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Abstract

This paper investigates whether the inherent non-stationarity of macroeco-
nomic time series is entirely due to a random walk or also to non-linear com-
ponents. Applying the numerical tools of the analysis of dynamical systems
to long time series for the US, we reject the hypothesis that these series are
generated solely by a linear stochastic process. Contrary to the Real Business
Cycle theory that attributes the irregular behavior of the system to exogenous
random factors, we maintain that the fuctuations in the time series we exam-
ined cannot be explained only by means of external shocks plugged into linear
autoregressive models. A dynamical and non-linear explanation may be useful
for the double aim of describing and forecasting more accurately the evolution
of the system.

Linear growth models that ..nd empirical veri..cation on linear econometric
analysis, are therefore seriously called in question. Conversely non-linear dy-
namical models may enable us to achieve a more complete information about
economic phenomena from the same data sets used in the empirical analysis
which are in support of Real Business Cycle Theory.

We conclude that Real Business Cycle theory and more in general the unit
root autoregressive models are an inadequate device for a satisfactory under-
standing of economic time series. A theoretical approach grounded on non-linear
metric methods, may however allow to identify non-linear structures that en-
dogenously generate fuctuations in macroeconomic time series.
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1 Introduction

The aim of this paper is to identify the nature of the dynamics of macroeconomic
time series. When time series are characterized by zero autocorrelation for all
possible leads and lags, the issue of distinguishing between deterministic and
stochastic components becomes an impossible task when linear methods are
used (Hommes 1998).

This impasse arises because linear methods are appropriate to detect regu-
larities in time series like autocorrelations and dominant frequencies (Conover
1971, Oppenheim and Schafer 1989), while fuctuations in real economic time
series are generally characterized by zero autocorrelation and no dominant fre-
quency. Economic fuctuations seem really similar to background noise, which
does not possess dominant frequencies and each noise impulse is not serially
correlated. The spectral analysis of economic Fuctuations, seemingly as com-
plex as noise, has lead many economists to consider fuctuations like identically
independently distributed (i.i.d.) events.

As a matter of fact the i.i.d. hypothesis is an obvious necessity for all linear
models to describe, at least approximately, the irregularities in the observed
data. In the past two kind of linear economic models based on the i.i.d. hy-
pothesis in the residuals have been presented. In the ..rst model, known as the
deterministic trend model, variables evolve as a function in time along a linear
trend. In the second model (the stochastic trend model) variables evolve as a
function of their foregoing values and a shock shifts the value of the variable
from the lagged value (Rappoport and Reichlin 1989). In this second case any
shock does evidently acect the value of the variable at all leads and, therefore,
it has a persistent ecect. Moreover the time series is entirely determined by the
occurrence of all past shocks (Fuller 1999, Maddala and Kim 1998).

Following the seminal article by Nelson and Plosser (1982), the empirical
evidence in the last twenty years has contradicted the linear trend models. The
stochastic trend model put forward by Nelson and Plosser seemed, instead, not
to be contradicted by empirical results.

In this paper the Nelson and Plosser model will be called in question because
it is based on the hypothesis that tuctuations are i.i.d. while they are not.
The i.i.d. hypothesis, in our opinion, obscures existent non-linearities that may
be endogenized in non-linear models.

This article is organized as follows. In section 2 the main stylized facts oxered
by the recent linear econometric analysis are presented. In section 3 it is shown
how neoclassical economic theory can be fully consistent with recent economet-
ric results. In section 4 we put forward the hypothesis that non-linearities of the
system may be a deterministic cause of the irregularities in economic time se-
ries and we introduce a procedure, based on recent non-linear signal processing
techniques, that allows to identify the existence of non-linearities in the system
and, hopefully, to ..Iter out non-linearities (signals) from truly i.i.d. compo-
nents (noise). In section 5 we present results obtained using arti..cial non-linear
and autoregressive models; in particular we use the arsenal of tools from non-
linear dynamics to identify the hidden deterministic structure that is underlying



the time series. In section 6 we present results obtained using non-linear met-
ric techniques applied to monthly seasonally adjusted time series of some real
macroeconomic time series of the US (industrial production, employment, con-
sumer price index, hourly wages, etc.). The common result that stands out from
this analysis is that all the time series we have analyzed are also characterized
by non-random structures in the residuals and therefore the i.i.d. hypothesis is
simply inconsistent with facts. The choice of assuming the residual components
as random neglects the existence of a complex phenomenon. Instead, it is even
theoretically possible to reduce any stochastic component that perturbs unpre-
dictably the system and thus peak the non-linear deterministic component. In
section 7 we conclude showing some theoretical implications that we can infer
from our empirical results about the Real Business Cycle theory grounded on
stochastic components with persistent ecects.

2 Empirical evidence

In the last twenty years we have witnessed a huge progress in the statistical and
econometric analysis of time series which has given economists a far more pro-
found knowledge about the relations between economic variables. The discovery
and the realization that time series do not show any tendency to evolve along
a deterministic log-linear growth trend and the cyclical reversible components,
assumed in classical econometrics, do not exist at all, has deeply marked the
direction of the empirical research in the last two decades.

Recent econometric works have provided a solid empirical basis that is in
contrast to the theoretical results of the early neoclassical growth models a la
Solow (1956) and the Business Cycles models a la Lucas (1972, 1977 and 1980)
based on monetary disturbances with transitory ecects. Nelson and Plosser
(1982) have provided empirical evidence to the theoretical alternative of Real
Business Cycle, despite the conventional wisdom of classical econometrics that
assumed ex-ante stationarity for all the economic variables. Nelson and Plosser
have shown that many macroeconomic time series! are not stationary at all,
and the stationary stochastic models developed in the ’70s do not actually ..nd
any empirical foundation?.

On the contrary, Nelson and Plosser have shown that the irregularity present
in macroeconomic time series could simply be explained by the introduction of

INelson and Plosser have analyzed fourteen macroeconomic time series for the US (with
starting date between 1860 and 1909 and with ..nal date 1970). Among these there are
real GNP, nominal GNP, industrial production, employment, the unemployment rate, the
consumer index rate, nominal wages and real wages.

2n the classical econometric works, time series were considered stationary along a deter-
ministic trend, that is variables are a linear function of time:

e =Pt +a+ et

with &, i.i.d., « and 8 parameters, ¢ time and z; a random variable z observed at time ¢.

In this case the time series of the variable x is stationary along a time trend and each &;
has only temporary ecects. The short run component may be insulated regressing x; against
time and assuming the regression line as the abscissa This procedure was approximately the
one that was used in the '70s to analyze short run cycles.



random shocks with persistent esects as it happens in unit root processes®.

These results were in sharp contrast with the classic econometric works,
which a€¢rmed that the irregularity in economic time series were due to transi-
tory shocks, and have been crucial in moving the direction of research towards
the theory of Real Business Cycle.

The acknowledged contribution of the Nelson and Plosser work was the dis-
covery of the non-stationarity in the time series and the absence of any deter-
ministic trend. More importantly, the introduction of random external shocks
as the unique generator of the irregularity in the behavior of economic systems,
did not contradict the results put forward by a modern version of neoclassical
theory: the Real Business Cycle theory. Indeed, without the injection of exter-
nal shocks, time series would move exactly in the direction that the neoclassical
theory predicts. However in the presence of external shocks, economic systems
move irregularly in the way that is described by the Real Business Cycle models
(Prescott 1998).

In this article we try to move a step forward starting from this empirical
evidence. Our aim is to identify the process that generates the non-stationarity
in time series without stating ex ante, contrary to Nelson and Plosser, that the
non-stationarity is the direct consequence of a stochastic process. Actually there
may be many possible non-linear deterministic alternatives to the stochastic
explanation to the non-stationarity in time series.

Treating economic fuctuations as endogenous non-linear process, and there-
fore object of analysis, may contribute to a better understanding about the
temporal evolution of time series. Our purpose is to understand the dynamics
of fuctuations as the evolution of the system may depend entirely on them.
We believe that assuming fuctuations as i.i.d. variables equivalent to noise is
basically wrong since, as we shall see in section 6, residuals are characterized
by a structure that is very dicerent from noise and even from any other kind
of random variable. These results will lead to conclude that it is feasible to
discover deterministic laws that shape the underlying non-linear structures.

2.1 Recent results from the Unit Root literature

Many recent related works have been published after the Nelson and Plosser
paper and their results dicer mainly for the test function that has been used in
the veri..cation of the non-stationarity hypothesis.

Some papers simply con..rm that the non-stationarity of economic time series
is a recurrent characteristic in many countries. Similarly to Nelson and Plosser,
Lee and Siklos (1991) found that macroeconomic time series for Canada are

31n the unit root processes, time series are not stationary and follow a random walk like:

xt = pre—1 + ¢ With g i.i.d. and p = 1. This process is called "unit” root because z¢—1
is multiplied by a parameter equal to one (or close to one). It is a “root” because one is
the root of a characteristic equation (see Enders 1995, p. 25). Each ¢; has persistent ezcects
since, as we can see, each fuctuation will not be reabsorbed in the future: z; = ;1 + ¢ =
Tt—2+€Et—1+et =...=¢€0+¢€1+...+et—1 +er. The signal z is therefore generated by the
past and present noise . Since noise is an i.i.d. and exogenous variable, we conclude that
the variable z; depends entirely on a variable which we don’t know anything about.



not stationary. Mills (1992) obtained basically the same results for the UK,
McDougall (1995) for New Zealand, Rahman and Mustafa (1997) for the Asian
countries, Sosa for Argentina (1997), Gallegati (1996), de Haan and Zelhorst
(1994) for Italy.

