the period 

31 July-27 August. 

FIGURE 6.  A subset from the differenced, mean-corrected data for the period 11 February-10 

March. 
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The variable under study was the relative velocity, which was defined as the 

traffic volume divided by the road occupancy. This is a variable more volatile than the 

other two, but it reflects in a clear way the traffic condition. As indicated in Rice & van 

Zwet (2002), multiplied by a constant related to the average vehicle length it can 

provide a proxy for the exact speed. Averages over 5 consecutive time intervals were 

taken in order to ease the implementation and smooth out the noise, so each loop 

detector provided 192 measurements per day. Data measurements for weekends were 

discarded since traffic conditions during these two days differ significantly from the 

other weekdays. In order to check for the stability of the estimated model parameters, 

separate models were fitted for two time periods. The first one was from the 31st of July 

2001 to the 27th of August 2001 and contained 3.727 observations (almost 20 days); the 

second one was from the 11th of February 2002 to the 10th of March 2002 and contained 

4242 observations corresponding to 22 weekdays. August is a month of atypical traffic 

flow characteristics since most of the Athens’ population takes their vacation at that 

time whereas the second time period is considered to be a typical one. As expected and 

is clearly depicted at Figures 3 and 4 that follow, the observed relative velocities for the 

August dataset are significantly higher. The variances of the spatial time series analysed 

for the two separate time periods (Table 3), also indicate a result pointed out quite often 

in the literature of traffic flow; the heavier the traffic the more volatile are the velocities 

(the variance of the relative velocities is clearly larger for all loop detectors the second 

period of our study). From simple observations of Figures 3 and 4 it is evident that 

there is a clear sinusoidal pattern with a daily period that should be accounted for in our 

models.  The daily periodicity was removed by differencing and mean standardization 

took place so that the models presented in the previous sections can be applied (Figures 

5 and 6). The time-sequence plots of the differenced, mean-corrected data, force us to 

check whether the spatial time series under investigation exhibit time dependent 

variation. For that purpose, the augmented Dickey Fuller test was performed to each 

differenced, mean-corrected spatial time-series and indicated no deviation from 

stationarity. The specifications related to the performance of the Dickey-Fuller test in 

the commercial statistical packages used for this purpose, were judged to be too 

restrictive for our purposes though, so another test, proposed by Bos-Fetherston (1992) 

was called for to ensure stationarity; fortunately, the constant variance hypothesis was 

not rejected (Figure 7).  Table 3 shows the sample means, variances and measures of the 

relative skewness for the differenced mean standardized data. The skewness measures 
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(none of which were statistically significant at the 0.01 level) and a visual inspection of 

the corresponding histograms were used to confirm the reasonableness of the normality 

assumption. 

Before proceeding to the STARIMA model fitting, separate ARIMA models 

were fit to the 50 time series of the two datasets of the application.   The patterns of the 

fitted models were quite similar for the series within the datasets that correspond to each 

of the two time periods examined; all the three stages of the ARIMA model fitting 

procedure indicated models that contain one autoregressive term (AR1) and two moving 

average ones, one at lag one (MA1) and one at lag 192 (MA192). The autoregressive 

term corresponds to the previous observation to the one being modeled, the first moving 

average term to the error from the previous prediction and the second moving average 

term to the prediction error one day before. The spatial time series from the first dataset 

that corresponds to August 2001 exhibit fairly stable behaviour concerning the 

parameters AR1, and MA192 (table 4). The AR1 term was proved to be of the greatest 

statistical significance with t-statistics greater than 100.  The AR1 and MA192 terms 

proved to be stable for the second dataset also. The MA192 terms were of larger 

statistical significance in this dataset though (table 4). The standard errors tend to 

increase as the volatility of the time series increase; the proportion of variance explained 

from the models for the second dataset is not always smaller than the one explained 

from the models for the first though.   

