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Abstract. Let Ln(3) denote the (2n + 1)-dimensional standard
lens space mod 3. In this paper, we study the conditions for a given
real vector bundle over Ln(3) to be stably extendible to Lm(3) for
every m ≥ n, and establish the formula on the power ζk = ζ⊗· · ·⊗ζ
(k-fold) of a real vector bundle ζ over Ln(3). Moreover, we answer
the stable splitting problem for real vector bundles over Ln(3) by
means of arithmetic conditions.

1. Introduction

Throughout this paper, by a vector bundle we mean a real vector
bundle. Let X be a space and A its subspace. A t-dimensional vector
bundle ζ over A is said to be stably extendible (respectively extendible)
to X if and only if there is a t-dimensional vector bundle over X whose
restriction to A is stably equivalent (respectively equivalent) to ζ (cf.
[2, p.273-p.274], [9, p.20]). We remark that even if ζ is stably equivalent
to a bundle which is stably extendible to X, ζ is not necessarily stably
extendible. For simplicity, we use the same letter for a vector bundle
and its equivalence class.

For a positive integer n, CP n denote the complex projective space
of complex dimension n, and let Ln(3) denote the standard lens space
mod 3 of dimension 2n + 1. Let π : Ln(3) → CP n be the natural
projection, and let µn stand for the canonical complex line bundle over
CP n. We define ηn = π∗µn (cf. [8, p.25]) and call ηn the canonical
complex line bundle over Ln(3). Let r : K(Ln(3)) → KO(Ln(3)) be
the real restriction. Then we also use the same letter ηn for rηn.

We study the problem of determining conditions for a given vector
bundle over Ln(3) to be stably extendible (respectively extendible) to
Lm(3) for every m ≥ n. For any vector bundle ζ over Ln(3), there is an
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integer s such that ζ is stably equivalent to sηn (cf. [3, Theorem 2]).
For a real number x, let [x] denote the largest integer k with k ≤ x.

As for the problem, we have

Theorem 1. Let ζ be a t-dimensional vector bundle over Ln(3) which
is stably equivalent to sηn, where s is an integer. Then ζ is stably
extendible to Lm(3) for every m ≥ n if and only if there is an integer
a satisfying

−s ≤ a3[n/2] ≤ t/2 − s.

The corresponding result for vector bundles over the real projective
n-space RP n has been obtained in [1, Theorem A].

Let τC(CP n) denote the complex tangent bundle of CP n. Then, as
a corollary to Theorem 1, we have

Corollary 2. rπ∗τC(CP n) is stably extendible to Lm(3) for every m ≥
n if and only if n = 1, 2 or 3.

For the power of any vector bundle over Ln(3), we establish the
explicit formula in KO(Ln(3)) as follows.

Theorem 3. Let ζ be a t-dimensional vector bundle over Ln(3) which
is stably equivalent to sηn, where s is an integer. Then, in KO(Ln(3)),
the k-fold power ζk = ζ ⊗ · · · ⊗ ζ of ζ is given by

ζk = f(k)ηn + tk − 2f(k),

where f(k) = s
∑

0≤i≤k−1(t − 3s)itk−1−i.

Using Theorem 3, we have

Corollary 4. In KO(Ln(3)), the k-fold power τ(Ln(3))k of τ(Ln(3))
is given by

(∗) τ(Ln(3))k = g(k)ηn + (2n + 1)k − 2g(k),

where g(k) = (n + 1)
∑

0≤i≤k−1(−n − 2)i(2n + 1)k−1−i.

The existence of a function g(k) satisfying the equality (∗) has been
proved in [4, Lemma 4.1].

Combining Theorem 1 with Theorem 3, we have

Theorem 5. Let ζ be a t-dimensional vector bundle over Ln(3) which
is stably equivalent to sηn, where s is an integer, and let ζk = ζ⊗· · ·⊗ζ
be the k-fold power of ζ. Then ζk is stably extendible to Lm(3) for every
m ≥ n if and only if there is an integer a satisfying

−f(k) ≤ a3[n/2] ≤ tk/2 − f(k),

where f(k) is the function given in Theorem 3.
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Corollary 6. The k-fold power (rπ∗τC(CP n))k of rπ∗τC(CP n) is ex-
tendible to Lm(3) for every m ≥ n if k ≥ 2.

Finally, we study the problem of determining conditions for a given
t-dimensional vector bundle over Ln(3) to be stably equivalent to a
sum of [t/2] 2-dimensional vector bundles over Ln(3). This problem is
the stable splitting problem for vector bundles over Ln(3).

Combining Theorem 1 with Theorem 4 of [5], we answer the problem
by arithmetic conditions as follows.