The macroeconomic variables that are more frequently analyzed are GDP,
GNP, GDP and GNP per capita, industrial production, employment, unem-
ployment rate and the consumer price index. Occasionally other variables like
savings (Coakley, Kulasi and Smith 1995), investments (Coorey 1991, Coakley,
Kulasi and Smith 1995), wages (Coorey 1991), exchange rates (Durlauf 1993,
Parikh 1994, Wu and Crato 1995, Serletis and Zimonopoulos 1997, Welivita
1998), money and velocity of money (Al Bazai 1998, Serletis 1994) have been
analyzed.

All these studies pointed out that almost every time series in any country
is characterized by the presence of a unit root, or equivalently by a stochastic
process like a random walk*. The one exception to the existence of unit root in
macroeconomic time series is the unemployment rate. This non-conformity was
..rst noticed by Nelson and Plosser and has been con..rmed by the majority of
unit roots researchers afterwards®.

In table 1 we list the main works that ascertained the existence of a unit
root in macroeconomic time series. For each author we mark with the ”+” sign
the variable that was found to follow a random walk, and with the =" sign the
variable for which the results were mixed.

2.2 The broken trend hypothesis

Rappoport and Reichlin (1986, 1988, 1989) put forward the hypothesis that
there could exist a broken deterministic trend that cannot be identi..ed by the
Dickey-Fuller test. Rappoport and Reichlin showed that in the case of a broken
deterministic trend the Dickey-Fuller test produces spurious results, since it is
incapable to reject a false null hypothesis (the unit root hypothesis). Rappoport
and Reichlin have moreover revealed empirical evidence concerning the existence
of a broken trend in many macroeconomic time series. They indeed rejected the
hypothesis of a random walk for many real variables (like industrial production,
real GNP, real per capita GNP and money supply) though not for all of them®.

Perron (1989) as well as Rappoport and Reichlin showed that, when fuctu-
ations are stationary along a broken trend, the Dickey-Fuller test is not able to
reject the unit root hypothesis. Perron developed a test that allows to reject
the unit root null hypothesis if the series is characterized by a broken trend.
He applied his test to the same time series of the US that were used by Nelson

4This result also seems not to depend on the frequency of observation: Wells (1997),
Osborn, Heravi and Birchenhall (1999) have found similar results using both quarterly and
monthly data.

5Except Banerjee et Al. (1992), Bresson and Celimene (1995), Dolado and Lopez (1996),
Leybourne et al. (1999).

6The consumer price index and nominal wages for instance were found to follow a random
walk.



and Plosser, after he arbitrarily assigned the date in which the structural break
occurred. Perron concluded that the null unit root hypothesis could be rejected
also at a high con..dence level for almost all the time series.

Similar results were obtained by Raj (1992) for the macroeconomic time
series of Canada, France and Denmark , by Rudebusch (1992) for England, by
Linden (1992) for Finland, by Wu and Chen (1995) for Taiwan and by Soejima
(1995) for Japan.

Other authors looked also for a broken trend in speci..c time series. Diebold
and Rudebush (1989), Duck (1992), Zelhorst and de Haan (1993), Ben, David
and Papell (1994), Alba and Papell (1995), McCoskey and Selden (1998) have
found a broken trend for the GDP in many countries. Alba and Papell (1995)
for GDP per capita and Li (1995), Gil and Robinson (1997) found similar re-
sults for industrial production, Simkins (1994) for wages in 8 OECD countries
and McCoskey and Selden (1998) for the G7 countries, Raj and Scottje (1994)
for the US income distribution, Culver and Papell 1995, Leislie, Pu and Whar-
ton (1995), and MacDonald (1996) for exchange rates. Given these results we
could check whether the broken trend hypothesis explains also the dynamics of
unemployment rate better than the unit root hypothesis. However Nelson and
Plosser already found that the US unemployment rate tended to be stationary,
and the works by Hansen (1991), Li (1995), Leslie, Pu and Warton (1995), Song
and Wu (1997, 1998), Gil and Robinson (1997), Hylleberg and Engle (1996)
simply con..rm the empirical evidence presented by Nelson and Plosser.

In table 2 we present the main works that support the hypothesis of a broken
trend in macroeconomic time series. For each author we mark with the ”-” sign
the variable that was found stationary along a broken trend.

Criticisms to both the broken trend and the unit root hypothesis have been
put forward by several authors. Zivot and Andrews (1990, 1992) estimate the
position in time of the structural break and ..nd that the existence of the broken
trend is not that clear in many of the time series that were analyzed by Perron.
Cushing and McGarvey (1996) found that the tuctuations in the macroeconomic
time series are more persistent compared to what stationary models indicate,
but they are also less persistent than unit root models suggest. Mixed results
were also obtained by Leybourne, McCabe and Tremayne (1996) for many US
macroeconomic time series, Krol (1992) for the production of many US sectors,
and Crosby (1998) for the Australian GDP.

It seems therefore that not every time series are characterized by a unit root.
What does this suggest? Are time series generated by a deterministic process or
by chance? This issue has not been well formulated neither in the unit root nor
in the broken trend literature. The problem is that the idea according which a
non-stationary process is a random walk process was implied in most of these
studies. As we will see in section 4, not all the non-stationary processes follow a
random walk. Indeed, there may exist many deterministic non-linear processes
that are not stationary and become stationary after dicerentiating with respect
to time.

Since the results obtained by the broken trend literature are still open to
discussion in the sense that the studies hitherto published do not lead to a



general rejection of the random walk hypothesis, we question whether the broken
trend hypothesis provides the ultimate answer about the nature of economic
time series. Moreover, as it will be shown in the next section, the random walk
hypothesis has the great advantage that may be theoretically fully consistent
with the neoclassical framework once it is assumed that real changes occurs
randomly.

3 The link between neoclassical growth theory
and the unit root literature

King, Rebelo and Plosser (1988b) showed that growth theory, which assumes
steady growth, may be consistent with the highly irregular behavior of economic
time series.

They considered the a one-commodity Solow (1956) and Swan (1956) model.
The production function, the capital accumulation equation and the resource
constraint are:

Y, = ALK} (NX) 0<a<l
Kigg=1+(1-8K; =sAK “(NX)+ (1-0) K,
L;+N=1
Ci+1; =Y,

where Y; is the output at time ¢, K; is the capital stock available at time ¢, s
the saving rate, N is the labor input that is assumed constant at all time ¢, A;
is a multiplier factor and its change corresponds to temporary changes of total
factor productivity, X, N is the ecective labor units and changes of X; modi..es
permanently the performance of the system, C; is the consumption at time ¢'.

Assume constant returns to scale in the production function, and constant
labor augmenting technical change rate A—)g(. The dynamic equation for the

capital stock may be rewritten as:

AK, = sA KL (NX,)* — 6K, — Al — sAK TIVX)? -0k

Ay = sAgky " “N1"ONe—1X — 6k, where &y = &t

Aky _ sAk; T (X) 8k sAky (XY s
k‘t - k’t - kt —")/

where ~ is the growth rate of the capital per capita.
N d—a [e% . . .
If 22k X 5, Ak 0, capital per capita grows.
N d—a @ . . .
Conversely, if M,%(—X” < 6, S <0, capital per capita decreases.
d—a [e% .

In steady state % =0 and M% = Ak (X,)" = £ is constant.

In order that A;k; “ (X;)" is constant over time, &k, and X; must grow at the

"Where the consumption decisions are based on a well behaved utility function U =
o0
Z ﬁtu (Ct,Lt) with 8 <1
=0

where Ly is the leisure at time ¢, u the utility. co stands to indicate that the individual is
the in..nite lived representative.



same rate . The output per capita is y; = Ak~ (X;)" = kAk; “ (X,)%; in
steady state, being A4k, * (X;)" = % also y; grows at the same rate of k, ~.
Consumption per capita is ¢ = (1 — s)y and grows at the same rate ~ over time.
In this sense, macroeconomic variables follow a (linear) deterministic trend.

This view was in sharp contrast with the empirical evidence from Nelson
and Plosser (1982) who showed that the existence of a stochastic trend should
not be neglected. However it is very easy to make stochastic the basic version
of the deterministic neoclassical model.

To do that, we consider that the labor augmenting technical change occurs
stochastically as a random walk.

We have:

i —i T
X, = XofyTef:l)Et X, =nXg+7lny+ > &
t=0
where Y e;_,; represent permanent shifts of In X. which are not reabsorbed

t=0
by the internal dynamics of the system.
Given the dynamic equation for capital accumulation, in steady state AT,’jt =
0 and A*’“l_,:(X*)a = A k7 (X,)* = £ is constant. In order that A k- (X,)"
is constant over time, k. and X, must grow at the same stochastically by

> et—i
r)/Tet:l) ’

Ink, =Inko+7Iny+ > ey
=0

The output per capita is y, = A k17 (X,)* = kA, k- (X,)” in steady

t—i

. >
state, being A k- (X,)" = % y, grows also by yfetzog

T

Iny, =lnyo+7lny+ > ey
t=0
3 t—1i

. L >
Consumption per capita is ¢, = (1 — s)y, and grows by yfetzog

Inc, =Incy+7lny+ > &1y
t=0

In this sense, macroeconomic variables follow a stochastic trend where all
the dynamics is driven by additive random innovations. Most of the empirical
studies con..rm that: 1) macroeconomic variables follow a stochastic trend, i.e.
a random walk; 2) macroeconomic variables co-evolve together, i.e. they are
cointegrated. This is what exactly occurs in the stochastic formulation of the
neoclassical model. In fact, the above equations may be equivalently rewritten
in terms of an AR(1) process:

InX;,=InX; 1 +Invy+e



Ink; =Ink;_1 +Iny+e;
Iny; =Iny; 1 +1Iny +e;
Inc; =Inci1 +Iny+ e

where all the economic variables depend on their previous value, on the
average growth rate plus a non transitory stochastic error term.