 
SITE MEAN  

(AUGUST) 
VARIANCE  
(AUGUST) 

SKEWNESS 
(AUGUST) 

MEAN  
(FEB-MAR) 

VARIANCE  
(FEB-MAR) 

SKEWNESS 
(FEB-MAR) 

M1 -7.299171e-015 1.910245e+004 4.193507e-001 2.859715e-015 8.283703e+004 6.965089e-004 
M2 1.716657e-015 1.261564e+003 2.419429e-001 5.087837e-016 1.367126e+004   7.938480e-002   
M3 4.454296e-014 4.754314e+003 5.047244e-001 -1.235116e-015 2.834469e+004 3.501394e-002 

KAT 9.286167e-015 7.986365e+002 1.684261e-001 3.684296e-016 6.592629e+003 
 

1.491311e-002 

K1 -4.031440e-014 8.874021e+003 4.570294e-001 -1.198273e-015 4.625433e+004 1.056192e-002 
K2 1.245365e-014 8.171604e+003   4.382056e-001   3.059720e-015 3.915146e+004   3.471764e-002   
K3 -4.149714e-014 4.702235e+003   6.957575e-001   -2.006187e-015 2.421069e+004   6.542651e-002   
K4 -1.617983e-014 

 
2.859344e+003 4.204714e-001 

 
-1.256169e-015 

 
1.409399e+004 

 
8.135375e-002 

 
KAP -7.686658e-015 1.559097e+003 2.831333e-001 6.175581e-016 1.113532e+004 5.877742e-002 

TRAL 6.042091e-015 1.837857e+003 3.887191e-001 7.228237e-016 2.581437e+004   8.899183e-003   
GAL 5.303163e-015 2.442650e+003   2.028006e+000  -3.052702e-016 7.847806e+003 4.795165e-003 
L2 -3.204651e-016 1.168043e+002 2.486567e-002 8.631778e-016 

 
1.504720e+003 1.312467e-002 

SEP -2.297887e-016 4.170068e+002   1.417909e-001   -1.868464e-015 6.547218e+003   5.023091e-002   
P1 -1.659210e-015 4.507253e+002   9.567459e-002   -8.298437e-016 5.394936e+003   3.062323e-002   
P2 -2.127798e-015 6.417203e+002 4.058264e-002 -9.123018e-017 4.368673e+003 4.674180e-002 
P3 1.397037e-015 1.949005e+002 3.043126e-002 1.228099e-016 1.842022e+003 3.901963e-002 
S -3.304902e-015 9.603511e+002   1.129470e-001   1.550913e-015 7.045201e+003   1.598506e-001   
A -4.573246e-015 1.665012e+003   5.719351e-002   -2.303562e-015 1.998369e+004   5.164928e-002   

BM1 -3.288006e-015 2.239783e+002 1.115568e-001 -8.574760e-017 2.864741e+003 6.020362e-003 
BM2 8.958380e-015 4.345446e+002 1.160451e-001 

 
3.008841e-016 

 
4.073353e+003 

 
1.137899e-002 
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BM3 2.532181e-015 2.000895e+002 6.066701e-001 -3.223759e-016 9.563090e+002 1.190688e-001 
BM4 1.242887e-014 6.284769e+002   1.481245e-001   1.614072e-016 5.065504e+003   4.021932e-002   
MIX -1.194451e-014 3.056875e+002   1.774820e-001   -5.614165e-017 9.923221e+003   3.288007e-002   
L1 -4.618302e-016 

 
2.463585e+002 7.130476e-002 -7.894919e-017 1.274060e+003 

 
1.912110e-002 

 
AL -5.226567e-016 3.025340e+002 6.209760e-002 -5.438722e-017 

 
2.985394e+003 

 
5.475049e-002 

 

TABLE 2. Sample moments of the seasonally differenced, mean corrected data. 

