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Some Current Issues in the Statistical Analysis of Spillovers

Daniela Gumprecht*, Nicole Gumprecht*, Werner G. Müller**

*Department of Statistics and Decision Support Systems, University of Vienna
**Department of Statistics, University of Economics Vienna

Abstract

Spillover phenomena are usually statistically estimated on the basis of regional and temporal
panel data. In this paper we review and investigate exploratory and confirmatory statistical
panel data techniques. We illustrate the methods by calculations in the stetting of the well
known Research and Development Spillover study by Coe and Helpman (1995). It will be
demonstrated that alternative estimation techniques that are well compatible with the data can
lead to opposite conclusions.

1.  Coe & Helpman’s R&D Spillover Study

Most theories of growth explain economic growth in terms of the accumulation of capital and
the growth of the labor force and exogenous technological progress captured by a time trend.
In recent formulations these variables are quality adjusted (human capital, embodied
technological progress). In contrast the new growth theory (Romer 1990; Grossman and
Helpman, 1991) tries to explain the growth record in terms of endogenous R&D decisions.
Productivity depends therefore on the amount of knowledge generated by innovation activities
and productivity increases depend on current R&D efforts which translate into increased
technical knowledge. By building on these theories Coe and Helpman (1995) claimed that the
productivity of an economy depends on its own R&D as well as the R&D spendings of its
trade partners. A direct advantage is a more effective use of resources by the application of
new technologies, materials, production processes and organisation methods. Indirect benefits
come from the import of goods and services from trade partners.

In their meanwhile classical paper Coe and Helpman (1995) used a panel dataset to study the
extent to which a country’s productivity level depends on domestic and foreign stock of
knowledge. They used the cumulative spendings for R&D of a country to measure the
domestic stock of knowledge of this country. As a representative for the foreign stock of
knowledge, Coe and Helpman used the import-weighted sums of cumulated R&D
expenditures of the trade partners of the country. The importance of the R&D capital stock is
measured by the elasticity of total factor productivity with respect to the R&D capital stock. A
panel dataset with 22 countries (21 OECD countries plus Israel) during the period from 1971
to 1990 was used1. The variables total factor productivity (TFP), domestic R&D capital stock
(DRD) and foreign R&D capital stock (FRD) are constructed as indices with basis 1985 (1985
= 1).

                                                
1 All data can be found on the homepage of Elhanan Helpman (Helpman, 2003), which is accessible via the
internet address http://post.economics.harvard.edu/faculty/helpman/data.html
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In their papers Coe and Helpman have used a variety of specifications to model the effects on
TFP. To simplify the exposition we will here only regard one of those. Our conclusions,
however, are not limited to this particular case but rather apply to all of the suggested models
(for a more complete analysis see D.Gumprecht, 2003). Our illustrative model contains three
variables: total factor productivity (TFP) as the regressand, domestic R&D capital stock
(DRD) and foreign R&D capital stock (FRD) as the regressors. The impact of domestic and
foreign R&D expenditures is supposed to be the same for all countries. The equation – with
regional index i and temporal index t – has the following form:

f
it1t,i

f
it

d
it

d
it

0
itit SlogmSlogFlog −++= ααα ,

where
itF denotes total factor productivity (TFP),
d
itS domestic R&D capital stock (DRD), and
f

itS foreign R&D capital stock (FRD). FRD is defined as the import-share-weighted
average of the domestic R&D capital stocks of trade partners.

0
itα stands for the intercepts, which are allowed to vary across countries for two reasons:

first, there may exist country specific effects on productivity that are not included in
the variables of our model; and second, all variables are transformed into index
numbers and TFP is measured in country specific currency whereas DRD and FRD are
measured in U.S. dollars.

d
itα then denotes the regression coefficient, which corresponds to the elasticity of TFP with

respect to DRD, and
f

itα determines the elasticity of TFP with respect to FRD, which equals 1, −ti
f

it mα . Finally

1, −tim denotes the fraction of imports in GDP.

According to standard practice Coe and Helpman (1995) used a panel data model with fixed
effects, which is described in detail in the next subsection, for their estimations. They were
especially focussed on the time dimension of the data and therefore used time series methods
and analysis for their panel data model. As they were interested to identify a long-run
relationship between TFP and domestic and foreign R&D spendings, and as TFP, DRD and
FRD showed a clear temporal trend, they estimated cointegrated equations.