What is implicit in the stochastic version of the neoclassical model, is that
the economic system is essentially stable. In fact, if time series follow a random
walk and we remove random innovations, we have a stationary stable system.
In absence of technical change the system would never change, except for the
occurrence of other exogenous shocks like for instance a change in the prefer-
ences.

If the term > e,_; were not random, what would be the consequences for

economic theor)t/?OThe ..rst consequence would be that, understanding the de-
terministic non-linear dynamics, we could make a better prediction than simple
AR like models, since the best predictor for the residual in the AR models can-
not be but its mean value. The second consequence would be that economic
systems might be intrinsically unstable, i.e. also without the injection of exoge-
nous random inputs the system could be not motionless. Moreover just because
real economic time series show to be complex, seemingly random but they con-
tain some deterministic structure, they could be better forecasted and better
controlled.

In the next section we raise the hypothesis that residuals might appear ran-
dom while they are indeed generated by a deterministic system. Later on, in
section 6, we will test whether or not the residual component of an autoregres-
sive model is truly random, and we will ..nd, to our surprise, that the hypothesis

that > e,_; are not truly random is indeed found in our inference.
t=0

4 The non-linear hypothesis®

After twenty years from the publication of the Nelson and Plosser article, we
now have two literature streams that debate around the nature of the time
series: the one that underlines the existence of a random walk and the one that
asserts the complete linear (though with a break) determinism in the economic
time series. We will show in section 6 that the empirical evidence around the
nature of economic time series can be clearer than the one provided by both the
unit root literature and the broken trend literature.

The procedure that will be used in sections 5 and 6 to detect non-linearities
consists of the following steps:

1) Select time series with a minimal number of observations. Brock et Al.
(1991) have proved that a number of at least 400 observations would be a good
starting point, if not a necessary condition, to obtain trustful results from the

8A short but detailed description of all the methods that are used in this paper can be
found in Bevilacqua (2001).



BDS test. It is therefore necessary to rely on seasonally adjusted monthly data
for a succiently long period®. The time series we used are those of the US and
data were provided by the Bureau of Labor and Statistics and Federal Reserve'®.

2) Take the natural logs of the original time series if the time series tend to
diverge exponentially.

3) Direrentiate the time series once with respect to time, eventually remove
linear autocorrelation in the residuals and check for stationarity via the aug-
mented Dickey-Fuller test.

4) Calculate the level of spatio-temporal entropy*! to measures the degree
of disorder of the system. If the time series of the residual were generated by
a random process the level of entropy should be close to the maximal value.
However also non-linear processes may present a high degree of disorder and
reach values of entropy close to that of white noise!?. On the other hand we
should expect a low level of entropy for processes that are deterministic and
autocorrelated*®. However we should not overestimate the importance of the
measure of entropy; in fact it does not allow us to distinguish a random pro-
cess from a complex deterministic one and even between periodic cycles and
linear trend. Nevertheless the measure of entropy may help us to have a better
understanding of the complexity of a time series looks.

5) Calculate the values of the maximal Liapunov exponents that characterize
the time series, to measure how fast nearby trajectories diverge over time. If the
maximal Liapunov exponents turns out to be negative, it means that trajectories
tend to converge to a stable ..xed point. If it were zero we would have found a
limit cycle. If it were positive the time series is either characterized by chaos
or a random walk. We anticipate that the residuals of the linear models that
explain economic time series are generally characterized by a positive maximal
Liapunov exponent and a high level of entropy and this indicates how di¢cult
to forecast economic time series in the long run might be.

6) Generate Ruelle plots (recurrence plots) to uncover, from the qualitative
point of view hidden structures in the time series.

7) Perform the BDS test to detect quantitatively and in a reliable way the
existence of non-linearity in data.

8) Check results randomly shu—ing the time series and verify whether the
results obtained by the BDS test applied on a randomly shu—ed time series are

9We exclude the possibility to analyze any time series of GDP and GNP because of the
dearth of data, since these time series are at most quarterly.

101 inks to the ..les concerning monthly seasonally adjusted and in real terms for industry
productions were found at: http://www.bog.frb.fed.us/releases/G17/download2.htm

Indexes of industrial production go back to 1919 and the respective base year is 1992.

A table showing the historical consumer price index for all urban consumers beginning from
1913 was available from the BLS at: ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt.

This table refers to all urban consumers with 1982 as the base year.

The seasonally adjusted “hourly wages” time series in this paper refers to the industry of
manufacturing and data type “average hourly earnings of production workers”.

11As calculated by E. Kononov (1999), VRA 4.2 program.

125ee section 5.3.1 the case of the tent map.

13| ike for instance the Rossler map in section 5.3.2..
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indeed dicerent from the results obtained by the BDS test on the original time
series'*. This veri..cation is extremely important since, if the two results turn
out to be direrent, it means that the time order of the original time series is
signi..cant and there exists causality in the data.

5 Results from arti...cial time series

Before applying the described procedure to real time series, we present some
results obtained from arti..cial time series, whose deterministic data generating
process is known. We present some cases of deterministic systems whose dy-
namics is very similar to a random walk and we check whether the non-linear
dynamics tools allow us to gain more information about the nature and the
evolution of the time series. We will see that the information gain ensued from
the numerical tools of non-linear time series analysis may be relevant and may
lead us to consider the issues of dynamics from a very dicerent perspective.

5.1 Trends

We consider ..rst the most simple case: growth along a linear trend. We ..rst
check the results obtained with the Dickey-Fuller test when a linear time series
grows deterministically with time. Thereafter we apply non-linear metric tools
to see which other information may be obtained. The application of non-linear
techniques to a linear system may not seem to be necessary, but this step will
allow to compare the information that can be obtained using linear statistics
and non-linear dynamics tools.

In the trend stationary case, residuals have no persistent ecects and the
time series is stationary along a linear trend. If we consider the variable x; as a
linear function of time ¢. z; = z¢ + ¢t + &, Where z; is the initial value (in our
case it is equal to zero), ¢ is a parameter and ¢, is an i.i.d. variable. Running
the Dickey-Fuller test we should reject correctly the null hypothesis of a unit
root and the Durbin-Watson statistics, DW, should be around 2 (when DW ~2,
residuals have no serial correlation).

Suppose that we are interested to study the dynamics of a variable that
could be the GDP, y,. We assume that GDP grows at the yearly rate g = 2%:

vy =v(1+¢9) = Iny, =lnyy(1+g)* = Iny, =Inyo + tIn(1 + g)

Suppose that Iny, is perturbed by a i.i.d. exogenous shock £1°:

14This step is also sometimes called “shu—e diagnostic” (see Lorentz 1989) via "surrogate
time series” (Kantz and Schreiber 1997). A “surrogate” time series is essentially the shu—e of
the original time series preserving all the linear properties of the time series like frequencies,
amplitudes and eventual linear autocorrelations. We have derived the surrogate time series
for all the economic time series we have analyzed, but we called them with the more general
and less specialistic term of ”shu—ed time series”.

15Note that ¢ in all our experiments is distributed as a uniform distribution. Similar results
can be obtained using other dicerent distribution like the Normal. However what is important
is that ¢ is i.i.d. whatever its distribution. We have chosen to use the uniform distribution
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Iny: =Inyo +tIn(l + g) + &.
Set Iny; = z; and In(1 + g) = ¢ we obtain:
Ty = X9 + ¢t + &4 where g = 0.02 and ¢ = 0.02.

The time evolution of x; is represented in ..g. 1.

Applying the Dickey Fuller test we decidedly reject the null hypothesis of
unit root (table 3). The Dickey-Fuller test turned out to be -21.28 while the
critical value at 5% signi..cance level is -3.41. For values less than 3.41, the
null hypothesis is rejected, as it is in this case. The Durbin-Watson statistics
turned out to be close to 2 and this con..rms that the residuals are not serially
correlated. In this case, the Dickey Fuller test was able to correctly reject the
null hypothesis of a stochastic trend and to accept correctly the alternative
hypothesis of a linear trend.)

Let us now turn our attention to some qualitative and quantitative mea-
surements obtained with non-linear dynamics tools. The value of entropy that
characterizes the level of GDP is 0%, and this indicates that the time series is
characterized by an almost null degree of disorder. In fact residuals are all con-
centrated around a linear trend, which represents a long term equilibrium path.
If we analyze the residuals, which were assumed to be i.i.d., the level of entropy
turns out to be 90%, a value relatively close to the ideal limit of 100% of a
purely random process (a value that is very di¢cult to reach in series generated
by the simple algorithms of a random number generators). This indicates that
the degree of disorder of a system characterized only by an i.i.d. variable is
very high.

We have calculated the value of the maximal Liapunov exponent for the
residuals, in order to measure the rate the sensitive dependance on initial con-
ditions, that is the rate of divergence of nearby initial states. It turned out to
be positive (tablel8, row i.i.d. process) and so high that residuals follow a un-
predictable dynamics. As we will see in section 5.3, high values of the maximal
Liapunov exponent and entropy are also typical of many non-linear systems.