 

 AUGUST  2001     FEBR. MARCH 2002 
LOOP 

DETECT.  
AR1 

(T-STAT) 
MA1 

(T-STAT) 
MA192 

(T-STAT) 
STAND. 
ERROR 

 AR1 
(T-STAT) 

MA1 
(T-STAT) 

MA192 
(T-STAT) 

STAND. 
ERROR 

M1 0.97 
(162.4) 

0.81 
(57.75) 

0.44 
(26.25) 

108.49  0.894 
(100.54) 

0.35 
(18.86) 

0.847 
(99.56) 

117.69 

M2 0.977 
(178.52) 

0.87 
(69.5) 

0.49 
(30.83) 

28.89  0.818 
(44) 

0.55 
(20.4) 

0.826 
(91.7) 

71.56 

M3 0.971 
(176.47) 

0.76 
(51.46) 

0.47 
(28.67) 

48  0.8347 
(57.46) 

0.474 
(20.4) 

0.84 
(97.6) 

93.7 

KAT 0.967 
(142.02) 

0.84 
(57.99) 

0.43 
(25.88) 

23.5  0.46 
(7.63) 

0.257 
(3.9) 

0.849 
(100) 

51.37 

K1 0.91 
(78.42) 

0.67 
(31.52) 

0.43 
(24.94) 

74.5  0.885 
(77.11) 

0.57 
(28) 

0.87 
(109.22) 

114.67 

K2 0.95 
(144.88) 

0.6 
(35.3) 

0.47 
(29) 

54.87  0.88 
(77.32) 

0.546 
(26.93) 

0.86 
(105.14) 

104.4 

K3 0.957 
(138.76) 

0.69 
(41.66) 

0.469 
(28.52) 

49.16  0.879 
(68.63) 

0.6 
(28.15) 

0.86 
(104.4) 

88.8 

K4 0.97 
(175.48) 

0.73 
(48.75) 

0.44 
(27) 

36.83  0.859 
49.65 

0.653 
(25.6) 

0.852 
(101.5) 

71.76 

KAP 0.981 
(211.8) 

0.84 
(68.56) 

0.45 
(27.38) 

30.56  0.925 
(93) 

0.73 
(40.8) 

0.858 
(104.56) 

61 

TRA 
 

0.98 
(197.7) 

0.858 
(70.3) 

0.44 
(26) 

34.73  0.876 
(79.72) 

0.465 
(23.14) 

0.84 
(97.15) 

81.23 

GAL 0.8 
(44.65) 

0.4 
(14.56) 

0.32 
(18.2) 

40  0.782 
(34.4) 

0.529 
(17.1) 

0.87 
(108.78) 

52.27 

L2 0.968 
(117.53) 

0.89 
(61) 

0.45 
(27.36) 

9.56  0.896 
(75.39) 

0.652 
(32.11) 

0.84 
(97) 

22.74 

SEP 0.925 
(83.2) 

0.71 
(35.2) 

0.49 
(30) 

16.4  0.915 
(112.4) 

0.477 
(26.9) 

0.855 
(102.45) 

34.3 

P1 0.974 
(151.9) 

0.884 
(67.73) 

0.453 
(27.17) 

18.4  0.83 
(61.5) 

0.386 
(17.34) 

0.857 
(103.76) 

37 

P2 0.9 
(39.86) 

0.8 
(26.19) 

0.46 
(28.5) 

22.4  0.89 
(48) 

0.77 
(29.56) 

0.85 
(100.73) 

41.2 

P3 0.9 
(68.87) 

0.7 
(31.39) 

0.48 
(30) 

11.55  0.869 
(62.37) 

0.605 
(26.93) 

0.816 
(88.47) 

25.58 

S 0.82 
(23.88) 

0.69 
(16) 

0.447 
(26.7) 

28  0.933 
(108.9) 

0.7 
(42) 

0.832 
(93.88) 

46.61 

A 0.93 
(90.3) 

0.72 
(37.3) 

0.5 
(30.7) 

32.8  0.76 
(40.88) 

0.36 
(13.5) 

0.867 
(107.62) 

77 

BM1 0.9 
(75.85) 

0.65 
(30.23) 

0.48 
(30) 

11.96  0.8 
(48.8) 

0.414 
(16.68) 

0.85 
(102) 