“The basic idea of cointegration is that if there is a long-run relationship between two or more
trended variables, a regression contain all the variables – the cointegration equation – will
have a stationary error term, even if none of the variables taken alone is stationary. If the error
term is not stationary, the estimated relationship may be spurious.” (Coe and Helpman, 1995:
867-868 according to Granger and Newbold, 1974). Cointegrated equations have the
important econometric property that OLS estimates are ‘super consistent’ (Stock, 1987). This
means if the number of observations increases, the OLS estimator of the cointegrating
equation converges to the true parameter value much faster than in the case where the
variables are stationary. The idea of cointegration comes from time-series analysis and it
seems natural for Coe and Helpman to use this technique for their R&D Spillovers problem.
Because of the relative small number of time-series observations for each country, Coe and
Helpman estimated their equations from panel data and interpreted the results as pooled
cointegration equations (Coe  and Helpman, 1995: 868).
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Conditions for the existence of cointegration are the following: first the separate variables
have to be nonstationary; and second, the error term of a linear combination of the variables
has to be stationary. Nonstationarity of each single time-series was tested with the Dickey-
Fuller, the augmented Dickey-Fuller, the Levin and Lin (1992)- and the Levin and Lin (1993)
unit root tests. The Levin and Lin unit root tests on the pooled data confirm the
nonstationarity of the variables. Nonstationarity of the error term was tested with Levin and
Lin (1992)-, Levin and Lin (1993) unit root tests and a test from Engle and Granger (1987).
These tests provided different results (Coe and Helpman, 1995: Table 3). Because of these
mixed results and the fact that the econometrics of pooled cointegration were not fully worked
out at that time, Coe and Helpman concentrated more on the theoretical model and on the a
priori plausibility of the estimated parameters rather than on the tests for cointegration (Coe
and Helpman, 1995: 870).

In what follows we present the recalculation of the OLS estimators for the model of Coe and
Helpman (1995) with corrected degrees of freedom in the calculation of the t-values making
use of the Helpman (2003) data. Kao et al. (1999) have re-estimated Coe and Helpman’s
equations (with corrected t-values, see a discussion of their approach later). However they
made a mistake when implementing the calculation in GAUSS (a commonly used statistically
oriented matrix language package, see www.aptech.com). They used wrong degrees of
freedom for the calculation of the t-values, namely
instead of vb1=inv(x1’*x1)*((u1’*u1)/(N*T-N-k1),
they used vb1=inv(x1’*x1)*((u1’*u1)/(N*T-1)).

The corrected estimation (with no substantial difference in significances) yields (t-values in
parentheses)

f
it1t,i

d
it

0
itit Slogm2665,0Slog10511,0ˆFlog −++=α ,

(12,8885)**   (5,8011)**

with i = 1, …, N (=21) and t = 1, …, T (=20) and a coefficient of determination R² = 0,5576
and an Adjusted R² of 0,5331. Note that in panel models the definition of the coefficient of
determination is not without ambiguity and we have calculated all R² throughout the paper as
the squared correlations of itŷ  and ity .

Coe and Helpman (1995) took these estimation results, with both a positive and statistically
significant regression coefficients as a confirmation of their hypothesis that TFP of a country
depends on both domestic R&D capital stock and foreign R&D capital stock.

A corresponding exploratory study seems to confirm these conclusions. The simple time-
series scatterplots of TFP and DRD and TFP and FRD are given in Figures 1 and 2,
respectively. To simplify the plots we have only included the G7 countries2, without
restriction on generality. The plots show the time paths from lower left (1971) to upper right
(1990), which all exhibit an upward slope as an indication of a positive relationship between
these variables.

                                                
2 U.S.A., Japan, Germany, France, Italy, U.K., Canada
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Time-series Scatterplot: TFP against domestic R&D for G7 countries 
(1971-1990)
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Figure 1: Time-series scatterplot TFP against DRD for G7 countries (1971-90).