There are also qualitative visual devices that allow to uncover complex struc-
tures in data and even to single out exceptional historical events. They are the
phase portraits and the recurrence plots. The phase portrait is simply a graph-
ical representation that plots the value z(¢) against (¢t — k). In .g. 3 the
residuals £(¢) are plotted against (¢ — 1)1°.

The recurrence plots by Eckmann, Kamphorst and Ruelle (1987) are a graph-
ical tool for the qualitative analysis of time series based on phase portraits and
allow to uncover deterministic structures that could not be revealed by phase
plots. In the most simple recurrence plots, the distances between observations
are measured and marked by a grey tone. On the axis each point corresponds

because in section 5.3 we show the deterministic case of the tent map which produces ¢ that
are uniformly distributed.

16\We could obviously plot residuals &(t) against the residuals of any preceding period like
e.g. e(t —4). Knowing ex ante that e is the result of a random number generator, the
e(t) —e(t — 4) plot is qualitatively equivalent to the £(¢t) — (¢t — 1) plot.
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to a dated observation. The diagonal is the locus where ||z(t) — z(t — h)|| = 0
where h = 0 and the corresponding tone is white.

In the case of a deterministic trend the distance grows with the temporal
distance of observations. The most distant observations are z(0) and z(T),
hence the points [z(0) — z(T)] and [z(T") — x(0)] are marked by a black tone
(..g. 4). The points along the parallels to the 45 degree line are characterized by
the same grey tone and this indicates that the couples of observations that keep
the same temporal distance are also characterized by the same spatial distance
(represented by the same grey tone).

On the contrary, recurrence plots of i.i.d. residuals, should neither present
any continuous line between points nor particular areas characterized by the
same grey tone. The fact that some nearly continuous lines may be noticed (...
5), is due to the random number generator , which is a mathematical algorithm
and therefore does not produce purely unstructured time series. However ..g. 5
shows much less structure than the Ruelle plot in ..g. 4 and is close to the one
of a purely i.i.d process.

Actually, Ruelle plots may allow to single out much more hidden structures,
when they compare embedded vectors'” instead of single observations. Ruelle
plots mark the distances between points'® with a tone of gray. If we choose
m = 1 we obtain the ..gures 4 and 5. If we chose dicerent values of m, we would
have also graphs similar to ..g. 4 and 5. However, in other cases especially in
the cases of chaotic systems, the choice of appropriate values for m allows to
uncover otherwise neglected structures.

To discriminate a stochastic process from a process that contains a deter-
ministic structure we apply the BDS test. The null hypothesis is that the time
series is characterized by an i.i.d. process, while the alternative hypothesis is
that the time series follows a non-linear law. Applying the BDS test to the
residuals randomly generated at computer, we have found a value for the BDS
function equal to -1.28 and a critical value of 1.96 at 5% signi..cance level. As
we expected, we accept the null i.i.d. hypothesis.

17The embedded vectors are simply de..ned as:

%X; = {Ti_(m—1)> Ti—(m—2),---, Ti} Where z; is the observed value at a certain point at time
and m is called embedding dimension.

For example suppose to have a series of 10 observed values of a certain variable x:

z={8,5,6,9,4,4,1,7,3,2,7}

we obtain the following embedded vectors:

X2 = {552—(2—1)7552—(2—2)} = {z1, 22} = {8,5}

X3 = {553—(2—1)7553—(2—2)} = {z2, 23} = {5,6}

X4 = {x4_(2_1),x4_(2_2)} = {3, 24} = {6,9}

X10 = {5510—(2—1)75510—(2—2)} = {=g, 10} = {3,7}

for m = 2.

and x = {x2, 3,4, ..., £10, } IS the embedded time series for m = 2.

The embedded time series are of great importance in nonlinear dynamics because thanks
to them, as it has been shown by Takens (1981), we may uncover some properties like the
correlation dimension of an unknown underlying motion law that generated the time series
itself from the observed values of the process.

18j.e. between vectors x;
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From this simple exercise we have obtained the following results:

- using the Dickey Fuller test we have correctly concluded that the time
series on levels is stationary and follows a deterministic trend.

- the entropy indicates that the time series of levels is stable and the time
series of residuals is extremely unstable. The maximal Liapunov exponents of
residuals is sharply positive, and this indicates that nearby trajectories diverge
over time. Both the values of entropy and the maximal Liapunov exponent do
not provide a de..nitive answer to the question as regards the nature of time
series.

- recurrence plots and phase portraits allow to identify the existence of
structures that are dicerent from those of an i.i.d. process.

- the BDS test allows to better appreciate the importance of the time
order in time series, that is to detect the existence of deterministic structures in
time series. In this case we were not able to detect any deterministic structure in
the residuals since there weren’t any (except for the one of the random number
generator algorithm).

5.2 Random walks

We now analyze an other limit case: the random walk. The random walk
hypothesis is not generally rejected by the unit root literature and it is at the
core of Real Business Cycle theory.

In the random walk case shocks, contrary to what happens in the case of
deterministic trends, have persistent ecects and cumulate over time, without
being reabsorbed even partially in the future. The time series is not stationary,
does not follow a linear trend, but can still grow in a quite similar way to the
case of the deterministic trend. From a visual comparison between a series that
grows like a random walk and a series that grows along a deterministic linear
path, it is often not possible to distinguish the nature of the two time series.
The Dickey-Fuller test serves to single out which of the two time series follows
a random walk.

In a random walk process, the value of the variable x; depends on its lagged
value z;_; and a i.i.d. shock &;:

Ty =Te—1 + €

Suppose now that we are interested in the dynamics of a variable y that
grows yearly at the average rate of 2%, as an ewcect of the cumulation of shocks:
Iny,=Iny1+e >y -y =e > =g -y =ey

Plotting the log series against time we can see a dynamics (..g. 6) similar to
the case of deterministic trend (..g. 1). It is not possible to determine which of
the two time series is the random walk through a direct visual inspection alone.
A growth trend exists, but it is a stochastic one.

To distinguish between a stochastic trend and a deterministic trend we apply
the Dickey Fuller test and, as we expected, we are not able to reject the unit
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root hypothesis. The value of the test function turned out to be -1.98 while the
critical value is -3.41 at 5% signi..cance level (table 4). Residuals turned out
not to be serially correlated (Durbin-Watson statistic is 1.99).

The entropy level, the maximal Liapunov exponent, the BDS test and Ruelle
plots of the residuals are exactly the same of those obtained for the deterministic
trend case. Inasmuch as the aim of non-linear dynamics is to detect complex
structures in residuals, both in the case of stochastic growth and deterministic
growth, residuals are stochastic and the tools of non-linear dynamics cannot
be used to detect linear determinism. The suitable instrument to detect linear
determinism is indeed the Dickey-Fuller test.

5.3 Non-linear walks
5.3.1 Autoregressive tent map growth

We now apply the Dickey-Fuller test to an arti..cial time series where the value
of the variable depends on its lagged value and a deterministic non-linear shock.
We will apply the BDS test and other tools of non-linear dynamics to identify
the deterministic structures that the Dickey-Fuller test is not able to detect.

Suppose that a time series is generated by the following deterministic law:
€ = 2841 for g1 < 0.5
= (1 — St—l) for €1 <05

This system is known as the tent map and it appeared in an Economic
Journal article by Scheinkman (1990) and in a working paper of the University
of Texas by Vastano and Wolf (1986). This peculiar system generates a chaotic
time series which has the same statistical properties of a uniform distribution.
Similarly to the random walk, 0.04¢; has an average value equal to 0.021°,

A visual inspection of the generated time series x; (..g. 7) may be puzzling
because z; is very similar to a time series with either a deterministic or stochas-
tic trend. In order to ..nd out whether this system follows a stochastic or a
deterministic trend we apply the Dickey-Fuller test and the unit root hypoth-
esis cannot be rejected. In fact the value of the test function turned out to
be -1.8 (table 5) while the null hypothesis is rejected for values less than -3.4
at 5% con..dence level. The time series appears to be similar to the stochastic
trend or to the deterministic linear trend. But we know that it is neither. The
Durbin-Watson statistic turned out to be exactly equal to 2.00, and this indi-
cates that residuals are not serially correlated. At this stage we would apply
again the Dickey-Fuller test to the residuals to see whether they are stationary,
and we would conclude that the process is autoregressive of order one with i.i.d.
residuals.

This conclusion is only partly true. The process is autoregressive of order
one and therefore there is a unit root, but the residuals (shown in ..g. 8) are

Ty = Ti—1 + 0.04xi_15¢ with { c
t

19Because of the ..nite approximation of the program we used, we could not obtain more then
50 observations. Consequently we have added a very small ratio of white noise to each ; so
that the system does not repeat itself even in the long run. We have added 0.000001 U (0.5, 1)
noise.
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deterministic and, knowing the law that generates the residuals, the process is
perfectly predictable. In this case we must be very careful to read the results
obtained with the Dickey-Fuller test. It suggests that it is not possible to refuse
the null hypothesis of the existence of a unit root, i.e. the hypothesis of autore-
gressive process of order one. However the residuals, as this case shows, can be
non-stochastic. Consequently the Dickey-Fuller test is a tool that is not suitable
to unveil whether the series follows a deterministic law, except for the special
case that the series follows a deterministic linear trend. The acceptance of a
unit root hypothesis and the presence of not serially correlated residuals does
not authorize us to take the stochastic origin of the time series for granted.

