STABLE EXTENDIBILITY OF VECTOR BUNDLES OVER LENS SPACES MOD 3 AND THE STABLE SPLITTING PROBLEM

YUTAKA HEMMI, TEIICHI KOBAYASHI, AND KAZUSHI KOMATSU

Abstract

Let $L^{n}(3)$ denote the $(2 n+1)$-dimensional standard lens space mod 3. In this paper, we study the conditions for a given real vector bundle over $L^{n}(3)$ to be stably extendible to $L^{m}(3)$ for every $m \geq n$, and establish the formula on the power $\zeta^{k}=\zeta \otimes \cdots \otimes \zeta$ (k-fold) of a real vector bundle ζ over $L^{n}(3)$. Moreover, we answer the stable splitting problem for real vector bundles over $L^{n}(3)$ by means of arithmetic conditions.

1. Introduction

Throughout this paper, by a vector bundle we mean a real vector bundle. Let X be a space and A its subspace. A t-dimensional vector bundle ζ over A is said to be stably extendible (respectively extendible) to X if and only if there is a t-dimensional vector bundle over X whose restriction to A is stably equivalent (respectively equivalent) to ζ (cf. [2, p.273-p.274], [9, p.20]). We remark that even if ζ is stably equivalent to a bundle which is stably extendible to X, ζ is not necessarily stably extendible. For simplicity, we use the same letter for a vector bundle and its equivalence class.

For a positive integer $n, C P^{n}$ denote the complex projective space of complex dimension n, and let $L^{n}(3)$ denote the standard lens space $\bmod 3$ of dimension $2 n+1$. Let $\pi: L^{n}(3) \rightarrow C P^{n}$ be the natural projection, and let μ_{n} stand for the canonical complex line bundle over $C P^{n}$. We define $\eta_{n}=\pi^{*} \mu_{n}$ (cf. [8, p.25]) and call η_{n} the canonical complex line bundle over $L^{n}(3)$. Let $r: K\left(L^{n}(3)\right) \rightarrow K O\left(L^{n}(3)\right)$ be the real restriction. Then we also use the same letter η_{n} for $r \eta_{n}$.

We study the problem of determining conditions for a given vector bundle over $L^{n}(3)$ to be stably extendible (respectively extendible) to $L^{m}(3)$ for every $m \geq n$. For any vector bundle ζ over $L^{n}(3)$, there is an

[^0]integer s such that ζ is stably equivalent to $s \eta_{n}$ (cf. [3, Theorem 2]).
For a real number x, let $[x]$ denote the largest integer k with $k \leq x$.
As for the problem, we have
Theorem 1. Let ζ be a t-dimensional vector bundle over $L^{n}(3)$ which is stably equivalent to $s \eta_{n}$, where s is an integer. Then ζ is stably extendible to $L^{m}(3)$ for every $m \geq n$ if and only if there is an integer a satisfying
$$
-s \leq a 3^{[n / 2]} \leq t / 2-s
$$

The corresponding result for vector bundles over the real projective n-space $R P^{n}$ has been obtained in [1, Theorem A].

Let $\tau_{C}\left(C P^{n}\right)$ denote the complex tangent bundle of $C P^{n}$. Then, as a corollary to Theorem 1, we have
Corollary 2. $r \pi^{*} \tau_{C}\left(C P^{n}\right)$ is stably extendible to $L^{m}(3)$ for every $m \geq$ n if and only if $n=1,2$ or 3 .

For the power of any vector bundle over $L^{n}(3)$, we establish the explicit formula in $K O\left(L^{n}(3)\right)$ as follows.

Theorem 3. Let ζ be a t-dimensional vector bundle over $L^{n}(3)$ which is stably equivalent to $s \eta_{n}$, where s is an integer. Then, in $K O\left(L^{n}(3)\right)$, the k-fold power $\zeta^{k}=\zeta \otimes \cdots \otimes \zeta$ of ζ is given by

$$
\zeta^{k}=f(k) \eta_{n}+t^{k}-2 f(k),
$$

where $f(k)=s \sum_{0 \leq i \leq k-1}(t-3 s)^{i} t^{k-1-i}$.
Using Theorem 3, we have
Corollary 4. In $K O\left(L^{n}(3)\right)$, the k-fold power $\tau\left(L^{n}(3)\right)^{k}$ of $\tau\left(L^{n}(3)\right)$ is given by

$$
\begin{equation*}
\tau\left(L^{n}(3)\right)^{k}=g(k) \eta_{n}+(2 n+1)^{k}-2 g(k) \tag{*}
\end{equation*}
$$

where $g(k)=(n+1) \sum_{0 \leq i \leq k-1}(-n-2)^{i}(2 n+1)^{k-1-i}$.
The existence of a function $g(k)$ satisfying the equality $(*)$ has been proved in [4, Lemma 4.1].

