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Abstract

Plasma adrenaline mainly originates from adrenaline-containing cells in the 

adrenal medulla, whereas plasma noradrenaline reflects not only the release from 

sympathetic nerves but also the secretion from noradrenaline-containing cells in the

adrenal medulla. The present study was undertaken to examine the mechanisms 

involved in centrally administered epibatidine (a potent agonist of nicotinic 

acethylcholine receptors)-induced elevation of plasma catecholamines with regard to

the brain prostanoid. Intracerebroventricularly (i.c.v.) administered epibatidine (1, 5 

and 10 nmol/animal) effectively elevated plasma noradrenaline and adrenaline. The 

epibatidine (5 nmol/animal, i.c.v.)-induced elevation of both catecholamines was 

attenuated by hexamethonium (an antagonist of nicotinic acethylcholine receptors) (0.9 

and 1.8 µmol/animal, i.c.v.), indomethacin (an inhibitor of cyclooxygenase) (0.6 and 

1.2 µmol/animal, i.c.v.) and (+)-S-145 (an antagonist of prostanoid TP receptors) (0.6 

and 1.3 µmol/animal, i.c.v.), and abolished by acute bilateral adrenalectomy. On the 

other hand, intravenously administered epibatidine (5 nmol/animal) was largely 

ineffective on the plasma levels of catecholamines, and intravenous pretreatment with 

hexamethonium (1.8 µmol/animal) had no effect on the epibatidine (5 nmol/animal, 

i.c.v.)-induced elevation of both catecholamines. These results suggest that centrally 

administered epibatidine activates the brain nicotinic acethylcholine receptors, thereby

evoking the secretion of noradrenaline and adrenaline from the adrenal medulla by 

brain cyclooxygenase- and prostanoid TP receptor-mediated mechanisms in rats.
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1.  Introduction

Smoking is a leading cause of cardiovascular diseases including high blood 

pressure (Lakier, 1992) and nicotine is one of the components of cigarette smoke. The 

effects of peripherally administered nicotine on the sympatho-adrenomedullary system 

have been clearly shown to evoke the release of noradrenaline and adrenaline from 

sympatho-adrenomedullary system by activation of peripheral nicotinic acethylcholine 

receptors (Watts, 1960; Wang et al., 2000; Yokotani et al., 2001, 2002). Centrally 

administered nicotine also evokes pressor response and elevation of plasma 

catecholamine by activation of the brain nicotinic acethylcholine receptors in rats 

(Kiritsy-Roy et al., 1990; Buccafusco and Yang 1993; Tseng et al., 1993, 1994). 

However, the effect of microinjected nicotine into the brain seems to vary according to 

the injected nuclei. Nicotine administered into the rostral ventrolateral medulla 

increases blood pressure and renal sympathetic nerve activity (Tseng et al., 1993, 

1994), whereas nicotine administration into the nucleus tractus solitarius induces 

hypotension, probably by an enhancement of inhibitory baroreflex (Tseng et al., 1993, 

1994; Ashworth-Preece et al., 1998). Chronic treatment of nicotine is able to intensify 

and accelerate the development of hypertension in spontaneously hypertensive rats 

(Bui et al., 1994; Ferrari and Fior-Chadi, 2007), in which the central dysregulation of 

sympatho-adrenomedullary outflow has been suggested to be involved (Barron and 

Van Loon, 1989; Wyss and Carlson, 2001; Guyenet, 2006). However, the precise 

mechanisms of this alkaloid-induced central modulation of the sympatho-

adrenomedullary outflow are largely undefined.
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We recently reported that centrally administered stress-related neurotransmitters

such as vasopressin, bombesin and histamine elicit adrenal secretion of both 

noradrenaline and adrenaline from noradrenaline- and adrenaline-containing cells in 

the adrenal medulla via the brain thromboxane A2-mediated mechanisms, whereas

centrally administered corticotropin-releasing factor (CRF) and glucagon-like peptide 

1 (GLP-1) elicits adrenaline secretion from adrenal adrenaline-containing cells and 

noradrenaline release from sympathetic nerves via the brain thromboxane A2- and 

prostaglandin E2-mediated mechanisms, respectively, in rats (Okada et al., 2003; 

Yokotani et al., 2005; Shimizu et al., 2006; Arai et al., 2008). In the present study, 

therefore, we examined the mechanisms involved in the centrally administered 

epibatidine (a potent agonist of nicotinic acethylcholine receptors)-induced elevation 

of plasma catecholamines with regard to the brain prostanoids using urethane-

anesthetized rats.
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2.  Materials and methods

   

2.1.  Experimental procedures

Male Wistar rats weighing about 350 g were maintained in an air-conditioned 

room at 22-24°C under a constant day-night rhythm for more than 2 weeks and given 

food (laboratory chow, CE-2; Clea Japan, Hamamatsu, Japan) and water ad libitum. 