From the values of entropy (78%) and the positive maximal Liapunov ex-
ponent we may infer that the system is nearly unpredictable. However these
characteristics are typical of both stochastic and chaotic processes. In order to
infer the existence of non-linear structures we have performed the BDS test.
The value of the BDS statistic (which asymptotically converges to normality)?°
turned out 99.2 and this allows us to reject the null i.i.d. hypothesis with a
minimal probability to be mistaken.

5.3.2 Autoregressive Rossler growth

Consider the following system:

= a1+ 0.022, 1 (55 + 1) (see ..g. 10)

where 0.02(f5 + 1) has an average equal to 0.02, and ¢; is the result of a
deterministic non-linear system that generates aperiodic (chaotic) cycles 2! (see
«g. 11).

Applying the Dickey Fuller test we would reject the null hypothesis of au-
toregressive process of order one and accept the alternative hypothesis of a
deterministic trend. The Dickey-Fuller statistic turned out to be -57.52, a value
enormously greater than the respective critical value (-3.97 is the corresponding
5% critical value) (table 6). The Durbin-Watson statistic turned out to be 0.09
and residuals are indeed serially correlated. Given these results we would think
that the time series follows a deterministic trend and Fuctuations are cyclical
with reversible ecects. However our model is autoregressive of order one, it
does not follow a deterministic trend and the time series is entirely generated
by tuctuations ¢; that have persistent ezects.

The value of entropy of the residuals is 15% and this low value implies that
the system tend to preserve a certain stability over time. The maximal Liapunov
exponent is positive and therefore the evolution of the system is sensitive with
respect to its initial conditions, but since its value is close to zero, it suggests that
the system is also cyclical. In fact it has aperiodic cycles, thus, the system is also
chaotic. The recurrence plots of the residuals (..g. 12), just like a simple graph
against time (..g. 11), shows a cyclical and aperiodical dynamical structure.

20g5ee Bevilacqua (2001) or the original works by Brock et al. (1991) for the tables size and
power of the BDS test.
21For a detailed description of the Rossler process see Lorentz (1989) or Gandolfo (1997).
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The support for the existence of non-linear structures in the time series fol-
lows from the high value of the BDS statistic (table 6). The null i.i.d. hypothesis
is rejected. Though the BDS test was able to detect correctly the existence of
non-linear structures in the data also in this case, we may better appreciate its
eoectiveness when residuals are not serially correlated, as in the cases of the
tent map and seasonally adjusted real time series.

6 Empirical evidence: the US time series

In the past 15 years the detection of non-linearities in real economic time series
has turned out a very di¢cult task. The main problem is to apply the non-linear
dynamics tools to time series that contain a su@cient number of observations.
In order to reliably calculate the BDS test a quite high number of observations is
needed. Around 400 observations are necessary to detect low dimensional non-
linearities. If we wish to discover more complex structures, we need even a higher
number of observations. This is due to the fact that the BDS test has a very low
power for small ..nite samples. In table 7, we show that using a small sample
from a random walk growth process, the BDS test rejects spuriously the null
i.i.d. hypothesis (see the high value of the BDS statistic??). The application
of the BDS test, as well as all the tools of non-linear dynamics based as the
BDS test on the correlation dimension, on small samples may produce spurious
results. In section 5.2 the problem of spurious results did not arise since the
sample was su¢ciently large and consequently the power of the test was also
high.

When we have a time series with a very limited number of observations, as in
the case shown in table 7 where the observations were only 160, it is necessary
to use linear metrics while the use of non-linear dynamics tools would only
produce wrong results. For instance, the frequency of observations for GDP is
only quarterly and data are available starting from 1959. Though the Bureau
of Economic Analysis is going to release these data from 1929, we could only
have a maximum of 280 observations and this limitation would not allow us to
prove the existence of a non-linear dynamics?3.

Chavas and Holt (1991) have chosen to analyze a very speci..c time series of
which it was already known to have a cyclical nature: the Pork Cycle. Chavas
and Holt have shown the existence of aperiodic cycles in the quarterly time
series of the US quantities and prices of pork meat from 1910 till 1984. Chavas
and Holt have the great merit to have shown that fuctuations in time series
may have a non-linear origin.

In the analysis that follows, we focus on some main real macroeconomic time
series. We check whether it is possible to extract signals from the residuals that

223ee column W, n-

23A generally accepted result is that the GDP time series, as pointed out by the vast
literature on unit roots and cointegration, is characterized by a stochastic trend, but it cannot
reliably tested with the nonlinear numerical tools because of a paucity of observations. Hence
we cannot ascertain whether the GDP is really characterized by a nonlinear dynamics.
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economic literature has assumed to be stochastic. What we want to ascertain
whether the residuals also contain a non-linear component together with a truly
stochastic component. We try to ..nd whether important temporal linkages are
present between residuals. We will attempt to falsify the results of rejection
of the null i.i.d. hypothesis. We will proceed to a random shu—e of the time
series in order to break any temporal link among data. Afterwards we will apply
non-linear dynamics tools on the shu—ed time series. If the results of non-linear
test on both the original and the shu—ed time series are similar, it means that
time linkages are not important and the time series is generated by a stochastic
process, otherwise there is evidence that time cannot be ruled out and there
exists a non-linear component.

6.1 Industrial production

The time series for industrial production is certainly one of the most complete
available. Data go back to 1919 and the frequency of observation is monthly.
Applying the Dickey-Fuller test?* to the log of the observed values, we cannot
reject the null hypothesis of a unit root (table 8).
Afterwards, we have estimated the following linear model that best ..ts the
data:

Y (t) = 0.02+0.99Y (t — 1) + 0.51[Y (t — 1) — V(£ — 2)] + 0,000029¢ + ¢

where Y'(¢) are the observed values of the industrial production in terms of
value?®. The Durbin Watson statistic is 1.95 well within the acceptance range
1.89-2.10. This indicates that the estimated residuals are not serially correlated.

From the original series Y we focused on the estimated residuals e (.9. 13).
The residuals appears also to be characterized by a very complicate dynamics
if we look at the entropy level (80%) (table 8).

The calculus of the maximal Liapunov exponent depends on the parameter
of the embedding dimension m. There exists a maximal Liapunov exponent for
each value of m. The maximal Liapunov exponents are all positive for dicerent
values of m and this stands to indicate a high sensitivity of the time series with
respect to its initial conditions (table 18).

The existence of a structured dynamics seems also be corroborated by the
Ruelle plot?® (.g. 14) where the presence of continuous lines is clear. In ..g.
14 we can easily detect, without any a priori historical knowledge, the periods
in which signi..cant historical events have perturbed the industrial production.
From this recurrence plot we can realize that the ..rst years of the '20s, the years
around 1933 and 1944, have been characterized by an anomalous dynamics. The
embedded vectors represented by the single points around those dates show a big

24since some time series were autocorrelated in the residuals, we have used for all the real
time series the "augmented” form of the Dickey-Fuller test including more lags, trend and
intercept. The number of lags we have considered is the minimal that consents to obtain
uncorrelated residuals. See also Harris (1995) for more details.

251 the sector time series we have considered are in terms of value.

26gbtained setting m = 5.
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distance, marked with a dark color, compared to nearly all the other vectors.
Moreover, we can see that after the 400th embedded vector, the dynamics is
more settled and seems also to repeat (see the bright area on the upper right).
What is evident in ..g. 14 is the existence of a structure that dicers from a
random walk (..g. 5).

To ascertain whether the time series is generated by a non-linear determinis-
tic process we have applied the BDS test. The null i.i.d. hypothesis is strongly
rejected (table 9, column W, n). A similar test based on the same statistic
of the BDS test is the dimension test (table 9, column d,,). The correlation
dimension d,,, grows very slowly with m and tends to converge to a ..xed value.
This is typical of a process that is not guided by chance (Hommes 1998)?7.

If we randomize the order of the events of the original time series, we ..nd
that the values of the BDS test and the correlation dimension turn out to be
very dicerent from the values obtained using the original time series and we
correctly accept the null i.i.d. hypothesis for the shu—ed time series. This is
evidence that the time order of the residuals of the original time series is not
random, and a temporal causality in the fuctuations exists.

We conclude that residuals in industrial production show a structure that
cannot come from a mere linear stochastic process and therefore a non-linear
explanation is necessary to understand the temporal causality of events. This
result shows that there exists a clear non-linear structure in the estimated resid-
uals, which in turn should be considered as truly signals and not as noise.

6.2 Empirical analysis of other macroeconomic time se-
ries: industrial production in the main US sectors,
employment, hourly wages and consumer price index

A thorough analysis of each sector would be beyond the aim of this article whose
focus is on the existence of deterministic structures in macroeconomic time se-
ries. Shortly we summarize the results obtained analyzing some of the main US
macroeconomic time series. We have restricted our analysis to the main sectors
of the American economy?®, employment, hourly wages and the consumer price
index. Regarding the economic variables characterized by seasonal cycles we
analyzed the seasonally adjusted time series. The frequency of observations is
monthly. Data go back to 1947 for the transportation sector, industrial ma-
chinery and electrical machinery, 1967 for the hybrid Hi-tech sector (computers,
semiconductors and communications), 1939 for employment, 1932 for hourly
wages and 1913 for the consumer price index.

All the time series (log transformed), except employment, seem characterized
by a unit root, since for most of them we are not able to reject the null i.i.d.

27similar results were also obtained adding a small percentage of noise (5% of the variance).
We added noise to the time series simply because, when the nonlinear structure is well de..ned,
adding a small stochastic component should not change signi..cantly the result of the test.
Even if there were small i.i.d. measure errors these should not call in question the obtained
results.