Combining Theorem 1 with Theorem 3, we have
Theorem 5. Let ζ be a t-dimensional vector bundle over $L^{n}(3)$ which is stably equivalent to $s \eta_{n}$, where s is an integer, and let $\zeta^{k}=\zeta \otimes \cdots \otimes \zeta$ be the k-fold power of ζ. Then ζ^{k} is stably extendible to $L^{m}(3)$ for every $m \geq n$ if and only if there is an integer a satisfying

$$
-f(k) \leq a 3^{[n / 2]} \leq t^{k} / 2-f(k)
$$

where $f(k)$ is the function given in Theorem 3.

Corollary 6. The k-fold power $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{k}$ of $r \pi^{*} \tau_{C}\left(C P^{n}\right)$ is extendible to $L^{m}(3)$ for every $m \geq n$ if $k \geq 2$.

Finally, we study the problem of determining conditions for a given t-dimensional vector bundle over $L^{n}(3)$ to be stably equivalent to a sum of $[t / 2]$ 2-dimensional vector bundles over $L^{n}(3)$. This problem is the stable splitting problem for vector bundles over $L^{n}(3)$.

Combining Theorem 1 with Theorem 4 of [5], we answer the problem by arithmetic conditions as follows.
Theorem 7. Let ζ be a t-dimensional vector bundle over $L^{n}(3)$ which is stably equivalent to $s \eta_{n}$, where s is an integer. Then ζ is stably equivalent to a sum of $[t / 2] 2$-dimensional vector bundles over $L^{n}(3)$ if and only if there is an integer a satisfying

$$
-s \leq a 3^{[n / 2]} \leq t / 2-s
$$

The corresponding result for vector bundles over the real projective n-space $R P^{n}$ has been obtained in [1, Theorem E].

This paper is arranged as follows. We prove Theorem 1 and Corollary 2 in $\S 2$, Theorem 3 and Corollary 4 in $\S 3$, and Theorem 5 and Corollary 6 in $\S 4$. In $\S 5$ we study the stable splitting problem for vector bundles over $L^{n}(3)$ and obtain Theorem 7.

2. Proofs of Theorem 1 and Corollary 2

Let \mathbb{Z} / p denote the cyclic group of order p, where p is an integer >1. The reduced Grothendieck ring $\widetilde{K O}\left(L^{n}(3)\right)$ is determined as follows.
Theorem 2.1 (cf. [3, Theorem 2]).

$$
\widetilde{K O}\left(L^{n}(3)\right)=\mathbb{Z} /\left(3^{[n / 2]}\right)+G,
$$

where $G=\mathbb{Z} / 2$ for $n \equiv 0 \bmod 4$ and $=0$ otherwise. The direct summand $\mathbb{Z} /\left(3^{[n / 2]}\right)$ is generated by $\eta_{n}-2$. Moreover, the ring structure is given by the equalities

$$
\begin{aligned}
& \left(\eta_{n}-2\right)^{2}=-3\left(\eta_{n}-2\right), \text { namely }\left(\eta_{n}\right)^{2}=\eta_{n}+2, \\
& \text { and }\left(\eta_{n}-2\right)^{[n / 2]+1}=0 .
\end{aligned}
$$

As for stable non-extendibility of a vector bundle over $L^{n}(3)$, we recall the following result.
Theorem 2.2 (cf. [6, Theorem 3.1]). Let α be a t-dimensional vector bundle over $L^{n}(3)$. Assume that there is a positive integer l such that α is stably equivalent to a sum of $[t / 2]+l$ non-trivial 2 -dimensional vector bundles and $[t / 2]+l<3^{[n / 2]}$. Then $n<2[t / 2]+2 l$ and α is not stably extendible to $L^{m}(3)$ for every $m \geq 2[t / 2]+2 l$.