Under urethane anesthesia (1.2 g/kg, i.p.), the femoral vein was cannulated for infusion 

of saline (1.2 ml/h), epibatidine or hexamethonium, and the femoral artery was 

cannulated for collecting blood samples. In some experiments, acute bilateral 

adrenalectomy [plus hydrocortisone (5 mg/kg, i.m.)] or sham-operation (plus 200 µl 

saline/animal, i.m.) was done just before these cannulations into the femoral artery and 

vein by an abdominal midline incision (Yokotani et al., 2005; Shimizu et al., 2006; 

Sasaki et al., 2008). After these procedures, the animal was placed in a stereotaxic 

apparatus, as shown in our previous papers (Yokotani et al., 1995; Shimizu et al., 

2004). The skull was drilled for intracerebroventricular administration of test 

substances using a stainless-steel cannula (0.3 mm outer diameter). The stereotaxic 

coordinates of the tip of the cannula were as follows (in mm): AP -0.8, L 1.5, V 4.0 

(AP, anterior from the bregma; L, lateral from the midline; V, below the surface of the 

brain), according to the rat brain atlas (Paxinos and Watson, 1986). Three hours were 

allowed to elapse before the application of epibatidine or blocking reagents.

Epibatidine dissolved in 100% N,N-dimethylformamide (DMF) was slowly 

injected into the right lateral ventricle in a volume of 2.5 µl/animal using a 10-µl 

Hamilton syringe. Each animal received only one dose of epibatidine or vehicle.
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Hexamethonium, water-soluble indomethacin-Na and (+)-S-145 dissolved in sterile 

saline were intracerebroventricularly (i.c.v.) administered in a volume of 5 µl/animal

using a 10-µl Hamilton syringe. When blocking reagents were used, epibatidine was 

i.c.v. administered 30 min after the application of hexamethonium or indomethacin-Na 

and 60 min after the application of (+)-S-145, due to their slightly elevating effects on 

the basal plasma levels of catecholamines. When epibatidine was injected 

intravenously (i.v.), the epibatidine solution (500 µl) dissolved in 0.5% DMF in saline

was slowly injected via a cannula inserted into the femoral vein. Intravenous 

administration of hexamethonium was also carried out via the cannula in a volume of 

500 µl saline/animal. Each animal also received only one dose of blocking reagents or 

vehicle.

All experiments were conducted in compliance with the guiding principles for 

the care and use of laboratory animals approved by Kochi University.

  

2.2.  Measurement of plasma catecholamines

Blood samples (250 µl) were collected through an arterial catheter and were 

preserved on ice during experiments. Plasma was prepared immediately after the final 

sampling. Catecholamines in the plasma were extracted by the method of Anton and 

Sayre (1962) with a slight modification and were assayed electrochemically with high 

performance liquid chromatography (HPLC) (Shimizu et al., 2004). Briefly, after 

centrifugation (1,500 g for 10 min, at 4°C), the plasma (100 µl) was transferred to a 

centrifuge tube containing 30 mg of activated alumina, 2 ml of twice deionized water, 

1 ml of 1.5 M Tris Buffer (pH 8.6) containing 0.1 M disodium EDTA and 1 ng of 3,4-
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dihydroxybenzylamine as an internal standard. The tube was shaken for 10 min and the 

alumina was washed three times with 4 ml of ice-cold twice deionized water. Then, 

catecholamines adsorbed onto the alumina were eluted with 300 µl of 4% acetic acid 

containing 0.1 mM disodium EDTA. The extraction efficiency of catecholamines was 

about 83.8±1.6% (n=4). A pump (EP-300: Eicom, Kyoto, Japan), a sample injector 

(Model-231XL; Gilson, Villiers-le-Bel, France) and an electrochemical detector (ECD-