Theorem 7. Let ζ be a t-dimensional vector bundle over Ln(3) which
is stably equivalent to sηn, where s is an integer. Then ζ is stably
equivalent to a sum of [t/2] 2-dimensional vector bundles over Ln(3) if
and only if there is an integer a satisfying

−s ≤ a3[n/2] ≤ t/2 − s.

The corresponding result for vector bundles over the real projective
n-space RP n has been obtained in [1, Theorem E].

This paper is arranged as follows. We prove Theorem 1 and Corol-
lary 2 in §2, Theorem 3 and Corollary 4 in §3, and Theorem 5 and
Corollary 6 in §4. In §5 we study the stable splitting problem for
vector bundles over Ln(3) and obtain Theorem 7.

2. Proofs of Theorem 1 and Corollary 2

Let Z/p denote the cyclic group of order p, where p is an integer > 1.

The reduced Grothendieck ring K̃O(Ln(3)) is determined as follows.

Theorem 2.1 (cf. [3, Theorem 2]).

K̃O(Ln(3)) = Z/
(
3[n/2]

)
+ G,

where G = Z/2 for n ≡ 0 mod 4 and = 0 otherwise. The direct
summand Z/

(
3[n/2]

)
is generated by ηn−2. Moreover, the ring structure

is given by the equalities

(ηn − 2)2 = −3(ηn − 2), namely (ηn)2 = ηn + 2,

and (ηn − 2)[n/2]+1 = 0.

As for stable non-extendibility of a vector bundle over Ln(3), we
recall the following result.

Theorem 2.2 (cf. [6, Theorem 3.1]). Let α be a t-dimensional vector
bundle over Ln(3). Assume that there is a positive integer l such that
α is stably equivalent to a sum of [t/2] + l non-trivial 2-dimensional
vector bundles and [t/2] + l < 3[n/2]. Then n < 2[t/2] + 2l and α is not
stably extendible to Lm(3) for every m ≥ 2[t/2] + 2l.
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Proof of Theorem 1. First, we prove the “if” part. By the assumption
we have ζ = sηn + t − 2s in KO(Ln(3)). By Theorem 2.1 the equality

a3[n/2](ηn − 2) = 0 holds in K̃O(Ln(3)) for any integer a. Hence we
obtain the equality

ζ = (a3[n/2] + s)ηn + t − 2s − 2a3[n/2]

in KO(Ln(3)). Set X = a3[n/2] + s and Y = t − 2s − 2a3[n/2]. Then
we may take a so that X ≥ 0 and Y ≥ 0 by the assumption, and we
have ζ = Xηn + Y in KO(Ln(3)). Since the Whitney sum Xηn ⊕ Y is
extendible to Lm(3) for every m ≥ n, ζ is stably extendible to Lm(3)
for every m ≥ n.

For the “only if” part, we prove the contraposition. Assume that
every integer a satisfies

a3[n/2] < −s or [t/2] − s < a3[n/2].

Let A be the maximum integer such that A3[n/2] < −s. Then, since
(A+1)3[n/2] ≥ −s, we have [t/2]−s < (A+1)3[n/2] by the assumption.
Put α = ζ and l = (A + 1)3[n/2] − [t/2] + s in Theorem 2.2. Then
l > 0, [t/2] + l = (A + 1)3[n/2] + s < 3[n/2] and ([t/2] + l)ηn = {(A +
1)3[n/2]+s}ηn = sηn+2(A+1)3[n/2] by Theorem 2.1. Hence we see that
n < 2(A+1)3[n/2] +2s and that ζ is not stably extendible to Lm(3) for
every m ≥ 2(A + 1)3[n/2] + 2s. ¤

Proof of Corollay 2. Clearly rπ∗τC(CP n) is of dimension 2n. More-
over,

rπ∗τC(CP n) ⊕ 2 = rπ∗(τC(CP n) ⊕ 1) = (n + 1)ηn

(cf. [8, p.169-p.170], [3, p.145]). Put ζ = rπ∗τC(CP n), t = 2n and
s = n + 1 in Theorem 1. Then we have the result because, for n > 0,
there is an integer a satisfying −n − 1 ≤ a3[n/2] ≤ −1 if and only if
n = 1, 2 or 3. ¤

3. Proofs of Theorem 3 and Corollary 4

Proof of Theorem 3. We prove the equality by induction on k. By the
assumption ζ = sηn + t− 2s in KO(Ln(3)). Hence the equality clearly
holds for k = 1.
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Assume that the equality holds for k ≥ 1. Then, by the inductive
assumption,

ζk+1 = ζ ⊗ ζk

= (sηn + t − 2s)(f(k)ηn + tk − 2f(k))