Proof of Theorem 1. First, we prove the "if" part. By the assumption we have $\zeta=s \eta_{n}+t-2 s$ in $K O\left(L^{n}(3)\right)$. By Theorem 2.1 the equality $a 3^{[n / 2]}\left(\eta_{n}-2\right)=0$ holds in $\widetilde{K O}\left(L^{n}(3)\right)$ for any integer a. Hence we obtain the equality

$$
\zeta=\left(a 3^{[n / 2]}+s\right) \eta_{n}+t-2 s-2 a 3^{[n / 2]}
$$

in $K O\left(L^{n}(3)\right)$. Set $X=a 3^{[n / 2]}+s$ and $Y=t-2 s-2 a 3^{[n / 2]}$. Then we may take a so that $X \geq 0$ and $Y \geq 0$ by the assumption, and we have $\zeta=X \eta_{n}+Y$ in $K O\left(L^{n}(3)\right)$. Since the Whitney sum $X \eta_{n} \oplus Y$ is extendible to $L^{m}(3)$ for every $m \geq n, \zeta$ is stably extendible to $L^{m}(3)$ for every $m \geq n$.

For the "only if" part, we prove the contraposition. Assume that every integer a satisfies

$$
a 3^{[n / 2]}<-s \quad \text { or } \quad[t / 2]-s<a 3^{[n / 2]} .
$$

Let A be the maximum integer such that $A 3^{[n / 2]}<-s$. Then, since $(A+1) 3^{[n / 2]} \geq-s$, we have $[t / 2]-s<(A+1) 3^{[n / 2]}$ by the assumption. Put $\alpha=\zeta$ and $l=(A+1) 3^{[n / 2]}-[t / 2]+s$ in Theorem 2.2. Then $l>0,[t / 2]+l=(A+1) 3^{[n / 2]}+s<3^{[n / 2]}$ and $([t / 2]+l) \eta_{n}=\{(A+$ 1) $\left.3^{[n / 2]}+s\right\} \eta_{n}=s \eta_{n}+2(A+1) 3^{[n / 2]}$ by Theorem 2.1. Hence we see that $n<2(A+1) 3^{[n / 2]}+2 s$ and that ζ is not stably extendible to $L^{m}(3)$ for every $m \geq 2(A+1) 3^{[n / 2]}+2 s$.

Proof of Corollay 2. Clearly $r \pi^{*} \tau_{C}\left(C P^{n}\right)$ is of dimension $2 n$. Moreover,

$$
r \pi^{*} \tau_{C}\left(C P^{n}\right) \oplus 2=r \pi^{*}\left(\tau_{C}\left(C P^{n}\right) \oplus 1\right)=(n+1) \eta_{n}
$$

(cf. [8, p.169-p.170], [3, p.145]). Put $\zeta=r \pi^{*} \tau_{C}\left(C P^{n}\right), t=2 n$ and $s=n+1$ in Theorem 1. Then we have the result because, for $n>0$, there is an integer a satisfying $-n-1 \leq a 3^{[n / 2]} \leq-1$ if and only if $n=1,2$ or 3 .

3. Proofs of Theorem 3 and Corollary 4

Proof of Theorem 3. We prove the equality by induction on k. By the assumption $\zeta=s \eta_{n}+t-2 s$ in $K O\left(L^{n}(3)\right)$. Hence the equality clearly holds for $k=1$.

Assume that the equality holds for $k \geq 1$. Then, by the inductive assumption,

$$
\begin{aligned}
\zeta^{k+1}= & \zeta \otimes \zeta^{k} \\
= & \left(s \eta_{n}+t-2 s\right)\left(f(k) \eta_{n}+t^{k}-2 f(k)\right) \\
= & s f(k)\left(\eta_{n}\right)^{2}+\left\{s\left(t^{k}-2 f(k)\right)+(t-2 s) f(k)\right\} \eta_{n} \\
& \quad+(t-2 s)\left(t^{k}-2 f(k)\right) \\
= & \left\{s f(k)+s t^{k}-2 s f(k)+t f(k)-2 s f(k)\right\} \eta_{n} \\
& \quad+2 s f(k)+t^{k+1}-2 t f(k)-2 s t^{k}+4 s f(k) \\
= & \left\{s t^{k}+(t-3 s) f(k)\right\} \eta_{n}+t^{k+1}-2\left\{s t^{k}+(t-3 s) f(k)\right\}
\end{aligned}
$$

since $\left(\eta_{n}\right)^{2}=\eta_{n}+2$ by Theorem 2.1. On the other hand,

$$
\begin{gathered}
s t^{k}+(t-3 s) f(k)=s t^{k}+s \sum_{0 \leq i \leq k-1}(t-3 s)^{i+1} t^{k-1-i} \\
=s \sum_{0 \leq i \leq k}(t-3 s)^{i} t^{k-i}=f(k+1)
\end{gathered}
$$