300: Eicom) equipped with a graphite electrode were used with HPLC. Analytical 

conditions were as follows: detector, +450 mV potential against an Ag/AgCl reference 

electrode; column, Eicompack CA-50DS, 2.1 x 150 mm (Eicom); mobile phase, 0.1 M 

NaH2PO4-Na2HPO4 buffer (pH 6.0) containing 50 mg/l disodium EDTA, 0.75 g/l 

sodium 1-octanesulfonate and 15% methanol at a flow rate of 0.18 ml/min; injection 

volume, 40 µl. The amount of catecholamines in each sample was calculated using the 

peak height ratio relative to that of 3,4-dihydroxybenzylamine. By this assay, 

coefficients of variation for intra- and inter-assay were 3.0 and 3.7%, respectively, and 

0.5 pg of noradrenaline and adrenaline was accurately determined.

2.3.  Treatment of data and statistics 

All values are expressed as the means±S.E.M. of the net changes above the 

respective basal values. The data were analyzed by repeated-measure analysis of 

variance (ANOVA), followed by post-hoc analysis with the Bonferroni method for 

comparing a control to all other means (Figs. 1A, 2A, 3 and 4). When only two means 
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were compared, an unpaired Student’s t-test or Welch’s t-test was used (Figs. 1B, 2B 

and 5). P values less than 0.05 were taken to indicate statistical significance.

2.4.  Compounds

The following drugs were used: (±)-epibatidine dihydrochloride hydrate 

(epibatidine), hexamethonium chloride and hydrocortisone (Sigma Aldrich Fine 

Chemicals, St. Louis, MO, U.S.A.); water-soluble indomethacin sodium trihydrate (a 

kind gift from Merck Rahway, NJ, U.S.A.); (+)-S-145 [(+)-(1R,2S,3S,4S)-(5Z)-7-(3-

phenylsulphonyl-aminobicyclo[2.2.1]hept-2-yl)hept-5-enoic acid] (a kind gift from 

Shionogi Pharmaceutical Co. Ltd., Osaka, Japan). All other reagents were of the 

highest grade available (Nacalai Tesque, Kyoto, Japan).
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3.  Results

3.1.  Effect of centrally administered epibatidine on plasma levels of catecholamines 

I.c.v. administered vehicle (2.5 µl DMF/animal) had no effect on the basal 

plasma levels of either noradrenaline or adrenaline, respectively (Fig. 1A). Epibatidine

[1 nmol (0.3 µg)/animal, i.c.v.] had little effect on the plasma levels of noradrenaline 

and adrenaline, but this chloroalkaloid [5 and 10 nmol (1.4 and 2.8 µg)/animal, i.c.v.] 

significantly elevated plasma levels of noradrenaline and adrenaline; maximal 

noradrenaline responses were obtained by a dose of 10 nmol/animal (i.c.v.) and 

maximal adrenaline responses were obtained by a dose of 5 nmol/animal (i.c.v.), 

respectively (Fig. 1A). These responses reached a maximum 5 min after the 

administration of epibatidine and then gradually declined toward their basal levels. 

Intravenous administration of vehicle (500 µl of 0.5% DMF in saline) had no 

effect on the basal plasma levels of either noradrenaline or adrenaline (Fig. 1B). 

Epibatidine (5 nmol/animal, i.v.) largely unaffected the plasma levels of both

catecholamines (Fig. 1B).

3.2.  Effect of hexamethonium (an antagonist of nicotinic acethylcholine receptors) on 

the centrally administered epibatidine-induced elevation of plasma catecholamines 

Treatments with vehicle-1 (5 µl saline/animal, i.c.v.)/hexamethonium [1.8 µmol

(500 µg)/animal, i.c.v.] and vehicle-2 (2.5 µl DMF/animal, i.c.v.) had no effect on the 

basal plasma levels of noradrenaline and adrenaline, respectively (Fig. 2A). 
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Epibatidine (5 nmol/animal, i.c.v.)-induced elevation of noradrenaline was 

significantly reduced by hexamethonium (1.8 µmol/animal, i.c.v.), while the reagent-

induced elevation of plasma adrenaline was dose-dependently reduced by 

hexamethonium [0.9 and 1.8 µmol (250 and 500 µg)/animal, i.c.v.] (Fig. 2A). 

Treatments with vehicle-1 (500 µl saline/animal, i.v.)/hexamethonium (1.8 

µmol/animal, i.v.) and vehicle-2 (2.5 µl DMF/animal, i.c.v.) had no effect on the basal 

plasma levels of noradrenaline and adrenaline, respectively (Fig. 2B). Pretreatment 

with hexamethonium (1.8 µmol/animal, i.v.) had little effect on the epibatidine (5 

nmol/animal, i.c.v.)-induced elevation of both catecholamines (Fig. 2B).