= sf(k)(ηn)2 + {s(tk − 2f(k)) + (t − 2s)f(k)}ηn

+ (t − 2s)(tk − 2f(k))

= {sf(k) + stk − 2sf(k) + tf(k) − 2sf(k)}ηn

+ 2sf(k) + tk+1 − 2tf(k) − 2stk + 4sf(k)

= {stk + (t − 3s)f(k)}ηn + tk+1 − 2{stk + (t − 3s)f(k)}
since (ηn)2 = ηn + 2 by Theorem 2.1. On the other hand,

stk + (t − 3s)f(k) = stk + s
∑

0≤i≤k−1

(t − 3s)i+1tk−1−i

= s
∑

0≤i≤k

(t − 3s)itk−i = f(k + 1).

Hence the desired equality holds for k + 1. ¤
Proof of Corollary 4. τ(Ln(3)) is of dimension 2n + 1. Moreover,

τ(Ln(3)) ⊕ 1 = (n + 1)ηn (cf. [3, p.145]).

Putting ζ = τ(Ln(3)), t = 2n+1 and s = n+1 in Theorem 3, we have
the result. ¤

We study the properties of g(k) defined in Corollary 4.

Lemma 3.1. For k ≥ 1,

g(k + 1) = (n + 1)(2n + 1)k − (n + 2)g(k).

Proof. By the definition of g(k), we have

−(n + 2)g(k) = (n + 1)
∑

0≤i≤k−1

(−n − 2)i+1(2n + 1)k−1−i

= (n + 1)
∑

0≤i≤k

(−n − 2)i(2n + 1)k−i − (n + 1)(2n + 1)k

= g(k + 1) − (n + 1)(2n + 1)k.

¤
Lemma 3.2. Let n and k be integers with n ≥ 3 and k ≥ 2. Then the
following inequalities hold.

(2n + 1)k−1 < g(k) < (2n + 1)k/2.
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Proof. For any fixed n ≥ 3, we prove the inequalities by induction on
k.

Let k = 2. Then g(2) = (n + 1)(n − 1) = n2 − 1. Clearly the
inequalities 2n + 1 < n2 − 1 < (2n + 1)2/2 hold for n ≥ 3.

Assume that the desired inequalities hold for k ≥ 2. Then, by
Lemma 3.1 and by the inductive assumption,

g(k + 1) − (2n + 1)k

= (n + 1)(2n + 1)k − (n + 2)g(k) − (2n + 1)k

> (n + 1)(2n + 1)k − (n + 2)(2n + 1)k/2 − (2n + 1)k

= (n/2 − 1)(2n + 1)k > 0 for n ≥ 3,

and

(2n + 1)k+1/2 − g(k + 1)

= (2n + 1)k+1/2 − (n + 1)(2n + 1)k + (n + 2)g(k)

> (2n + 1)k+1/2 − (n + 1)(2n + 1)k + (n + 2)(2n + 1)k−1

= 3(2n + 1)k−1/2 > 0.

Hence the desired inequalities hold for k + 1. ¤
The existence of the function g(k) satisfying the equality of Lemma 3.1

and the inequalities of Lemma 3.2 has been proved in [4, Lemmas 4.1
and 4.2].

4. Proofs of Theorem 5 and Corollary 6

Proof of Theorem 5. ζk is of dimension tk and, by Theorem 3, ζk is
stably equivalent to f(k)ηn. Hence the result follows from Theorem 1.

¤
As applications of Theorem 5, we have the following two results.

Lemma 4.1. (rπ∗τC(CP n))2 is extendible to Lm(3) for every m ≥ n.

Proof. rπ∗τC(CP n) is of dimension 2n and is stably equivalent to (n +
1)ηn by the proof of Corollary 2. Hence, by the definition of f(k) in
Theorem 3, f(2) = (n + 1)(n − 3). Then, for every positive integer n,
there are integers a satisfying

−f(2) ≤ a3[n/2] ≤ (2n)2/2 − f(2).

For example, a = 4 for n = 1, a = 1 for n = 2 and a = 0 for n ≥ 3.
Hence (rπ∗τC(CP n))2 is stably extendible to Lm(3) for every m ≥ n
by Theorem 5.
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Since dim(rπ∗τC(CP n))2 = (2n)2 > 2n + 1 = dim Ln(3) for n ≥ 1,
(rπ∗τC(CP n))2 is extendible to Lm(3) for every m ≥ n (cf. [7, Theorem
2.2]). ¤

Lemma 4.2. (rπ∗τC(CP n))3 is extendible to Lm(3) for every m ≥ n.

Proof. As in the proof of Lemma 4.1, f(3) = 3(n + 1)(n2 + 3). Then,
for every positive integer n, there are integers a satisfying

−f(3) ≤ a3[n/2] ≤ (2n)3/2 − f(3).