29.17 

BM2 0.979 
(174.8) 

0.89 
(74) 

0.47 
(28.75) 

17.8  0.82 
(29.56) 

0.68 
(19) 

0.862 
(106.3) 

39.5 

BM3 0.967 
(173.19) 

0.677 
(43) 

0.462 
(28.24) 

8.98  0.9 
(92.7) 

0.54 
(28.62) 

0.837 
(95.55) 

15.9 

BM4 0.885 
(72.3) 

0.513 
(22.79) 

0.462 
(28.17) 

18.28  0.752 
(43.84) 

0.271 
(10.83) 

0.87 
(109.75) 

35.92 

MIX 0.98 
(203.36) 

0.88 
(76.11) 

0.476 
(28.85) 

14.17  0.57 
(23.65) 

0.05 
(1.73) 

0.87 
(109.59) 

53.44 

L1 0.98 
(209.5) 

0.887 
(78.6) 

0.46 
(27.9) 

13.1  0.91 
(61.42) 

0.784 
(35.35) 

0.834 
(94.81) 

22.85 

AL 0.97 
(169.2) 

0.825 
(60.36) 

0.51 
(32.13 

13.54  0.846 
(55.61) 

0.55 
(23.12) 

0.84 
(96.66) 

31.62 

TABLE 4. Estimates of the ARIMA 192)1,1,0()1,0,1( ×  models fitted to the datasets. 
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FIGURE 7. The Cusum test for zero mean, constant variance of the differenced, mean corrected  

       series for loop BM1, second study period.    
 

3.3. STARIMA MODEL BUILDING 

Figure 2 is a map of the road network around the center of the city of Athens. 

For the illustrative purposes of this paper we defined a hierarchical system of 

neighbours (Table 4) that is comprised by two matrices where all lth order neighbours of 

each measurement site are equally weighted. This specification is done a priori and 

allows the W  matrices to be treated as exogenous constants rather than model 

parameters. There are considerable gains in simplicity and ease of model identification 

and estimation relative to multiple time series modelling that are achieved through this 

mechanism. The aforementioned definitions limit STARIMA model family to models 

with maximum spatial order of two.   

l

 Tables 5 and 6 contain the sample space-time autocorrelations and partials of the 

differenced mean standardized data.  The sizes of the sample space-time 

autocorrelations at the temporal lag s are judged relative to the variance of the sample 

space-time autocorrelations of a pure white noise process, [ ] 1)( −− sTN . In the examined 

cases T=4050 for the first dataset and 3154 for the second one and N=25 so that the 

standard deviations of these space-time autocorrelations are approximately 0.003. For 

both datasets the space-time autocorrelations tail off and exhibit a significant increase of 

magnitude at spatial lag 0 and temporal lag 192, indicating the need for the presence of 

a moving average term of order 192 to the STARIMA models, analogously to the 

MA192 term of the ARIMA models.   The partial autocorrelations appear to cut off at 

the third temporal lag at spatial lag zero and at the first temporal lag at spatial the first 

and second spatial lags so the candidate models for the two time periods under study are 

of the form 
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   Z tttttttt aaZWZWZZZ +−++++= −−−−−− 1921012121111330220110 θφφφφφ                         (10) 

 

Thus, each measurement taken at a specific site at time t is modelled as a linear 

combination of the three previous measurements at this site plus a weighted average of 

the measurements taken from its first order neighbours at time t-1 plus a weighted 

average of the measurements taken from its second order neighbours at time t-1 plus the 

prediction error that was made yesterday at the same time, plus a random error. The 

non-linear least squares estimates of the parameters are depicted in Table 7 The 

nonlinear least squares estimation of the parameters of model (10) was performed 

through a run of the SAS/ETS procedure PROC MODEL. The model formulation in the 

computer was quite similar to the one Pfeifer and Deutsch (1980a) propose for the 

STAR model. If spatially weighted moving average were present in (10), at least two 

recursive runs of PROC MODEL should have been performed.  