3.3.  Effect of indomethacin (an inhibitor of cyclooxygenase) on the centrally 

administered epibatidine-induced elevation of plasma catecholamines 

Treatments with vehicle-1 (5 µl saline/animal, i.c.v.)/indomethacin [1.2 µmol

(500 µg)/animal, i.c.v.] and vehicle-2 (2.5 µl DMF/animal, i.c.v.) had no effect on the 

basal plasma levels of noradrenaline and adrenaline, respectively (Fig. 3). 

Epibatidine (5 nmol/animal, i.c.v.)-induced elevation of noradrenaline and 

adrenaline was dose-dependently reduced by indomethacin [0.6 and 1.2 µmol (250 and 

500 µg)/animal, i.c.v.] (Fig. 3). 

3.4.  Effect of (+)-S-145 (an antagonist of prostanoid TP receptors) on the centrally 

administered epibatidine-induced elevation of plasma catecholamines 
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Treatments with vehicle-1 (5 µl saline/animal, i.c.v.)/(+)-S-145 [1.3 µmol (500

µg)/animal, i.c.v.] and vehicle-2 (2.5 µl DMF/animal, i.c.v.) had no effect on the basal 

plasma levels of noradrenaline and adrenaline, respectively (Fig. 4). 

Epibatidine (5 nmol/animal, i.c.v.)-induced elevation of both catecholamines was

significantly reduced by (+)-S-145 [0.6 and 1.3 µmol (250 and 500 µg)/animal, i.c.v.] 

(Fig. 4).

3.5.  Effect of bilateral adrenalectomy on the centrally administered epibatidine-

induced elevation of plasma catecholamines 

The basal plasma levels of noradrenaline were not influenced by bilateral 

adrenalectomy, while the basal plasma levels of adrenaline were effectively, but not 

significantly, reduced by this procedure (Fig. 5).

In sham-operated rats, epibatidine (5 nmol/animal, i.c.v.) effectively elevated 

plasma levels of noradrenaline and adrenaline (Fig. 5). The reagent-induced elevation 

of both catecholamines was abolished by bilateral adrenalectomy (Fig. 5). 
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4.  Discussion

In the preliminary experiment, centrally administered nicotine (250 and 500 

nmol/animal, i.c.v.) dose-dependently evoked a rapid increase of plasma levels of 

adrenaline and noradrenaline within 3 min after the administration of this alkaloid, and 

quickly returned to the preadministered basal levels, as shown by Kiritsy-Roy et al. 

(1990). Due to the rapid response of nicotine, we used epibatidine in the present 

experiments to clarify the mechanisms involved in the brain nicotinic acetylcholine 

receptor-induced elevation of plasma catecholamines in rats. Epibatidine obtained 

from the skin of the Ecuadoran frog Epipedobates tricolar (Daly et al., 1978) is a 

highly potent nicotinic acethylcholine receptor agonist having broad spectrum activity 

on the nicotinic acethylcholine receptors (Qian et al., 1993; Badio and Daly, 1994; 

Lembeck, 1999). In the present experiment, centrally administered epibatidine (5 and 

10 nmol/animal) dose-dependently elevated plasma levels of noradrenaline and 

adrenaline in rats. A possibility has arisen that the centrally administered 

chloroalkaloid leaks out into the systemic circulation, thereby peripherally activating 

nicotinic receptors located on the sympathetic nerves and adrenal medulla. However, 

peripherally administered epibatidine (5 nmol/animal) had little effect on the plasma 

catecholamines. Furthermore, centrally administered epibatidine (5 nmol/animal)-

induced responses were effectively attenuated by central pretreatment with 

hexamethonium (an antagonist of nicotinic acethylcholine receptors), but not 

influenced by peripheral pretreatment with the same dose of this reagent. These results 

suggest that centrally administered epibatidine acts on the nicotinic acethylcholine 
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receptors in the brain, thereby elevating plasma levels of noradrenaline and adrenaline 

in rats.