Hence the desired equality holds for $k+1$.
Proof of Corollary 4. $\tau\left(L^{n}(3)\right)$ is of dimension $2 n+1$. Moreover,

$$
\tau\left(L^{n}(3)\right) \oplus 1=(n+1) \eta_{n} \quad(\text { cf. }[3, \text { p.145] })
$$

Putting $\zeta=\tau\left(L^{n}(3)\right), t=2 n+1$ and $s=n+1$ in Theorem 3, we have the result.

We study the properties of $g(k)$ defined in Corollary 4.
Lemma 3.1. For $k \geq 1$,

$$
g(k+1)=(n+1)(2 n+1)^{k}-(n+2) g(k) .
$$

Proof. By the definition of $g(k)$, we have

$$
\begin{aligned}
-(n+2) g(k) & =(n+1) \sum_{0 \leq i \leq k-1}(-n-2)^{i+1}(2 n+1)^{k-1-i} \\
& =(n+1) \sum_{0 \leq i \leq k}(-n-2)^{i}(2 n+1)^{k-i}-(n+1)(2 n+1)^{k} \\
& =g(k+1)-(n+1)(2 n+1)^{k} .
\end{aligned}
$$

Lemma 3.2. Let n and k be integers with $n \geq 3$ and $k \geq 2$. Then the following inequalities hold.

$$
(2 n+1)^{k-1}<g(k)<(2 n+1)^{k} / 2 .
$$

Proof. For any fixed $n \geq 3$, we prove the inequalities by induction on k.

Let $k=2$. Then $g(2)=(n+1)(n-1)=n^{2}-1$. Clearly the inequalities $2 n+1<n^{2}-1<(2 n+1)^{2} / 2$ hold for $n \geq 3$.

Assume that the desired inequalities hold for $k \geq 2$. Then, by Lemma 3.1 and by the inductive assumption,

$$
\begin{aligned}
g(k & +1)-(2 n+1)^{k} \\
& =(n+1)(2 n+1)^{k}-(n+2) g(k)-(2 n+1)^{k} \\
& >(n+1)(2 n+1)^{k}-(n+2)(2 n+1)^{k} / 2-(2 n+1)^{k} \\
& =(n / 2-1)(2 n+1)^{k}>0 \text { for } n \geq 3,
\end{aligned}
$$

and

$$
\begin{aligned}
(2 n & +1)^{k+1} / 2-g(k+1) \\
& =(2 n+1)^{k+1} / 2-(n+1)(2 n+1)^{k}+(n+2) g(k) \\
& >(2 n+1)^{k+1} / 2-(n+1)(2 n+1)^{k}+(n+2)(2 n+1)^{k-1} \\
\quad & =3(2 n+1)^{k-1} / 2>0 .
\end{aligned}
$$

Hence the desired inequalities hold for $k+1$.
The existence of the function $g(k)$ satisfying the equality of Lemma 3.1 and the inequalities of Lemma 3.2 has been proved in [4, Lemmas 4.1 and 4.2].

4. Proofs of Theorem 5 and Corollary 6

Proof of Theorem 5. ζ^{k} is of dimension t^{k} and, by Theorem $3, \zeta^{k}$ is stably equivalent to $f(k) \eta_{n}$. Hence the result follows from Theorem 1.

As applications of Theorem 5, we have the following two results.
Lemma 4.1. $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{2}$ is extendible to $L^{m}(3)$ for every $m \geq n$. Proof. $r \pi^{*} \tau_{C}\left(C P^{n}\right)$ is of dimension $2 n$ and is stably equivalent to ($n+$ 1) η_{n} by the proof of Corollary 2 . Hence, by the definition of $f(k)$ in Theorem $3, f(2)=(n+1)(n-3)$. Then, for every positive integer n, there are integers a satisfying

$$
-f(2) \leq a 3^{[n / 2]} \leq(2 n)^{2} / 2-f(2)
$$

For example, $a=4$ for $n=1, a=1$ for $n=2$ and $a=0$ for $n \geq 3$. Hence $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{2}$ is stably extendible to $L^{m}(3)$ for every $m \geq n$ by Theorem 5 .