 Diagnostic checking of the model involves calculation of the space-time 

autocorrelation of the residuals; the results were fairly satisfactory except for the space-

time autocorrelation for the 192nd temporal lag, zero spatial lag for both data sets. The 

variance-covariance matrix of the residuals was decidedly nonspherical; there were 

large differences among its diagonal elements. The hypothesis that G is of diagonal 

form was tested by using the results of Anderson (1958) and Pfeifer and Deutsch 

(1980c) and could not be rejected, so the models (10) were re-identified, following the 

procedure proposed in Pfeifer and Deutsch (1981c). This time the autocorrelations 

appear to cut-off at zero spatial lag first temporal lag (the large autocorrelation at lag 

192 remains), so the models were re-formulated    

 

       ttttttttt aaaZWZWZZZZ +−−++++= −−−−−−− 1101922012121111330220110 θθφφφφφ                  (11) 

 

and re-estimated (again one run of the PROC MODEL was sufficient). The updated 

estimations that lie at table 8 indicate that for both examined periods the parameters that 

correspond to decreasing temporal lags are also decreasing in statistical significance. A 

surprising result is that the parameters that correspond to the second order neighbours 

appear to be more significant than the ones that correspond to first order neighbours 

probably implying that the temporal intervals between observations were relatively 

long. Tables 9 and 10 contain the space-time autocorrelation functions and partials of 
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the new residuals. The new residuals are of satisfactory form so the updated model can 

be used for forecasting and impulse control (i.e. quantification of the effect of a shock at 

one or more sites to their neighbours under the assumption of constant effects relative to 

time and scale.  The total variance of each spatial time series, the standard errors of the 

ARIMA model fitting procedure and the root mean square errors of the STARIMA 

models indicate what amount of the total variability each model explains. The 

comparison of the average standard errors of the ARIMA models and the root mean 

square error of the STARIMA model shows that the aforementioned models are quite 

close as far as the explanation of the variation of the 25 time series that correspond to 

August is concerned; that happens even though the specification of the spatial weights 

was naïve and the total number of parameters for the STARIMA model was 7 whereas 

the ARIMA models used 75 different parameters in total. 

 
     FIGURE 8. ARIMA model fit for loop M2 

OP DETECTOR  FIRST ORDER NEIGHBORS SECOND ORDER NEIGHBORS 
M1 - K1, K2, K3 
M2 M1 K1, K2, K3, K4 
M3 M1, M2 K1, K2, K3, K4 

KAT - M2, M3 
K1 - M1, M2 
K2 K1, KAP M1, M2, M3 
K3 K1, K2, KAP M1, M2, M3 
K4 K1, K2, K3 M1, M2, M3 

KAP - K1 
TRAL - KAP, K1, K2, K3 
GAL TRAL K3, K4 
L2 L1, SEP P1, P2, P3 

SEP P1, P2, P3 L1 
P1 - GAL 
P2 P1 GAL 
P3 P1, P2 GAL 
S - - 
A S - 

BM1 BM2, BM3 BM4, AL 
BM2 BM1, BM3 BM4, AL 
BM3 BM4 KAT, M3 
BM4 BM3 KAT, M3 
MIX BM1, BM2 KAT, M3 
L1 - P1, P2 
AL BM4 K4 

            TABLE 4. First and second order neighbours of each measurement location. 
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S 
T 