28Those that are the most important with respect to the value added.
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hypothesis of the Dickey-Fuller test (tables 11, 12, 13, 14, 15, 16 and 17) with
high con..dence levels (higher than 5%)2°. These results are qualitative similar
to those obtained by Nelson and Plosser. For all the time series, the estimated
residuals of the linear model®® that ..ts best the data turn out to be serially
uncorrelated (the null hypothesis of the Durbin-Watson test is never rejected
even at high con..dence level for all the time series, tables 11, 12, 13, 14, 15, 16
and 17).

All the time series we analyzed (tables 11, 12, 15 and 17) are characterized by
high entropy values (generally higher than 70%) that are typical of both chaotic
and stochastic processes. For all the real time series we found positive values
of the corresponding maximal Liapunov exponents (table 18) and this result
suggests that nearby trajectories diverge over time at a positive exponential
rate. The interesting result is that all the real time series are characterized by a
Liapunov exponent that is decidedly lower than the one of a i.i.d. process, and
lower than the one of the tent map. This suggests that even if real time series
have to be considered unpredictable in the long run, in the short run they are
more predictable than a i.i.d. process and a deterministic process like the tent
map3?.

The presence of structures dicerent from those typical of an i.i.d. process,
has been pointed out by the recurrence plots of all the time series. If we compare
.g. 15, 16, 17, 18, 19, 20, 21 with ..g. 5 (.g. 5 is typical of an unstructured
random process), it is clear the existence of structures (repetitive continuous
lines over time) in the distances (represented by the intensity of grey) between
the embedded vectors (represented by each single point in the coordinates) 32.

The application of the BDS test provides us further information about the
existence of determinism in time series. Applying the BDS test to all the time
series at our disposal, we are not able to accept the null i.i.d. hypothesis. All the
series are characterized by high values of the BDS statistic well beyond their re-
spective critical values (column W, y tables 19, 20, 21, 22, 23, 24 and 25). The
dimension test®3, based as the BDS test on the calculus of the correlation dimen-
sion, allows us in some cases to measure the dimension of the chaotic attractor
that characterizes the time series. Without going into the details, the dimension
test is based on the fact that a truly stochastic process is characterized by the

2%However for transportation equipment production and industrial machinery production
we are not able to reject the null hypothesis only at 1% signi..cance level.

30g5ee the estimated equations directly inside tab. 11, 12, 13, 14, 15, 16 and 17.

311t is worthwhile to mention that in section 6.1 we found a maximal Liapunov exponent
for the industrial production close to zero, indicating the presence of cycles.

32The presence of continuous lines in the recurrence plots indicates that the embedded
vectors represented by each point keep approximately the same distance with respect to all
the vectors that belong to the continuous line. In a normal i.i.d. process, each vector is
randomly distant from any other vector and the probability that nearby vectors have similar
distances is very low. Thus in a normal i.i.d. process we should not notice any continuous
line in the recurrence plots).

33Note that the “dimension test”, contrary to the BDS test, is not really a statistical test
since critical values are not speci..ed. It’s a numerical tool that suggests the existence a
deterministic dynamics when the calculated correlation dimension tend to a ..xed value when
the embedding dimension grows.
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growth of the correlation dimension with the increase of the embedding dimen-
sion, while a truly chaotic process is characterized by the correlation dimension
tending to settle to a constant value when the embedding dimension increases
(Hommes 1998). This constant value represents the dimension of the chaotic
attractor. In all the series we have analyzed the correlation dimension (column
d, in tables19, 20, 21, 22, 23, 24 and 25) grows less than proportionally with
respect to ”"m”, but in many cases we cannot detect a clear tendency of the
correlation dimension to settle clearly to a constant value (column d,, in tables
19, 20, 21, 22, 23, 24, 25 and ..g. 22). For all the time series we have analyzed,
the BDS test suggests that the time series contain a deterministic structure,
but it is not possible to quantify, via the dimension test, the dimension of the
underlying attractor of the time series®*.

To check furthermore our results we have randomly ordered the real time
series, applied BDS and calculated the dimension correlation of the shu—ed time
series to see whether temporal linkages were relevant. In all the cases the values
of the BDS and the dimension tests of the shu—ed time series were notably
dicerent. We could not reject the null hypothesis of the BDS test for all the
shu—ed time series and the correlation dimension also was also higher (tables
26, 27, 28, 29, 30, 31, 32 and ..g. 23) with respect to the original time series
(tables 19, 20, 21, 22, 23, 24, 25 and ..g. 22). This is a con..rmation that
temporal linkages between residuals are really important and therefore a mere
probabilistic hypothesis on the residuals of macroeconomic time series does not
have empirical ground.

7 Concluding remarks

We have ..rst shown the theoretical possibility (section 4 and 5) and latter the
empirical evidence (section 6) that in the serially uncorrelated residuals there
are present non-linear signals which, in the models with a deterministic (linear
or broken) or stochastic trend, are assumed to be i.i.d., like white noise. The
approach that we put forward is to separate the stochastic component (that is
indeed present in the residuals) from the deterministic component and study
these two components separately. To be successful in this task we need a data
.Iter based on the concepts of non-linear dynamics. In this paper we have lim-
ited our analysis to the detection of the existence of clear non-linearities in the
residuals of macroeconomic time series. We have detected non-linearities in all
the time series we analyzed. All the time series we have considered are thus
characterized by determinism, notwithstanding all the series (except employ-
ment) are non-stationary and residuals are serially uncorrelated. If all this is

34This phenomenon may be due to the presence of a stochastic component in the time
series. It should be therefore important to ..Iter our data in order to separately analyze
the only deterministic component and to quantify the dimension of the chaotic attractor.
The future application of ..Iters that allow us to reduce and hopefully remove the stochastic
component may allow us to detect the dimension of chaos for all the real time series for which
we have already uncovered the presence of chaos.
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true, in the short run, we may make better predictors than simple autoregressive
models.

The problem of distinguishing between the two alternative hypothesis, deter-
ministic trend or stochastic trend, was at the core of unit root and broken trend
literature (section 2), but for us it was not the ..rst issue. Our aim was indeed to
detect non-linear structures in those components that linear stochastic models
have assumed as exogenous factors. As far as in linear stochastic models noise
plays the relevant role to make ’non-stationary” basically stationary processes,
it was for us of primary importance, from the theoretical point of view, to check
whether a component of what has been so far assumed noise might have an
endogenous explanation. If this is the case as con..rmed in section 6, economic
variables may not follow a stationary path even in absence of external shocks
and the observed non-stationarity may be the consequence of complex relations
between the economic variables.
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Authors Y | YIN|Yind. |Yagr.| GNP | GNP/N |[Exp.|S || |E| U Exch.r. |c.p.i VM Country
Nelson, Plosser 82 + + +| = + us
Lee, Siklos 91 + + +| = + C
Coorey 91 + uUs
Mills 92 + UK
Banerjee et al. 92 + + + | + + 7 OECD, J
Fung, Lo 92 + uUs
Durlauf 93 + us
Parikh 94 + J, UK, G
Mocan 94 + us
Gamber, Sorensen 94 us
Haslag et al. 94 us
de Haan, Zelhorst 94 + [
Mc Dougall 95 + + + | = + NZ
Serletis 94 + us
Bresson, Celimene 95 + Caribbean
Wu, Crato 95 | + NZ
Franses, Kleibergen 96 + + + | = + us
Gallegati 96 | + + + I
Serletis, Zimonopoulos 97 + 17 OECD
Wells 97 + + +| = + us
Sosa 97 + Arg.
Nunes, Newbold, Kuan 97 + + +| = + us
Rahaman, Mustafa' 97 + + Asia
Bohl 98 + G7
Weliwita 98 + Asia
Al Bazai 98 Arabia
Choi, Yu 97 + OECD
Dolado, Lopez 96 + Spain
Coakley, Kulasi, Smith 95 + | + OECD
Osborn, Heravi, Birchenhall 99 + G, F, UK
Leybourne, Mc Cabe 99 | + us
Y= GDP, Y/N GDP per capita, Y ind.= industrial production, Y agr.= agriculture,
Exp.= exportations, S= savings, I= investments, E= employment, U= unemployment rate, r= interest rate, exch.
Exch = exchange rate, c.p.i.=consumer price index, M= money, VM= velocity of money; C= Canada,
J=Japan, I=ltaly, NZ= New Zealand, Arg.=Argentina, G=Germany, F=France

Tab. 2
Authors Y |Y/N|Yind. | Ydistr. | GNP | GNP/N | E U | w Exch.r. | c.p.i. Country

Rudebush 90 - - - - - Australia
Diebold, Rudebush 89 - us
Perron 89 - - - - - us
Gokey 90 8 OECD
Hansen 91 - UK
Duck 92 - 9 countries
Capitelli, Scjlegel 91 6 countries
Raj 92 - - - - - Us, C, F, DK
Rudebush 92 - - - - - G
Kwaiatkowski et al. 92 - - - - - us
Linden 92 - - - - - Finland
Simkins 94 - us
Raj, Scottje 94 - us
Caselli, Marinelli 94 - |
Wu, Chen 95 - - - - - Taiwan
Ben, David, Papell 94 - 16 countries
Culver Papell 95 - OECD
Soejima 95 - - - - - J
Li 95 - us
Alba, Papell 95 - - Nics
Leslie, Pu, Wharton 95 UK
Wu 96 - us
Donald 96 - OECD
Lee 96 - - - - - us
Wu, Zhang 96 OECD
Moosa, Bhatti 96 Asia
Song, Wu 97 - 48 US states
Lumsdaine, Papell 97 - - - - - us
Gil, Robinson 97 - - us
Fleissing, Strauss 97 G7
Mc Coskey, Selden 98 - OECD
Song, Wu 98 - OECD
Hylleberg, Engle 96 - OECD
Cheung, Chinn 96 - us
Dolmas, Raj, Scottje 99 - us