Time-series Scatterplot: TFP against foreign R&D for G7 countries 
(1971-1990)
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Figure 2: Time-series scatterplot TFP against FRD for G7 countries (1971-90).
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2. Fixed effects panel regression

In the following section we will review the estimation techniques employed in most of the
spillover studies. We will hereby largely follow the exposition of standard econometrics
textbooks such as e.g. Greene (2000). More detailed material on the various specifications
used in panel data regressions can e.g. be found in the monographs by Hsiao, 1986 and
Baltagi, 2001.

2.1. Simple OLS estimators

In fixed effect panel models differences between cross-section units (individuals, regions,
etc.) are shown by differences in the constant terms. Each iα  is an unknown parameter and
must be estimated. This approach is suitable for models where the differences between
individuals can be interpreted as parametrical shifts of the regression function.

There are three different ways to specify the regression model.

1. Original form:
ititity εα +′+= xβ

The total sums of squares and total cross products are given by

∑∑
= =

′−−=
N

1i
it

T

1t
it

t
xx ))((

i

xxxxS ∑∑
= =

−−=
N

1i
it

T

1t
it

t
xy )yy)((

i

xxS

where:

∑
∑

∑

∑

∑∑
=

⋅

=

=
⋅

=

= = ===
N

1i
iiN

1i
i

N

1i
ii

N

1i
i

N

1i

T

1t
it

w
T

T

T

i

x
xx

x  and ∑
=

⋅=
N

1i
ii ywy  with 

∑
=

= N

1i
i

i
i

T

T
w

and the LS-total estimator follows:

t
XY

1t
XX

t )( SSb −=

2. Departure from group-mean form:

⋅⋅⋅ −+−′=− iitiitiit )(yy εεxxβ

Here the so called sums of squares within and cross products within are given by:

∑∑
=

⋅
=

⋅ ′−−=
N

1i
iit

T

1t
iit

w
xx ))((

i

xxxxS ∑∑
=

⋅
=

⋅ −−=
N

1i
iit

T

1t
iit

w
xy )yy)((

i

xxS

with the corresponding LS-within estimator:

w
XY

1w
XX

w )( SSb −=
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3. Group mean form:
⋅⋅⋅ +′+= iiiy εα xβ

with only N observations because there are only N groups. The corresponding so called sums
of squares between and cross products between are given by

∑∑
=

⋅
=

⋅ ′−−=
N

1i
i

T

1t
ii

b
xx ))((T

i

xxxxS ∑∑
=

⋅
=

⋅ −−=
N

1i
i

T

1t
ii

b
xy )yy)((T

i

xxS

And the LS-between estimator follows

b
XY

1b
XX

b )( SSb −= .

The group means are calculated in the following way:

∑
=

⋅ =
iT

1t
it

i
i y

T
1y , ∑

=
⋅ =

iT

1t
it

i
i T

1 xx , ∑
=

⋅ =
iT

1t
it

i
i T

1 εε .

The terminology “within” and “between” stems from the fact that the estimators are
determined by the variation within and between the specific groups as opposed to the “total”
variation.

In a panel data model with fixed effects the within-estimator (bw) is the BLUE (best linear
unbiased estimator). The proof follows directly from the Least Square Dummy Variable
(LSDV) form of the fixed effects model (see e.g. Greene 2000: chapter 14.3.).

Suggestions for improvement of Coe and Helpman’s estimation came - amongst others - from
Kao et al. (1999). They criticized two things: First, Coe and Helpman presented their results
without any t-values because the asymptotic distribution of the t-statistic for estimates in
cointegrated panel data was not known at that time. Therefore no exact statements about the
significance of the OLS estimators could be made. As Coe and Helpman’s resulting estimates
were both relatively small one can’t safely conclude that even one of the true coefficients was
bigger than zero. Second, due to the unit-root in the time dimension and in spite of the super
consistence of the time-series estimator, the upward bias of the estimate can be quite
substantial for small samples and there is no reason to assume that this bias becomes
negligible by the inclusion of a cross section dimension in panel data. Kao et al. (1999) argue
that it is quite possible that the estimators even change their sign when introducing a bias
correction in the calculation.