0 1 2  0 1 2 

1 0.44 0.165 0.186  0.526 0.079 0.09 

2 0.43 0.156 0.176  0.433 0.068 0.079 

3 0.39 0.159 0.18  0.375 0.076 0.089 

4 0.377 0.152 0.172  0.339 0.073 0.085 

5 0.357 0.144 0.163  0.295 0.063 0.074 

6 0.355 0.145 0.164  0.272 0.066 0.076 

7 0.31 0.139 0.158  0.2459 0.063 0.073 

8 0.309 0.137 0.155  0.239 0.05 0.067 

9 0.3 0.128 0.145  0.212 0.045 0.055 

10 0.26 0.129 0.146  0.206 0.035 0.042 

…        

20 0.177 0.075 0.085  0.177 0.016 0.013 

… … … …  … … … 

30 0.132 0.069 0.078  0.041 0.019 0.007 

… … … …  … … … 

40 0.077 0.058 0.065  0.027 0.0158 0.004 

… … … …  … … … 

50 0.049 0.033 0.037  0.049 -0.01 -0.011 

…. … … …  … … … 

192 -0.335 -0.026 -0.029  -0.727 -0.05 -0.02 

… … … …  … … … 

384 -0.024 -0.027 0.042  0.258 -0.027 0.03 

…. … … …  … … … 

1000 0.066 0.044 0.05  0.014 0.01 0.04 

Table 5. Space-time autocorrelations for the data that correspond to August  (columns 2-4) and  

February-March (columns 6-9) .    

                                                                                            

S 
T 

0 1 2  0 1 2 

1 0.526 0.09 0.11  0.44 0.175 0.3 

2 0.216 0.038 0.065  0.296 0.112 0.193 

3 0.12 0.05 0.037  0.178 0.09 0.16 

4 0.086 0.034 0.054  0.133 0.067 0.094 

5 0.04 0.015 0.005  0.097 0.046 0.092 

6 0.043 0.024 0.037  0.095 0.047 0.075 

7 0.027 0.02 0.053  0.082 0.038 0.066 

8 0.043 -0.003 0.048  0.084 0.039 0.044 

9 0.026 -0.0014 0.037  0.075 0.027 0.047 

10 0.038 -0.011 0.027  0.072 0.032 0.032 

TABLE 6. Part of the space-time partial autocorrelations for the data that correspond to August  

    (columns 2-4) and February-March (columns 6-9).   
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  FIGURE 9. STARIMA fit for loop M2. 

 
 10φ  

(T-VALUE) 
20φ  

(T-VALUE) 
30φ  

(T- VALUE) 
11φ  

(T- VALUE) 
12φ  

(T- VALUE) 
10θ  

(T- VALUE) 

RMSE 
 

Model 1 
(Aug.) 

0.242 
(68.73) 

0.227 
(64.36) 

0.162 
(46) 

0.05 
(15.27) 

0.1 
(27) 

0.008 
(2.13) 

42.12 

Model 2 
(Feb.-Mar.) 

0.3835 
(122.8) 

0.165 
(49.95) 

0.119 
(38.06) 

 

0.024 
(7.93) 

0.036 
(10.43) 

0.03 
(9.57) 

100.6 

  TABLE 7. Parameter estimation (before diagnostic checks) and root mean square error for the  

      two STARIMA models. 

  
 10φ  

(T-VALUE) 
20φ  

(T-VALUE) 
30φ  

(T- VALUE) 
11φ  

(T- VALUE) 
12φ  

(T- VALUE) 
20θ  

(T- VALUE) 
10θ  

(T-VALUE) 

RMSE 
 

Model 1 
(Aug.) 

0.241 
(68.75) 

0.2264 
(64.23) 

0.1615 
(45.89) 

0.0572 
(14.43) 

0.1 
(27.05) 

0.0074 
(2.11) 

0.0133 
(3.09) 

42.1168 

Model 2 
(Feb.-
Mar.) 

0.3834 
(122.79) 

0.165 
(49.92) 

0.1188 
(38.13) 

 

0.0185 
(5.29) 

0.0354 
(9.96) 

0.03 
(9.68) 

-0.0113 
(-3.13) 

100.8 

Table 8. Parameter estimation (after diagnostic checks) and root mean square error for the two  

STARIMA models. 