Prostanoids (prostaglandins and thromboxane A2) generated by several enzymes, 

including cyclooxygenase, have been demonstrated to act as a neurotransmitter and/or 

neuromodulator in the brain’s actions such as cardiovascular function (Wood et al., 

1993; Zhang et al., 2003) and regulation of hormone secretion (Bernardini et al., 1989; 

Reimsnider and Wood, 2006). Previously, we reported that central pretreatment with 

indomethacin or ketoprofen (inhibitors of cyclooxygenase) attenuated the centrally 

administered CRF-, vasopressin-, histamine-, GLP-1- and bombesin-induced elevation 

of plasma noradrenaline and adrenaline (Okada et al., 2003; Shimizu et al., 2006; Arai 

et al., 2008; Lu et al., 2008), suggesting the involvement of the brain prostanoids in 

these substances-induced elevation of plasma catecholamines in rats. In the present 

study, central pretreatment with indomethacin effectively attenuated the elevation of 

plasma noradrenaline and adrenaline induced by centrally administered epibatidine. 

The result also suggests the involvement of brain prostanoids in the epibatidine-

induced elevation of plasma catecholamines in rats.

Plasma adrenaline is mainly secreted from adrenaline-containing cells in the 

adrenal medulla, whereas plasma noradrenaline reflects not only the release from 

sympathetic nerves but also the secretion from noradrenaline-containing cells in the 

adrenal medulla (Edwards et al., 1996; Suzuki and Kachi, 1996; Vollmer et al., 2000; 

Yamaguchi-Shima, et al., 2007). We previously reported that centrally administered 

prostaglandin E2 (but not prostaglandin D2, I2 and F2alpha) elevates plasma 

noradrenaline from sympathetic nerves by activation of the brain prostanoid EP3

receptors in rats (Yokotani et al., 1995, 2005; Murakami et al. 2002) and also that 
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microinjection of thromboxane A2 mimetic into the hypothalamic paraventricular 

nucleus predominantly elevates plasma adrenaline by activation of the brain prostanoid 

TP receptors in rats (Murakami et al., 2002). Furthermore, the brain prostanoid TP

receptors are involved in the centrally administered vasopressin-, bombesin- and 

histamine-induced secretion of both noradrenaline and adrenaline from noradrenaline-

and adrenaline-containing cells in the adrenal medulla and in the centrally

administered CRF- and GLP-1-induced secretion of adrenaline from adrenaline-

containing cells in the adrenal medulla in rats (Okada et al., 2003; Yokotani et al., 

2005; Shimizu et al., 2006; Arai et al., 2008). The activation of brain TP receptors has 

been shown to elevate blood pressure and plasma catecholamines in hemorrhaged

hypotensive rats (Yalcin and Savci, 2004). In the present study, central pretreatment 

with (+)-S-145 [an antagonist of prostanoid TP receptors (Hanasaki and Arita 1988; 

Mihara et al. 1989)] effectively attenuated the elevation of plasma noradrenaline and 

adrenaline induced by centrally administered epibatidine. The result suggests a 

possibility that centrally administered epibatidine elicits the secretion of both 

noradrenaline and adrenaline from the adrenal medulla by brain prostanoid TP 

receptor-mediated mechanisms in rats.

To further explore the source of noradrenaline and adrenaline elicited by 

centrally administered epibatidine, we examined the effect of acute bilateral 

adrenalectomy on the epibatidine-induced elevation of plasma catecholamines.

Previously, we reported that bilateral adrenalectomy abolished the elevation of plasma 

noradrenaline and adrenaline induced by centrally administered vasopressin, bombesin

and histamine (Okada et al., 2003; Yokotani et al., 2005; Shimizu et al., 2006). In the 

present study, bilateral adrenalectomy abolished the centrally administered epibatidine-
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induced elevation of both plasma noradrenaline and adrenaline. The result suggests 

that centrally administered epibatidine elicits the secretion of both noradrenaline and 

adrenaline from the adrenal medulla in rats.