For those reasons Kao et al. (1999) used different estimation methods for Coe and Helpman’s
International R&D Spillovers regression and compared the empirical consequences from the
different estimation methods. They claim that the DOLS (dynamic OLS) estimation is the best
solution for this problem because in the given setting the DOLS estimator exhibits no bias and
is asymptotically normal.



7

2.2. Corrected OLS estimators

Kao, Chiang and Chen also used a panel data model with fixed effects for their estimations.
The regression function has again the following specification:

ititiity εα +′+= βx
where now

ity again denotes the dependent variable,
β M × 1 the vector of  slope parameters,

iα the region specific intercepts,

itε stands for a stationary error term, but now

itx is regarded as an M × 1 first order integrated process, with it1t,iit ξxx += − .

Under these assumptions the panel regression describes a system of cointegrated regressions,
this means ity  is cointegrated with itx . Furthermore yit and xit are independent between

different cross section units and ( )′′= ititit ξw ε  is a linear process that fulfils the
assumptions of Kao and Chiang (1997). The asymptotic covariance matrix Ω  of itw  can be
written in the following form:

∑
∞

−∞=

′=
j

0iij )(E wwΩ

ΓΓΣ ′++=









=

ξξε

ξεε

ΩΩ
ΩΩ

,

where

∑
∞

=








=′=

1j
0iij )(E

ξξε

εξε

ΓΓ
ΓΓ

wwΓ

and









=′=

ξεξ

εξε

ΣΣ
ΣΣ

wwΣ )(E 0i0i

are partitioned according  to wit.

The one-sided asymptotic covariance is defined as:

ΓΣ∆ +=

∑
∞

=

′=
0j

0iij )(E ww

with









=

ξεξ

εξε

∆∆
∆∆

∆ .
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With this “long run correction” the correct t-values can be calculated.

Kao and Chiang (1997) defined the limiting distribution of the OLS and a so called DOLS
(dynamic ordinary least squares) estimator of a cointegrated regression. They also showed
that these limiting distributions are asymptotically normal and analysed the characteristics of
these estimators in finite samples. They found out that the OLS estimator has a non-neglible
bias and that the DOLS estimator is therefore preferable for estimating cointegrated panel
regressions. The OLS estimator is given by









−−







 ′−−= ∑∑∑∑
= =

⋅⋅

−

= =
⋅⋅

N

1i

T

1t
iitiit

1N

1i

T

1t
iitiitOLS )yy)(xx()xx)(xx(β̂ ,

where ⋅ix and ⋅iy are the respective group means (see Kao et al., 1999: 697). The asymptotic
distribution of this estimator is, according to Kao and Chiang (1997),

)6,(NN)ˆ(TN 1
NTOLS εξξδ ΩΩ0ββ −→−− ; convergence in distribution,

where
ξεξεξεεξ ΩΩΩΩΩ 1−−=

and












+








′×







 ′−−= −

=

−

= =
⋅⋅ ∫∑∑ ∑ ξεξεξξ ∆ΩΩrWrWΩδ 2/1

1

0
ii

N

1i

2/1
1T

1i

T

1t
iitiit2NT )(d)(~

N
1)xx)(xx(

T
1

N
1 ,

Wi(r) being a standard Brownian motion, and

∫−=
1

0
iii d)()()(~ rrWrWrW .

2.3. The DOLS estimator

This estimator, which was employed in Kao et al. (1999), can be obtained by running the
regression:

∑
−=

+ +′+′+=
2

1

q

qj
itijjt,iitiit vy cxβx ∆α , { }...,2,1,0q,q 21 ∈

The DOLS estimation as used by Kao et al. (1999) is also based on a fixed effect regression
model:

ititiity εα +′+= βx i = 1, ..., N, t = 1, …, T.

We assume that {xit} are k × 1 integrated processes of order one for all i, where

it1t,iit ξxx += −

and
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1t,iitit −−= xxx∆ ,

where itx∆  denotes the difference of xit to xi,t-1.

If we assume that the process {εit} can be projected on to {ξit}, we get

it
j

ijjt,iit v+′= ∑
∞

−∞=
+ cξε

where

∞<∑
∞

−∞=j
ijc ,

{vit} is stationary with mean zero, and {vit} and {ξit} are uncorrelated, both contemporaneously
and in all lags and leads (see Saikkonen, 1991: 11).