Since $\operatorname{dim}\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{2}=(2 n)^{2}>2 n+1=\operatorname{dim} L^{n}(3)$ for $n \geq 1$, $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{2}$ is extendible to $L^{m}(3)$ for every $m \geq n$ (cf. [7, Theorem 2.2]).

Lemma 4.2. $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{3}$ is extendible to $L^{m}(3)$ for every $m \geq n$.
Proof. As in the proof of Lemma 4.1, $f(3)=3(n+1)\left(n^{2}+3\right)$. Then, for every positive integer n, there are integers a satisfying

$$
-f(3) \leq a 3^{[n / 2]} \leq(2 n)^{3} / 2-f(3)
$$

For example, $a=-24$ for $n=1, a=-21$ for $n=2, a=-48$ for $n=3, a=-31$ for $n=4, a=-56$ for $n=5$ and $a=0$ for $n \geq 6$. Hence $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{3}$ is stably extendible to $L^{m}(3)$ for every $m \geq n$ by Theorem 5 .

Since $\operatorname{dim}\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{3}=(2 n)^{3}>2 n+1=\operatorname{dim} L^{n}(3)$ for $n \geq 1$, $\left(r \pi^{*} \tau_{C}\left(C P^{n}\right)\right)^{3}$ is extendible to $L^{m}(3)$ for every $m \geq n$ (cf. [7, Theorem 2.2]).

Proof of Corollary 6. If both two vector bundles α and β over $A(\subset X)$ are extendible to X, then so is $\alpha \otimes \beta$. Put $\zeta=r \pi^{*} \tau_{C}\left(C P^{n}\right)$ and let $s \geq 1$. Then, since $\zeta^{2 s}=\left(\zeta^{2}\right)^{s}$ and $\zeta^{2 s+1}=\left(\zeta^{2}\right)^{s-1} \otimes \zeta^{3}, \zeta^{k}$ is extendible to $L^{m}(3)$ for every $m \geq n$ if $k \geq 2$ by Lemmas 4.1 and 4.2.

The following theorem is proved in [4]. We prove it here again using Theorem 5.

Theorem 4.3 (cf. [4, Theorem 4]). $\tau\left(L^{n}(3)\right)^{k}$ is extendible to $L^{m}(3)$ for every $m \geq n$ if $k \geq 2$.

Proof. Since $\tau\left(L^{1}(3)\right)$ is trivial and since $\tau\left(L^{2}(3)\right)$ is stably trivial (cf. [4, p.407]), $\tau\left(L^{1}(3)\right)^{k}$ is trivial and $\tau\left(L^{2}(3)\right)^{k}$ is stably trivial if $k \geq 1$. Hence $\tau\left(L^{1}(3)\right)^{k}$ is extendible to $L^{m}(3)$ for every $m \geq 1$ and $\tau\left(L^{2}(3)\right)^{k}$ is stably extendible to $L^{m}(3)$ for every $m \geq 2$ if $k \geq 1$.

Suppose that $n \geq 3$. In Theorem 5, putting $\zeta=\tau\left(L^{n}(3)\right)$, $s=n+1$, $t=2 n+1$ and $f(k)=g(k)$, we see that $\tau\left(L^{n}(3)\right)^{k}$ is stably extendible to $L^{m}(3)$ for every $m \geq n$ if and only if there is an integer a satisfying

$$
-g(k) \leq a 3^{[n / 2]} \leq(2 n+1)^{k} / 2-g(k) .
$$

But, by Lemma 3.2, $a=0$ satisfies the inequalities above for $n \geq 3$ and $k \geq 2$. Hence $\tau\left(L^{n}(3)\right)^{k}$ is stably extendible to $L^{m}(3)$ for every $m \geq n$ if $k \geq 2$.

Since $\operatorname{dim} \tau\left(L^{n}(3)\right)^{k}=(2 n+1)^{k}>2 n+1=\operatorname{dim} L^{n}(3)$ for $k \geq 2$, $\tau\left(L^{n}(3)\right)^{k}$ is extendible to $L^{m}(3)$ for every $m \geq n$ by [7, Theorem 2.2].