S 
T 

0 1 2  0 1 2 

1 -0.0006 0.00078 <0.0001  0.0008 <0.0001 <0.0001 

2 0.0002 -0.0009 <0.0001  <0.0001 0.0005 0<0.0001 

3 <0.0001 0.0031 <0.0001  0.0001 <0.0001 0.0006 

4 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 <0.0001 

5 <0.0001 0.0005 <0.0001  -0.0004 0.0003 <0.0001 

6 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 <0.0001 

TABLE 9 Part of the space-time partial autocorrelations for the residuals that correspond to the  

    second model fitted (August columns 2-4, February-March columns 6-9).   
S 
T 

0 1 2  0 1 2 

1 -0.001 -0.0002 0.006  0.0028 0.0011 0.0007 

2 0.003 0. 00016 0.0004  -0.0034 0.0 62 -0.009 

3 0.009 0.0009 0.0009  0.0005 -0.0047 <0.0001 

4 0.0047 0.0005 0.0002   -0.0009 <0.0001 0.0086 

5 0.002 -0.0004 <0.0001  0.0025 0.00039 <0.0001 

6 -0.0018 <0.0001 -0.0006  0.00062 0.007 -0.0007 

7 0.0004 -0.00019 0.0058  -0.0009 <0.0001 0.0003 

8 0.0007 0.00017 <0.0001  <0.0001 0.0004 <0.0001 

9 -0.0003 <0.0001 -0.00145  <0.0001 <0.0001 0.00069 
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10 <0.0001 <0.0001 0.0001  <0.0001 <0.0001 0.00024 

… … … …  … … … 

20 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 <0.0001 

… … … …  … … … 

30 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 <0.0001 

… … … …  … … … 

40 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 0.0061 

… … … …  … … … 

50 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 <0.0001 

…. … … …  … … … 

192 -0.006 <0.0001 <0.0001  -0.007 <0.0001 <0.0001 

… … … …  … … … 

384 -0.0004 <0.0001 <0.0001  0.0008 <0.0001 <0.0001 

…. … … …  … … … 

1000 <0.0001 <0.0001 <0.0001  <0.0001 <0.0001 <0.0001 

TABLE 10. Space-time autocorrelations for the residuals that correspond to the second model  

      fitted (August columns 2-4,  February-March columns 6-9).                                   
         

4. CONCLUSION 

 The STARIMA model class is a purely inductive method that can be 

used to statistically describe the spatiotemporal evolution of traffic flow in a road 

network when traffic conditions are stationary or can be made stationary by 

transformation. The impressive task that can be accomplished by using this strategy is 

that the traffic conditions of the complete network can be modelled and predicted by a 

single model. This is true irrespectively of the number of the traffic flow measurement 

locations. The definition of a hierarchical system of neighbours from the model builder, 

gives the opportunity for a limitation on the number of parameters which in the case of 

unconstrained multivariate models (VARMA, State-Space) are at least where N is 

the number of measurement sites. As demonstrated in the example application, care in 

the definition of the weighting matrices results in significant predictive performance, 

while at the same time parsimony is not sacrificed.  

NN ×

The proposed strategy offers to practitioners the capability to produce traffic 

flow forecasts for a road network through a single model. Another significant 

contribution of the modeling strategy is related to the fact that it bridges the gap 

between traffic flow equilibrium theories and real world conjectures (as the relation 

between economic theories and econometrics). Traffic flow at any location of the 

network is related to the traffic in the nearby locations. This is equivalent in concept to 

Wardrop’s user equilibrium concept, a fundamental law of traffic theory. Of course, its 
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usage in assessing the effect of shocks occurring close to a measurement location to its 

neighbors (of first, or higher order) could be further improved. As formulated now, 

constant effects are assumed relative to time that is the effect of a shock at one or more 

sites site is the same to its neighbors irrespectively of the time it occurred.  The 

stationarity and constant innovations’ variance hypotheses are additional limitations of 

the model that may be unrealistic in real circumstances and should be relaxed through 

further research. 

. 

REFERENCES 
Anderson, T.W. 1958. An Introduction to Multivariate Statistics. New York: John Wiley. 