In practice, the lags and leads are restricted to a range from q1 to q2. Retaining the former
assumption approximately, it follows that

∑
−=

+ +′=
2

1

q

qj
itijjt,iit vcξε .

This follows the assumption that {cit} are absolutely summable, which means

∞<∑
∞

−∞=j
ijc .

After substitution

it
j

ijjt,iit v+′= ∑
∞

−∞=
+ cξε

and
1jt,ijt,ijt,ijt,i −++++ −== xxxξ ∆

into the initial model

ititiity εα +′+= βx i = 1, ..., N, t = 1, …, T

we yield the specification

it

q

qj
ijjt,iitiit vy

2

1

+′+′+= ∑
−=

+ cxβx ∆α .

This is the regression model for the DOLS estimation (Kao and Chiang 1997: 9). The
asymptotic distribution of  a corresponding (now unbiased) estimator Dβ̂  is given by

)6,0(N)ˆ(TN 1
D εξξ ΩΩββ −→− ; convergence in distribution as N→∞ and T →∞.

For definition of εξΩ see the OLS estimator of β (section 2.2.) .
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Kao et al. (1999) reported the following results for their DOLS estimation of Coe and
Helpman’s R&D Spillovers model:

f
it1t,i

d
it

0
itit Slogm0682,0Slog1237,0ˆFlog −++=α + Rest

(5,9572)** (0,6333)

with an R2 of 0,5016.

They concluded from this estimation that domestic R&D expenditures affect TFP of a country
but foreign R&D expenditures do not have a significant effect on TFP of the country. Thus,
they argue, Coe and Helpman’s (1995) conclusions should be rejected. However, Kao et al.
(1999) wanted to estimate a fixed effect regression model (a model with county-specific
intercepts) but erroneously they implemented a common coefficient model (a model with a
common intercept). Furthermore, they left out the lag zero, which is not backed up by the
corresponding theory by Saikkonen (1991). Additionally, their R² is calculated by ESS
(Explained Sums of Squares) divided by TSS (Total Sums of Squares) but the wrong numbers
of degrees of freedom were used.

The result of the correct implementation of the fixed effect model with dynamic regressors is
now the following:

f
it1t,i

d
it

0
itit Slogm1321,0Slog1284,0ˆFlog −++=α + Rest

(18,3164)** (3,8375)**

with an R2 (according to our definition) of 0,8755 and an Adjusted R2 of 0,8689.

The correct estimated coefficient for foreign R&D expenditures is again – as in the original
paper – significant. Domestic- and foreign R&D expenditures still seem to affect TFP of a
country, which supports Coe and Helpman’s conclusions. The R², calculated as the square of
the correlation between itŷ  and ity , is much better than the R² of Kao et al. (1999), calculated
as ESS divided by TSS.

Nevertheless, a considerable innovation of Chiang and Kao’s (1999, 2002) implementation is
the use of the so called “long run correction” (see section 2.2.) for the correct calculation of
the t-values of the coefficients, a suggestion, which will be taken up in our final model.

3.  An Alternative View

There are many debates in the panel data estimation literature, whether to regard the region
specific or other effects as random outcomes poses a valuable alternative to the fixed
coefficient model. In the present context Müller and Nettekoven (1999) have suggested a so
called random coefficient model to analyse the R&D Spillovers model of Coe and Helpman
(1995) and conclude that although the alternative specification is well compatible with the
data, one astonishingly has to draw contradictory conlusions.
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3.1. The Random Coefficient Model

Here, the parameters iβ  are assumed to vary randomly around a common mean β . This
model can be described in the form:

iiii εβXy += ,
where

ii vββ +=
with

0v =][E i ,

Γvv =′ ][E ii .

Under the assumption that there is no autocorrelation and no correlation between the cross
section units, iβ  (that applies for a particular cross section unit) can be considered the result
of a random process with mean β  and covariance matrix Γ.

If iβ is express by the relation ii vββ +=  the following model results:

iiiiiii )( wβXvXεβXy +=++= ,
where

0w =][E i

and
iii

2
iii ][E ΠXΓXIww =′+=′ σ

The covariance matrix for all observations (V) has the following form:



















=

n

2

1

Π000

00Π0
000Π

V .