5. The stable splitting Problem for vector bundles

Let ζ be a t-dimensional vector bundle over a space X. We consider two types of the stable splitting problem. The first type is the problem of determining conditions for ζ to be stably equivalent to a sum of t line bundles over X, and the second type is the problem of determining conditions for ζ to be stably equivalent to a sum of $[t / 2]$ 2-dimensional vector bundles over X.

Let p be a prime. Then, for a positive integer i, we denote by $\nu_{p}(i)$ the exponent of p in the prime power decomposition of i. In [5, p.53], for a positive integer k, a number $\beta_{p}(k)$ is defined as follows.

$$
\beta_{p}(k)=\min \left\{i-\nu_{p}(i)-1 \mid k<i\right\} .
$$

If $p=2$, then $\beta_{2}(k)$ is equal to $\beta(k)$ which was defined in $[9, \mathrm{p} .20]$ by R. L. E. Schwarzenberger.

For $X=L^{n}(3)$, the second type of the problem has been answered in the following theorem.

Theorem 5.1 (cf. [5, Theorem 4]). Let ζ be a t-dimensional vector bundle over $L^{n}(3)$, where $t>1$. Then the following four conditions are equivalent one another.
(i) ζ is stably extendible to $L^{m}(3)$ for every $m \geq n$.
(ii) ζ is stably extendible to $L^{m}(3)$, where $m \geq n$, $m \geq 2 t$ and $[m / 2] \geq[n / 2]+\beta_{3}([t / 2])$.
(iii) ζ is stably extendible to $L^{m}(3)$, where $m=2\left(3^{[(n+1) / 2]}-1\right)$.
(iv) ζ is stably equivalent to a sum of $[t / 2] 2$-dimensional vector bundles over $L^{n}(3)$.

Combining Theorem 5.1 with Theorem 1, we have
Theorem 5.2. Let ζ be a t-dimensional vector bundle over $L^{n}(3)$, where $t>1$. Then the four conditions (i)~(iv) in Theorem 5.1 and the condition (v) below are equivalent one another.
(v) There is an integer a satisfying

$$
\begin{array}{r}
-s \leq a 3^{[n / 2]} \leq t / 2-s \\
\text { where } \zeta=s \eta_{n}+t-2 s \text { in } K O\left(L^{n}(3)\right)
\end{array}
$$

Theorem 7 is contained in Theorem 5.2.
For the first type of the problem, a similar result for $X=R P^{n}$ is obtained (cf. [1, Theorems 4.1 and 4.2]).

References

[1] Y. Hemmi and T Kobayashi, Stable extendibility of vector bundles over RP ${ }^{n}$ and the stable splitting problem, Topology Appl. 156 (2008), 268-273, doi: 10.1016/j.topol.2008.07.006.
[2] M. Imaoka and K. Kuwana, Stably extendible vector bundles over the quaternionic projective spaces, Hiroshima Math. J. 29 (1999), 273-279.
[3] T. Kambe, The structure of K_{Λ}-rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966), 135-146.
[4] T. Kobayashi and K. Komatsu, Extendibility and stable extendibility of vector bundles over lens spaces mod 3, Hiroshima Math. J. 35 (2005), 403-412.
[5] T. Kobayashi and T. Yoshida, A generalization of the Schwarzenberger number and stably extendible vector bundles over lens spaces, Kochi J. Math. 2 (2007), 51-62.
[6] T. Kobayashi, H. Maki, and T. Yoshida, Stably extendible vector bundles over the real projective spaces and the lens spaces, Hiroshima Math. J. 29 (1999), 631-638.
[7] _ Extendibility and stable extendibility of normal bundles associated to immersions of real projective spaces, Osaka J. Math. 39 (2002), 315-324.
[8] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. Math. Studies, 76, Princeton Univ. Press, Princeton, New Jersey, 1974.
[9] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2) 17 (1966), 19-21.

Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan

E-mail address: hemmi@kochi-u.ac.jp
Asakura-ki 292-21, Kochi 780-8066, Japan
E-mail address: kteiichi@lime.ocn.ne.jp
Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan

E-mail address: komatsu@math.kochi-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55R50; secondary 55N15.
 Key words and phrases. Stable extendibility, extendibility, lens space, vector bundle, power of vector bundle, tangent bundle, power of tangent bundle, KO theory.