Y= GDP, Y/N GDP per capita, Y ind.= industrial production, Y distr=income distribution, w=wages

Exp.= exportations, E= employment, U= unemployment rate, r= interest rate, w= wages

Exch= exchange rates, c.p.i.=consumer price index, C= Canada,

J=Japan, I=ltaly, NZ= New Zealand, Arg.=Argentina, G=Germany, F=France, DK= Denmark
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Tab 3: deterministic trend
ADF Test Statistic -21.28 1% Critical Value -3.97
5% Critical Value -3.41
Durbin-Watson stat 2.00 Entropy of levels 0%
Entropy of residuals 90%
BDS statistic | -1.28 5% Critical Value 1.96
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Tab 4: random walk
ADF Test Statistic -1.98 1% Critical Value -3.97
5% Critical Value -3.42
Durbin-Watson stat 1.99
BDS stat -1.55 5% Critical Value | +-1.96
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Tab 5: Tent map growth
ADF Test Statistic -1.79 1% Critical Value -3.97
5% Critical Value -3.42
Durbin-Watson stat 2.00 Entropy on residuals 78%
BDS stat 99.2 5% Critical Value +-1.96
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Tab 6: Rossler growth

ADF Test Statistic -57.53 1% Critical Value -3.97

5% Critical Value -3.42

Durbin-Watson stat 0.09 Entropy on residuals 15%
BDS stat 355 5% Critical Value +-1.96

Tab 7 Random residuals
N=160 SD/Spread=0.24 0.15
e m Winn
0.3 2 64.8
0.3 4 85.8 0.10
0.3 6 124.0
0.3 8 197.0 0.05
0.3 10 338.0
0.24 2 94.7
0.24 4 153.0 0.00
0.24 6 283.0
0.24 8 589.0 -0.05
0.24 10 1360.0
0.19 2 130.0
019 4 256 -0.10 ““““““\““\““\““‘“\““\““\““““\““\““\““““\““\““\““““\‘1‘666
0.19 6 595.0
0.19 8 1640.0 Fig. 13 industrial production residuals
0.19 10 5100.0
Tab 8: industrial production
ADF Test Statistic -3.05 1% Critical Value -3.97
5% Critical Value -3.42
White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 982
Estimated Model: Y(t) = 0.02+0.99*Y(t-1) + 0.51*(Y(t-1)-Y(t-2)+2.98E-05*t+¢
Variable Coefficient Std. Error t-Statistic Prob.
Y (t-1) 0.99 0.005 196.7 0.00
Y (t-1)-Y (t-2) 0.51 0.058 8.8 0.00
Intercept 0.02 0.011 1.89 0.059
TREND 0.0000298 0 1.95 0.050
Akaike info criterion -5.22 Schwarz criterion -5.20
Durbin-Watson stat 1.95 5% Critical Value 2.10 1.89
3% Critical Value 2.13 1.87
1% Critical Value 2.15 1.85
Entropy on residuals 80%
- Tab 9: industrial production
B0 Obs : N =981, SD/Spread 0.078
e m Wm,N dm
o0 0.15 2 11.27 0.13
0.15 4 15.14 0.21
£l 0.15 6 16.18  0.28
con ' 0.15 8 16.83  0.34
0.15 10 17.64 0.39
40 0.10 2 13.87 0.21
| 0.10 4 19.40  0.32
LU (1 010 6 2246 042
e | 0.10 8 25.64 0.50
o - . 0.10 10 29.49 0.58
o 007 2 1515  0.31
et H 1. 0.07 4 21.52 0.50
e — - 0.07 6 27.83 0.66
160 Pan R0 480 SA0 &0 Fe0 .lkl A0 0.07 8 36.70 0.79
0.07 10 49.79 0.92

Fig.14: recurrence plot of residualsfor industrial




Tab 10: indudrial production after

randomization

Obs : N =972 SD/Spread=0.078

e
0.15
0.15
0.15
0.15
0.15
0.10
0.10
0.10
0.10
0.10
0.07
0.07
0.07
0.07
0.07

m

=

=
OO RRNOOMORANOOOORAN

=

Wm,N dm
0.92 0.15
1.41 0.30
0.88 0.46
0.95 0.60
1.11 0.75
0.61 0.25
0.72 0.49
0.17 0.74
0.29 0.98
0.73 1.21
0.39 0.37
0.38 0.74
-0.21 1.12
-0.04 1.49
0.31 1.84

Tab 11: transportation equipment production
ADF Test Statistic -3.90 1% Critical Value -3.97
5% Critical Value -3.42
White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 633
Estimated Model: Y (t) = 0.13+0.96*Y (t-1) +0.000091*t+e
Variable Coefficient Std. Error t-Statistic Prob.
Y(t-1) 0.96 0.011 83.6 0
Intercept 0.13 0.039 3.34 0
TREND 0.000091 0 3.22 0
Akaike info criterion -3.82 Schwarz criterion  -3.80
Durbin-Watson stat 1.86 5% Critical Value 2.13 1.86
3% Critical Value 2.16 1.84
1% Critical Value 2.19 1.81
Entropy 73%

Tab 12: industrial machinery production
ADF Test Statistic -3.80| 1% Critical Value -3.98
5% Critical Value -3.42
Newey-West HAC Standard Errors & Covariance, Sample: 632
Estimated Model:
Y (t)=0.05+0.98*(t-1)+0.09*(Y (t-1)-Y (t-2))+ 0.29*Y (t-2)-Y (t-3))+ 0.26*(Y (t-3)-Y (t-
4))+0.0000758*t+e
Variable Coefficient  |Std. Error t-Statistic Prob.
Y (t-1) 0.98 0.005 213 0
Y (t-1)-Y(t-2) 0.09 0.048 1.91 0.056
Y (t-2)-Y (t-3) 0.29 0.038 7.7 0
Y (t-3)-Y (t-4) 0.26 0.038 7.0 0
Intercept 0.05 0.012 3.8 0
TREND 0.0000758 0 4.1 0
Akaike info criterion -5.738187|Schwarz criterion -5.695847
Durbin-Watson stat 2.04|5% Critical Value 2.13 1.86
3% Critical Value 2.16 1.84
1% Critical Value 2.19 1.81
Entropy 7%
Tab 13: electric machinery production
ADF Test Statistic -2.77 1% Critical Value -3.98
5% Critical Value -3.42
White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 468
Estimated Model: Y (t) = 0.05+0.97*Y (t-1)+0.17*(Y (t-1)-Y (t-2)) +0.00014*t+e
Variable Coefficient Std. Error t-Statistic Prob.
Y (t-1) 0.97 0.01 90.6 0.00
Y (t-1)-Y (t-2) 0.17 0.06 2.57 0.01
Intercept 0.05 0.02 2.80 0.01
TREND 0.00014 0 2.46 0.01
Akaike info criterion 4.93 Schwarz criterion -4.89
Durbin-Watson stat 2.06 5% Critical Value 2.15 1.85
3% Critical Value 2.18 1.81
1% Critical Value 2.21 1.78
Tab 14: Hi-Tech
ADF Test Statistic 0.58 1% Critical Value -3.98
5% Critical Value -3.42
White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 394
Estimated Model: Y (t) = 1.00*Y (t-1)+0.12*(Y (t-1)-Y (t-2))+e
Variable Coefficient Std. Error t-Statistic Prob.
Y (t-1) 1.00 0 3031 0
Y (t-1)-Y (t-2) 0.12 0.07 1.62 0.10
Akaike info criterion -5.58 Schwarz criterion -5.56
Durbin-Watson stat 2.05 5% Critical Value 2.17 1.83
3% Critical Value 2.20 1.80
1% Critical Value 2.23 1.74




tab 15:employment

ADF Test Statistic -4.205271 1% Critical Value -3.9754
5% Critical Value -3.4182
White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 726
Model: Y (t) = 0.16+0.98*Y (t-1)+0.27*(Y (t-1)-Y (t-2))+0.27(Y (t-2)-Y (t-3))+0.000026*t+e
Variable Coefficient Std. Error t-Statistic Prob.
Y (t-1) 0.98 0.004 223 0
Y (t-1)-Y (t-2) 0.27 0.101 2.6 0.01
Y (t-2)-Y (t-3) 0.27 0.107 25 0.01
Intercept 0.16 0.046 3.4 0
TREND 0.000026 0 35 0
Akaike info criterion -8.24 Schwarz criterion -8.21
Durbin-Watson stat 2.07 5% Critical Value 2.12 1.88
3% Critical Value 2.15 1.85
1% Critical Value 2.17 1.83
Entropy 68%
tab 16: hourly earnings of production workers
ADF Test Statistic -1.06 1% Critical Value -3.97
5% Critical Value -3.41
White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 812
Model: Y (t) = 1.00*Y (t-1)+0.20*(Y (t-1)-Y (t-2))+0.24(Y (t-2)-Y (t-3))+e
Variable Coefficient Std. Error t-Statistic Prob.
Y (t-1) 1.00 0 4435 0
Y (t-1)-Y (t-2) 0.20 0.12 1.70 0.08
Y (t-2)-Y (t-3) 0.24 0.10 2.34 0.02
Akaike info criterion -6.61 Schwarz criterion -6.59
Durbin-Watson stat 2.04 5% Critical Value 2.12 1.88
3% Critical Value 2.14 1.86
1% Critical Value 2.16 1.84
Entropy 71%
Tab 17: Consumer Price Index
ADF Test Statistic -0.846908 1% Critical Value -3.9719
5% Critical Value -3.4165