Now, the (best linear unbiased) GLS estimator can be expressed by a matrix weighted average
of the OLS estimators:

∑
=

=
N

1i
ii

ˆ bWβ

where bi is the i-th OLS coefficient estimator and

1
i

1
N

1j

1
ji )()( −

−

=

− +







+= ∑ VΓVΓW

where
1

ii
2
ii )( −′= XXV σ .
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The estimator of β can also be expressed in the usual form of the GLS estimator:

yVXXVXβ 111 )(ˆ −−− ′′= .

As V is a block diagonal matrix it follows that:








 ′






 ′= ∑∑
=

−
−

=

−
N

1i
i

1
ii

1N

1i
i

1
ii

ˆ yΠXXΠXβ

where

ii
2
ii XΓXIΠ ′+=σ

This representation of β̂  follows the fact  that β̂  is a weighted average of the OLS
estimators, (for a detailed proof, see Greene, 2000: 610).

To estimate the unknown parameters in Γ and Vi Swamy (1971) suggested the following
procedure. Let bi be the group specific OLS coefficient vector and let iV̂  be the sample
covariance matrix,

1
ii

2
i )(s −′XX ,

where

KT
s

i

ii2
i −

′
=

ee
;

now

∑
=

=
N

1i
iN

1 bb ,

then

∑∑
==

−






 ′−′
−

=
N

1i
i

N

1i
ii

ˆ
N
1N

1N
1ˆ VbbbbΓ

If the second matrix in Γ̂  is quite big it is possible that Γ̂  is not positive definite anymore. In

big samples the second matrix is negligibly small but in small samples Γ̂  might become not

positive definite. A simple and asymptotical valid solution for this problem is, just to drop the

second matrix. For the calculations in this paper this asymptotical valid form of Γ̂  was used,

i.e. the matrix iV̂  was not included in the estimation of Γ̂ .

Now predictors for the individual parameter vectors can be calculated. The best linear
predictor for iβ  is:

iiii
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This predictor is again a matrix weighted average. The weights are the inverse of the
covariance matrix of iβ̂  and bi. In practice the estimators Γ̂  and iV̂  are used for Γ and Vi.

The variance of the predictor iβ̂  is given by
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Parameters estimated according to this specification partly differ considerably from the OLS
estimators of Coe and Helpman (1995) (as well as the DOLS estimators of Kao et al., 1999).
Even to such an extent that the sign of single parameters may depend on the choice of the
model – a model with fixed or a model with random coefficients (cf. Müller and Nettekoven,
1999). Other than the fixed effect model the random effect (coefficient) one assumes the
existing array of countries a random draw of a (fictitious) population of similar economies.

A correct random coefficient estimation yields

f
it1t,i

d
it

0
itit Slogm0841,0Slog2475,0ˆFlog −−+=α

(7,7578)** (-0,5087)

with an R² of 0,9122 and  an Adjusted R² of 0,9074.

The estimates for the random coefficient model differ decisively from the fixed coefficient
model and especially the estimator of the foreign R&D expenditures changed sign, although
this is not statistically significant. Values for R² and Adjusted R² raised, both are now around
0,91, so the explanatory power of the model is quite good. Contrary to the other estimations
so far (and Coe and Helpman’s conclusions) this model indicates that the foreign spillover
effect is not significant!

Note that although Müller and Nettekoven (1999) have already identified this effect, they
report other estimates for the random coefficient model. This is due to erroneously relating
foreign R&D expenditures of some countries to domestic R&D expenditures and TFP of other
countries.

4. Time Series Added-Variable-Plots

In this section we will demonstrate, that it could have been possible by a proper exploratory
analysis to detect the reported inconsistencies of the data with the posited models and the
achieved results.