In the central nervous system, nicotinic acethylcholine receptors are

preferentially located at presynaptic terminals, thereby regulating the release of many 

neurotransmitters (Wonnacott, 1997; Vizi and Lendvai, 1999; Gotti and Clementi, 

2004; Sher et al., 2004) such as glutamate in the rat prefrontal cortex, striatal 

synaptosomes and nucleus tractus solitarius (Marchi et al., 2002; Zhao et al., 2007; 

Dickinson et al., 2008). Glutamate excites the hypothalamic paraventricular nucleus 

(Boudaba et al., 1997; Li et al., 2004), which has been considered to be the control 

center of the sympatho-adrenomedullary outflow (Swanson and Sawchenko, 1980; 

Jansen et al., 1995; Kenny et al., 2003). Previously, we reported that N-methyl-D-

aspartate applied into this nucleus using dialysis probe elicited concomitant overflow 

of hypothalamic thromboxane B2 (a stable metabolite of thromboxane A2) with the 

elevation of plasma noradrenaline and adrenaline in rats (Okada et al., 2000). These 

lines of evidence suggest a possibility that activation of the hypothalamic nicotinic 

acethylcholine receptors evokes the secretion of noradrenaline and adrenaline from 

adrenal medulla by glutamate- and thromboxane A2-mediated mechanisms in rats.

Further experiments are required to explore the mechanisms for central nicotinic 

acethylcholine receptors to activate the central adrenomedullary outflow in rats.  

In summary, we demonstrated here that centrally administered epibatidine 

activates central nicotinic acethylcholine receptors, thereby evoking the secretion of 

noradrenaline and adrenaline from the adrenal medulla by brain cyclooxygenase- and 

prostanoid TP receptor-mediated mechanisms in rats.
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Legends to figures

Fig. 1. Effect of centrally and peripherally administered epibatidine on the plasma 

levels of catecholamines. ∆Noradrenaline and ∆Adrenaline: increments of 

noradrenaline and adrenaline above the basal level. Each point represents the 

mean±S.E.M. (A) Arrow indicates the administration of vehicle (DMF 2.5 µl/animal, 

i.c.v.) or epibatidine (1, 5 and 10 nmol/animal, i.c.v.). *Significantly different from the 

vehicle-treated group with the Bonferroni method [noradrenaline; at 5 min, 

F(3,14)=20.78, P<0.017; at 10 min, F(3,14)=13.07, P<0.017: adrenaline; at 5 min, 

F(3,14)=6.30, P<0.017; at 10 min, F(3,14)=7.75, P<0.017; at 30 min, F(3,14)=4.53, 

P<0.017; at 60 min, F(3,13)=5.85, P<0.017]. The actual values for noradrenaline and 

adrenaline at 0 min were 186±22 and 211±35 pg/ml (n=18), respectively. (B) Arrow 

indicates the administration of vehicle (0.5% DMF/saline 500 µl/animal, i.v.) or 

epibatidine (5 nmol/animal, i.v.). *Significantly different from the vehicle-treated 

group with Welch’s t-test [adrenaline; at 30 min, F(3,5)=32.3, P<0.05]. The actual 

values for noradrenaline and adrenaline at 0 min were 146±9 and 176±48 pg/ml (n=10), 

respectively.

Fig. 2. Effect of hexamethonium (an antagonist of nicotinic acethylcholine receptors) 

on the centrally administered epibatidine-induced elevation of plasma catecholamines.

Arrows indicate the administrations of hexamethonium/vehicle-1 and 

epibatidine/vehicle-2. Other conditions were the same as those of Fig. 1. (A)

Hexamethonium (0.9 and 1.8 µmol/animal) or vehicle-1 (5 µl saline/animal) was i.c.v. 

administered 30 min before the administration of epibatidine (5 nmol/animal, i.c.v.) or 
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vehicle-2 (2.5 µl DMF/animal, i.c.v.). *Significantly different from vehicle-1- and 

epibatidine-treated group with the Bonferroni method [noradrenaline; at 5 min, 

F(2,13)=8.07, P<0.025; at 10 min, F(2,13)=6.05, P<0.025: adrenaline; at 5 min, 

F(2,13)=33.87, P<0.025; at 10 min, F(2,13)=49.78, P<0.025; at 30 min, 

F(2,13)=11.34, P<0.025; at 60 min, F(2,13)=10.70, P<0.025]. The actual values for 

noradrenaline and adrenaline at 0 min were 299±62 and 304±107 pg/ml in the vehicle-

1-pretreated group (n=9); 419±88 and 606±134 pg/ml in the hexamethonium (0.9 

µmol/animal)-pretreated group (n=6); 223±22 and 316±64 pg/ml in the 

hexamethonium (1.8 µmol/animal)-pretreated group (n=9), respectively. (B) 

Hexamethonium (1.8 µmol/animal) or vehicle-1 (500 µl saline/animal) was i.v. 

administered 30 min before the administration of epibatidine (5 nmol/animal, i.c.v.) or 

vehicle-2 (2.5 µl DMF/animal, i.c.v.). The actual values for noradrenaline and 

adrenaline at 0 min were 376±83 and 290±62 pg/ml in the vehicle-1-pretreated group 

(n=10); 164±15 and 328±40 pg/ml in the hexamethonium (1.8 µmol/animal)-

pretreated group (n=10), respectively. 