White Heteroskedasticity-Consistent Standard Errors & Covariance, Sample: 1042

Estimated Model:

Y(t) = 1.00%Y (t-1)+0.33*(Y (t-1)- Y (t-2))+0.16*(Y (t-2)- Y (t-3))+ 0.13*(Y(t-3)-Y(t-4))+e

Variable Coefficient Std. Error t-Statistic Prob.
Y(t-1) 1.00 0 19561 0
Y(t-1)-Y(t-2) 0.33 0.04 7.4 0
Y(t-2)-Y(t-3) 0.16 0.05 33 0
Y(t-3)-Y(t-4) 0.13 0.05 2.7 0.01
Akaike info criterion -7.41 Schwarz criterion -7.39
Durbin-Watson stat 2.05 5% Critical Value 2.10 1.90
3% Critical Value 212 1.88
1% Critical Value 2.14 1.86
Entropy 71%
Tab 18: maximal liapunov exponents M=1 M=2 M=3 M=4 M=5
Uniform i.i.d. process 340 141 1.24 0.77 0.85
Tent map 293 091 0.54 0.36 0.33
Rossler map 0.67 0.06 0.1 0.09 0.11
Industrial production 2.68 0.75 0.39 0.33 0.26
transportation eq. production 1.71 0.60 0.44 0.36 0.36
industrial machinery and eq. 1.75 0.64 0.33 0.28 0.30
electrical machinery 1.81 049 03 0.26 0.26
Hi-Tech 159 0.46 0.27 0.21 0.25
Employment 1.55 0.67 036 0.30 0.27
hourly earnings 1.81 0.7 051 0.39 0.36
consumer price index 1.88 0.93 0.58 0.45 0.36




Fig. 15: Transportation equipment production, recurrence plot Fig. 16: industrial machinery production, recurrence plot

Fig. 19: employment, recurrence plot Fig. 20: hourly earnings, recurrence plot



Tab 19: transportation eq.

production
Obs : N =633, SD/Spread=0.08 {
e m Wnn dm 200 —|
0.15 2 1044 013
0.15 4 1067 023
0.15 6 948  0.32 ,
0.15 8 855  0.43 B0l |
0.15 10 794 053 {
0.08 2 1178 026
0.08 4 1298 046
0.08 6 1305 065
0.08 8 1377 084
008 10 1497  1.02
0.05 2 1173 045
0.05 4 1389 081
0.05 6 1530  1.17
0.05 8 1999 148 —
005 10 2745 179
E[II[I B00 1I]l]r[
Fig. 21: consumer price index, recurrence plot
Tab 20: industrial machinery Tab 21: electrical machinery Tab 22: HI-TECH
production production
Obs : N =633, SD/Spread=0.15 Obs : N =633, SD/Spread=0.12 Obs : N =393, SD/Spread=0.16
e m Wnn dm € m W dn e m Wnn dm
0.24 2 407  0.26 020 2 6.53 032 030 2 366  0.13
0.24 4 377 051 020 4 817 0.8 030 4 403 025
0.24 6 406  0.74 020 6 838 083 030 6 444 036
0.24 8 444  0.97 020 8 839 108 030 8 441 047
024 10 477 118 020 10 875 131 030 10 434 058
0.12 2 349 061 012 2 7.25 054 015 2 469 041
0.12 4 330 1.19 012 4 9.26  0.98 015 4 6.27 075
0.12 6 376 174 012 6 980 141 015 6 791 105
0.12 8 408 228 012 8 1091 182 015 8 852 135
012 10 441 281 012 10 12.08 223 015 10 879 166
0.06 2 2.78  0.90 008 2 727 074 010 2 491 057
0.06 4 290 1.78 008 4 9.05 139 010 4 724  1.05
0.06 6 357  2.62 008 6 1069  2.00 010 6 952  1.47
0.06 8 452 343 008 8 1246 261 010 8 1125 1.89
006 10 1183  4.03 008 10 1178 328 010 10 1176 235
Tab 23: Employment Tab 24: Hourly earnings of Tab 25: c.p.i
Obs : N =729, SD/Spread=0.06 production workers Obs : N = 1024, SD/Spread=0.08
e m Wmn dm Obs : N =811, SD/Spread=0.05 e m Wmn dm
012 2 10.83  0.07 e m Wi dm 015 2 8.22 0.12
012 4 1100 0.13 010 2 1217  0.06 015 4 11.69 0.21
012 6 1092 018 010 4 1204 011 015 6 13.96 0.27
012 8 1090 022 010 6 1248 0.15 015 8 15.90 0.32
012 10 1105 025 010 8 1297 0.19 0.15 10 17.41 0.37
006 2 9.99 0.7 010 10 1358 021 008 2 12.33 0.26
006 4 1212 029 005 2 1228  0.17 008 4 18.60 0.43
006 6 1460 037 005 4 1540 028 008 6 25.28 0.54
006 8 16.82 045 005 6 1831 037 008 8 34.63 0.62
006 10  19.47  0.52 005 8 2123 044 0.08 10 47.91 0.68
003 2 9.14 034 005 10 2551 051 005 2 15.28 0.43
003 4 1467 057 003 2 1289 033 005 4 24.87 0.72
003 6 2215 075 003 4 19.00 056 005 6 41.64 0.92
003 8 3582 0.89 003 6 2694 074 005 8 75.29 1.09
003 10 60.39 1.01 003 8 4109 0091 005 10  145.90 1.24
003 10 7026  1.04




Tab 26: Shuffled transportation eq. Tab 27: Shuffled machinery eq.

production Production Tab 28: Shuffled electrical machinery
e m Wmn dm e m Wmn dm € m W dm
0.15 2 -0.32 0.17 0.24 2 -0.12 0.27 0.20 2 -0.56 0.37
015 4 0.14 0.33 024 4 -0.48 0.55 020 4 0.12 0.73
0.15 6 0.13 0.49 0.24 6 -0.70 0.83 0.20 6 -0.03 111
015 8 0.47 0.65 024 8 -1.00 1.12 020 8 -0.39 1.50
0.15 10 0.65 0.80 024 10 -1.23 1.42 020 10 -0.72 1.90
0.08 2 -0.73 0.34 0.16 2 -0.64 0.49 0.12 2 -0.53 0.60
008 4 0.04 0.67 016 4 -0.73 0.99 0.12 4 0.24 1.20
0.08 6 0.03 1.00 0.16 6 -0.84 1.50 0.12 6 0.08 1.80
008 8 0.23 1.32 016 8 -1.24 2.03 0.12 8 -0.20 2.43
0.08 10 0.36 1.63 0.16 10 -1.48 2.58 012 10 -0.70 311
0.05 2 -1.17 0.55 0.10 2 -0.73 0.70 0.08 2 -0.95 0.82
005 4 -0.35 1.09 010 4 -0.69 1.40 008 4 -0.04 1.62
0.05 6 -0.02 1.63 0.10 6 -0.51 2.10 0.08 6 -0.71 2.48
005 8 0.36 2.14 010 8 -0.59 2.82 008 8 -0.58 331
0.05 10 0.45 2.66 0.10 10 -0.81 3.56 008 10 -0.80 4.21
Tab 29: Shuffled Hi-Tech Tab 30: Shuffled employment Tab 31: Shuffled hourly earnings of
e m Wmn dm e m Wmn dm prduction workers
030 2 0.2 0.17 0.12 2 -097 0.09 e m Wy dm
030 4 226 0.30 012 4 -0.87 0.19 0.10 2 -161 0.08
030 6 280 0.43 0.12 6 -0.94 0.28 0.10 4 -1.18 0.16
030 8 265 0.55 012 8 -092 0.38 0.10 6 -1.24 0.25
030 10 2.26 0.68 012 10 -0.72 0.48 0.10 8 -0.97 0.33
015 2 -0.14 0.46 006 2 -092 0.21 0.10 10 -0.67 0.41
015 4 214 0.87 006 4 -0.10 0.41 0.05 2 -0.44 0.22
015 6 2.80 1.25 006 6 021 0.62 0.05 4 031 0.43
015 8 260 1.64 006 8 023 0.82 0.05 6 -0.39 0.65
015 10 2.20 2.06 006 10 028 1.02 0.05 8 -055 0.88
010 2 -0.06 0.63 003 2 -030 0.40 0.05 10 -0.56 1.10
010 4 1.87 1.20 003 4 041 0.79 0.03 2 017 0.40
010 6 243 1.74 003 6 022 1.19 0.03 4 025 0.82
010 8 229 2.30 003 8 -003 1.59 0.03 6 -0.53 1.24
010 10 251 2.83 003 10 -0.12 2.00 0.03 8 -0.48 1.65
0.03 10 -0.40 2.07

Tab 32, Shuffled c.p.i.

e m Wm,N dm
0.15 2 -1.40 0.13
0.15 4 -0.94 0.27
0.15 6 -1.29 0.41
0.15 8 -134 0.55
0.15 10 -1.15 0.69
0.08 2 -1.38 0.30
0.08 4 -0.26 0.60
0.08 6 0.24 0.90
0.08 8 0.60 1.18
0.08 10 0.79 1.47
0.05 2  -1.07 0.50
0.05 4 -0.26 1.00
0.05 6 0.52 1.48
0.05 8 1.02 1.95
0.05 10 0.56 2.46