Although at first glance Figures 1 and 2 seem to confirm Coe and Helpman’s conclusions, we
propose in a second step to construct so called Added-Variable-Plots of the data. Such plots
are used to analyse the importance of additional variables for the explanation of the variation
of a dependent variable and they are capable of discovering masking effects.
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The relevant question that should be answered is, whether foreign R&D expenditures can
provide any explanation of the variation of  TFP additional to the explanation provided by
domestic R&D expenditures. Is it useful to add FRD into the model when it already includes
DRD? To answer this question additional to  the time-series scatterplot of TFP against
domestic R&D expenditures for G7 countries (see Figure 1), time-series scatterplot of TFP
against foreign R&D expenditures for G7 countries (see Figure 2) a third time-series
scatterplots is of relevance, the one of foreign R&D expenditures against domestic R&D
expenditures (see Figure 3).

Time-series Scatterplot: foreign R&D against domestic R&D for G7 
countries (1971-1990)
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Figure 3: Time-series scatterplot FRD against DRD for G7 countries (1971-90).

The first two time-series scatterplots show positive correlation and this might lead to the
(somewhat premature) conclusion that domestic as well as foreign R&D expenditures might
be able to explain TFP. However, the time-series scatterplot of FRD against DRD also shows
a positive correlation between those variables, which strongly indicates that one of the
regressors might carry mainly redundant information.

Added-Variable-Plots rather than plotting original variables like in usual scatterplots employ
the partial effects of the considered regressors manifested by the residuals of corresponding
OLS regressions (for a detailed description see Cook and Weisberg, 1994). Thus in our
context two time-series Added-Variable-Plots will be useful: one shows the residuals from a
simple OLS regression of the natural logarithm of TFP on the natural logarithms of the
domestic R&D expenditures (y-axis) against the residuals of a simple OLS regression of the
natural logarithms of the foreign R&D expenditures multiplied with the import-shares on the
natural logarithms of the domestic R&D expenditures (x-axis), i.e. it will be displaying the
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partial effect of DRD on TFP (Figure 4). The other will be constructed vice versa for the
partial effect of FRD on TFP (Figure 5). Both OLS regressions were calculated for each
country separately.

Time-series Added-Variable-Plot TFP against foreign R&D for G7 
countries (1971-1990)
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 Figure 4: Time-series Added-Variable-Plot TFP against FRD for G7 countries (1971-90).

For the interpretation of these time-series added-variable plots it is useful to have a look at the
three extreme cases of Added-Variable Plots. If all points lie exactly on a straight line with
nonzero slope, this means all residuals from the A-V-P regression are zero, it is useful to add
the second variable (e.g. in Figure 4: m×ln(FRD)) to the first variable (in Figure 4: ln(DRD))
because this will give a perfect fit of the model. If all points lie on a horizontal line all
variation of the dependent variable is explained by the first variable, there is no need to insert
the second variable into the model. If all points lie on a vertical line the second variable is a
linear function of the first one and it is not useful to include the second variable into the
model because it can not explain the variation any further.
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The A-V-P for FRD of the R&D Spillovers data for the G7 countries (Figure 4) shows that the
lines for Japan, France and Italy are nearly vertical, for Japan and Italy they even show a
negative trend, this means that FRD are nearly a linear function of DRD and therefore they
are redundant for the model. The lines for U.S. and Canada do not show any trend, they vary
randomly and therefore FRD of U.S. and Canada are also not able to provide additional
explanation to the model with DRD only. The line for U.K. shows a slight positive trend but it
is still nearly horizontal and therefore can provide nearly no further explanation of the
variation of TFP.

Time-series Added-Vaiable-Plot TFP against domestic R&D for G7 
countries (1971-1990)
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Figure 5: Time-series Added-Variable-Plot TFP against DRD for G7 countries (1971-90).

In the A-V-P for DRD (Figure 5) on the other hand with the exception of the U.K. all
countries exhibit an upward slope, which confirms the relevance of this factor.

All in all, it is evident from this exploratory analysis that the use of added-variable-plots in an
early phase of their study would have prevented Coe and Helpman (1995) from premature
conclusions.
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5. A New Model

After a detailed examination of the model of Coe and Helpman (1995) and the various critics
of it, the following changes and modifications for this model are suggested:

- use of a random coefficient model,
- use of DOLS regression.

The advantage of the random coefficient model over the fixed effect model is that there is no
need for the assumption that there is no variation between the cross section units (countries).
This parameter heterogeneity is regarded as a random variation. The fit of the model improves
by allowing for the random variation of the single parameters iβ  around β .