Fig. 3. Effect of indomethacin (an inhibitor of cyclooxygenase) on the centrally 

administered epibatidine-induced elevation of plasma catecholamines. Arrows indicate 

the administration of indomethacin/vehicle-1 and epibatidine/vehicle-2. Indomethacin

(0.6 and 1.2 µmol/animal) or vehicle-1 (5 µl saline/animal) was i.c.v. administered 30 

min before the administration of epibatidine (5 nmol/animal, i.c.v.) or vehicle-2 (2.5 µl 

DMF/animal, i.c.v.). Other conditions were the same as those of Figs. 1 and 2. 

*Significantly different from vehicle-1- and epibatidine-treated group with the 

Bonferroni method [noradrenaline; at 5 min, F(2,11)=7.76, P<0.025; at 10 min, 
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F(2,11)=5.17, P<0.025: adrenaline; at 5 min, F(2,11)=10.17, P<0.025; at 10 min, 

F(2,11)=3.94, P<0.025]. Vehicle-1-treated groups were the same as those of Fig. 2A. 

The actual values for noradrenaline and adrenaline at 0 min were 193±69 and 418±63 

pg/ml in the indomethacin (0.6 µmol/animal)-pretreated group (n=4); 208±32 and 

299±59 pg/ml in the indomethacin (1.2 µmol/animal)-pretreated group (n=9), 

respectively.  

Fig. 4. Effect of (+)-S-145 (an antagonist of prostanoid TP receptors) on the centrally 

administered epibatidine-induced elevation of plasma catecholamines. Arrows indicate 

the administration of (+)-S-145/vehicle-1 and epibatidine/vehicle-2. (+)-S-145 (0.6 and 

1.3 µmol/animal) or vehicle-1 (5 µl saline/animal) was i.c.v. administered 60 min 

before the administration of epibatidine (5 nmol/animal, i.c.v.) or vehicle-2 (2.5 µl 

DMF/animal, i.c.v.). Other conditions were the same as those in Figs. 1-3.  

*Significantly different from the vehicle-1- and epibatidine-treated group with the 

Bonferroni method [noradrenaline; at 5 min, F(2,12)=9.95, P<0.025; at 10 min, 

F(2,12)=5.28, P<0.025: adrenaline; at 5 min, F(2,12)=10.54, P<0.025; at 10 min, 

F(2,12)=4.69, P<0.025]. The actual values for noradrenaline and adrenaline at 0 min 

were 276±56 and 179±49 pg/ml in the vehicle-1-pretreated group (n=10); 246±45 and 

145±27 pg/ml in the (+)-S-145 (0.6 µmol/animal)-pretreated group (n=5); 303±39 and 

161±24 pg/ml in the (+)-S-145 (1.3 µmol/animal)-pretreated group (n=9), respectively.  

Fig. 5. Effect of acute bilateral adrenalectomy on the centrally administered

epibatidine-induced elevation of plasma catecholamines. Acute bilateral adrenalectomy 

[plus hydrocortisone (5 mg/kg/animal, i.m.)] or sham-operation (plus 200 µl
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saline/animal, i.m.) was done 3 h before the application of epibatidine (5 nmol/animal, 

i.c.v.). Arrow indicates the administration of epibatidine. Other conditions were the 

same as those in Figs. 1-4. *Significantly different from the sham-operated group with 

an unpaired Student’s t-test or Welch’s t-test [noradrenaline; at 5 min, F(4,4)=6.51, 

P<0.05; at 10 min, F(4,4)=5.92, P<0.05; at 30 min, F(4,4)=1.36, P<0.05; at 60 min, 

F(4,4)=2.13, P<0.05: adrenaline; at 5 min, F(4,4)=50.97, P<0.05; at 10 min, 

F(4,4)=2.88, P<0.05]. The actual values for noradrenaline and adrenaline at 0 min 

were 172±21 and 129±36 pg/ml in sham-operated group (n=5) and 191±50 and 51±28 

pg/ml in bilateral adrenalectomized group (n=5), respectively.
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