Ben-Akiva, M., E. Cascetta, H. Gunn, D. Inaudi, and J.Whittaker. 1996. In Dynamic Traffic Prediction  

for Motorway Networks. In Advanced Methods In Transportation Analysis, edited by L. Bianco  

and P. Toth. Springer-Verlag  

Bos, T., and T. A. Fetherston. 1992. Market Model Nonstationarity in the Korean Stock Market. pp. 287- 

301 in Pacific-Basin Capital Markets Research, Vol. 3, edited by S. G. Rhee and R. P. Chang.  

Elsevier Science Publishers B. V. (North-Holland), Amsterdam. 

Box, G.E.P., G.M. Jenkins and G.C. Reinsel. 1994. Time Series Analysis / Forecasting and Control (third  

edition). Prentice Hall, New Jersey.   

Davis, G.A., and N.L. Nihan. 1991. Nonparametric regression and short-term freeway traffic forecasting.  

ASCE Journal of Transportation Engineering 117(2). 

Deutsch, S.J., and J.A Ramos.. 1986. Space-Time modeling of vector hydrologic sequences. Water  

Resources Bulletin 22(6).  

Elhorst, J. P. 2000. Dynamic Models in Space and Time, manuscript. University of Groningen,  

Netherland. 

Giacomini, R., and C.W.J. Granger. 2001. Aggregation of space-time processes, manuscript. Department  

of Economics, University of California, San Diego. 

Granger, C.W.J. 1969. Investigating causal relations by econometric models and cross-spectral methods.  

Econometrica, 37.  

Lee, S., and D.B. Fambro. 1999. Application of subset autoregressive integrated moving average model  

for short-term freeway traffic volume forecasting.Transportation Research Record 1678. 

Lutkerpohl, H. 1987. Forecasting Aggregated Vector ARMA Processes. Springer-Verlag, Berlin. 

Lutkerpohl, H. 1993. Introduction to Multiple Time Series Analysis. . Springer-Verlag, Berlin. 

Kotzinos, D. 2001. Advanced Traveler’s Information Systems. Unpublished Ph.D. dissertation. Technical 

University of Crete. Chania. 

Ooms, M. 1994. Empirical vector autoregressive modeling. Springer-Verlag, Berlin. 

Pfeifer, P.E., and S.J. Deutsch. 1980a. A three-stage iterative procedure for space-time modeling.  

Technometrics 22(1). 

________________________. 1980b. Identification and Interpretation of First-Order Space-Time ARMA  



 22

Models. Technometrics 22 (3). 

________________________. 1980c. Independence and Sphericity Tests For the Residuals of Space- 

Time ARIMA Models. Communications in Statistics B,(9).  

________________________. 1981a. Variance of the Sample-Time Autocorrelation Function of  

Contemporaneously Correlated Variables. SIAM Journal of Applied Mathematics, Series A,  

40(1). 

________________________. 1981b. Seasonal Space-Time ARIMA modeling. Geographical Analysis  

13 (2). 

________________________. 1981c. Space-Time ARMA Modeling with contemporaneously correlated  

innovations. Technometrics 23 (4). 

Rice, J., and E. van Zwet. 2001. A simple and effective method for predicting travel times on freeways.  

IEEE Intelligent Transportation Systems Proceedings. 

Stathopoulos, A., and G.M. Karlaftis. 2002. A multivariate state-space approach for urban traffic flow  

modeling and prediction. 81th Annual Transportation Research Board Meeting. 

Van Lint, J.W.C., and S.P. Hoogendoorn. 2002. Freeway travel time prediction with state-space neural  

networks. 81th Annual Transportation Research Board Meeting. 

Whittaker, J., S. Garside, and K. Lindveld. 1997. Tracking and predicting a network traffic process.  

International Journal of Forecasting 13, 51-61.  

Williams, B.M., P.K. Durvasula,  and D.E. Brown. 1997. Urban freeway travel prediction: application of  

seasonal ARIMA and Exponential Smoothing Models. 77th Annual Transportation Research  

Board Meeting. 

Williams, B.M. 2001. Multivariate vehicular traffic flow prediction: an evaluation of ARIMAX modeling.  

80th Annual Transportation Research Board Meeting. 