The use of dynamic regressors is based on the paper of Kao et al. (1999) where the DOLS
estimator and its advantage over the simple OLS estimator is explained. Thus q1 lags and q2
leads of the first differences of the domestic and foreign R&D expenditures should be
included as additional dynamic regressors in the model with domestic and foreign R&D
expenditures. Kao et al. (1999) tested the assumption of cointegration of the estimated
equations. They used the panel cointegration test of Kao (1999) and the test of Pedroni
(1995). All test-statistics were significant and therefore the null-hypothesis of no
cointegration was rejected (see Kao et al., 1999: Table 2). Edmond (2000) used cointegration
tests of Pedroni (1997, 1998) and the augmented Dickey-Fuller test to test the assumption of
cointegration and came to the same result as Kao, Chiang and Chen, 1999 (Edmond, 2000:
Table 2). Because of these results the R&D Spillovers data can be regarded as cointegrated.

The suggestion for the analysis of the international R&D Spillovers is a random coefficient
panel cointegration model with dynamic regressors. In this case Coe and Helpman’s (1995)
model has the following specification:

iiii εβXy += ,
with
yi being the regressand )1qq(T 21 ++−  vector; here the natural logarithm of TFP of

country i: ln Fi,
Xi denotes the k)1qq(k1)1qq(T 2121 ++++×++−  regressor-matrix; here

[ ]i
f

i
d
ii :lnm:ln: XSS1X ∆= , where d

iln S  and f
iln S  are the natural logarithms of

the domestic- and foreign R&D expenditures and m are the import-shares. iX∆  is the
group-specific matrix of the differences. For all elements of the original matrix Xi

( d
iln S  and f

iln S ) the values for the respective years get subtracted for all lags and
leads (inclusive lag = 0). The dimension of matrix iX∆  is thus:

k)1qq()1qq(T 2121 ++×++− .

iβ k)1qq(k1 21 ++++  is then the vector of parameters. The first entry is the common
intercept, the second and third entry are the parameters of the domestic and foreign
R&D expenditures and the other entries are the parameters of the differences.

iε )1qq(T 21 ++−  finally denotes the corresponding vector of errors.

In contrast to Coe and Helpman’s model, where all years T are included, q1+q2+1 years get
lost in this model by forming the difference-matrix.  Eventually, the DOLS random
coefficient estimation yields
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itit Slogm0756,0Slog3062,0ˆFlog −−+=α +Rest

(8,0541)** (0,4051)

with an R2 of 0,9766 and an Adjusted R2 of 0,9750. The computations were performed with a
special GAUSS package, which is described in detail in N.Gumprecht (2003).

The coefficient estimate corresponding to m·logSf is not significant. R² and Adjusted R² are
even higher than in the random coefficient model without dynamic regressors.

The results of the panel cointegration model with random coefficient and dynamic regressors
do not support Coe and Helpman’s hypothesis, that the TFP of a country depends on domestic
and foreign R&D knowledge (measured by the R&D expenditures). The effect of the
knowledge of the trade-partners of a country is marginal because it is not significant. It seems
as foreign R&D do rather not affect the TFP of a country.

6. Conclusions

Coe and Helpman’s hypothesis, that the TFP of a country depends on the domestic and
foreign R&D knowledge can only be supported partly. Imported knowledge seems to have no
effect on TFP of a country.

A summary of different articles about the relationship of imported knowledge and the TFP of
a country is provided by Navaretti and Tarr (2000). They concluded that there is a strong
evidence for the positive effect of imported technology on TFP of a county. The reason for
this completely different conclusion might be the level of aggregation of the analysed data.
Navaretti and Tarr (2000) used articles that cared especially about microeconomic
relationships between trade and knowledge diffusion whereas the here discussed articles care
about a macroeconomic relationship between R&D and TFP. One referee has noted the
relation of the results to the theory of absorptive capacities (Cohen and Levinthal, 1989) – a
respective interaction effect could be tested in a slightly alternative specification.

The preferred panel cointegration model with random coefficients and dynamic regressors
confirms the positive effect of domestic R&D on TFP but it does not confirm the effect of
foreign R&D on TFP.
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