For example, a = −24 for n = 1, a = −21 for n = 2, a = −48 for
n = 3, a = −31 for n = 4, a = −56 for n = 5 and a = 0 for n ≥ 6.
Hence (rπ∗τC(CP n))3 is stably extendible to Lm(3) for every m ≥ n
by Theorem 5.

Since dim(rπ∗τC(CP n))3 = (2n)3 > 2n + 1 = dim Ln(3) for n ≥ 1,
(rπ∗τC(CP n))3 is extendible to Lm(3) for every m ≥ n (cf. [7, Theorem
2.2]). ¤

Proof of Corollary 6. If both two vector bundles α and β over A(⊂ X)
are extendible to X, then so is α ⊗ β. Put ζ = rπ∗τC(CP n) and let
s ≥ 1. Then, since ζ2s = (ζ2)s and ζ2s+1 = (ζ2)s−1⊗ζ3, ζk is extendible
to Lm(3) for every m ≥ n if k ≥ 2 by Lemmas 4.1 and 4.2. ¤

The following theorem is proved in [4]. We prove it here again using
Theorem 5.

Theorem 4.3 (cf. [4, Theorem 4]). τ(Ln(3))k is extendible to Lm(3)
for every m ≥ n if k ≥ 2.

Proof. Since τ(L1(3)) is trivial and since τ(L2(3)) is stably trivial (cf.
[4, p.407]), τ(L1(3))k is trivial and τ(L2(3))k is stably trivial if k ≥ 1.
Hence τ(L1(3))k is extendible to Lm(3) for every m ≥ 1 and τ(L2(3))k

is stably extendible to Lm(3) for every m ≥ 2 if k ≥ 1.
Suppose that n ≥ 3. In Theorem 5, putting ζ = τ(Ln(3)), s = n+1,

t = 2n + 1 and f(k) = g(k), we see that τ(Ln(3))k is stably extendible
to Lm(3) for every m ≥ n if and only if there is an integer a satisfying

−g(k) ≤ a3[n/2] ≤ (2n + 1)k/2 − g(k).

But, by Lemma 3.2, a = 0 satisfies the inequalities above for n ≥ 3 and
k ≥ 2. Hence τ(Ln(3))k is stably extendible to Lm(3) for every m ≥ n
if k ≥ 2.

Since dim τ(Ln(3))k = (2n + 1)k > 2n + 1 = dim Ln(3) for k ≥ 2,
τ(Ln(3))k is extendible to Lm(3) for every m ≥ n by [7, Theorem
2.2]. ¤
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5. The stable splitting problem for vector bundles

Let ζ be a t-dimensional vector bundle over a space X. We consider
two types of the stable splitting problem. The first type is the problem
of determining conditions for ζ to be stably equivalent to a sum of t
line bundles over X, and the second type is the problem of determining
conditions for ζ to be stably equivalent to a sum of [t/2] 2-dimensional
vector bundles over X.

Let p be a prime. Then, for a positive integer i, we denote by νp(i)
the exponent of p in the prime power decomposition of i. In [5, p.53],
for a positive integer k, a number βp(k) is defined as follows.

βp(k) = min{ i − νp(i) − 1 | k < i }.

If p = 2, then β2(k) is equal to β(k) which was defined in [9, p.20] by
R. L. E. Schwarzenberger.

For X = Ln(3), the second type of the problem has been answered
in the following theorem.

Theorem 5.1 (cf. [5, Theorem 4]). Let ζ be a t-dimensional vector
bundle over Ln(3), where t > 1. Then the following four conditions are
equivalent one another.

(i) ζ is stably extendible to Lm(3) for every m ≥ n.
(ii) ζ is stably extendible to Lm(3), where m ≥ n, m ≥ 2t and

[m/2] ≥ [n/2] + β3([t/2]).
(iii) ζ is stably extendible to Lm(3), where m = 2(3[(n+1)/2] − 1).
(iv) ζ is stably equivalent to a sum of [t/2] 2-dimensional vector

bundles over Ln(3).

Combining Theorem 5.1 with Theorem 1, we have

Theorem 5.2. Let ζ be a t-dimensional vector bundle over Ln(3),
where t > 1. Then the four conditions (i)∼(iv) in Theorem 5.1 and the
condition (v) below are equivalent one another.

(v) There is an integer a satisfying

−s ≤ a3[n/2] ≤ t/2 − s,

where ζ = sηn + t − 2s in KO(Ln(3)).

Theorem 7 is contained in Theorem 5.2.
For the first type of the problem, a similar result for X = RP n is

obtained (cf. [1, Theorems 4.1 and 4.2]).
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