STABLE EXTENDIBILITY OF VECTOR BUNDLES
OVER LENS SPACES MOD 3 AND THE STABLE
SPLITTING PROBLEM
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ABSTRACT. Let L™(3) denote the (2n + 1)-dimensional standard
lens space mod 3. In this paper, we study the conditions for a given
real vector bundle over L™(3) to be stably extendible to L™(3) for
every m > n, and establish the formula on the power ¢*¥ = (®---®(
(k-fold) of a real vector bundle ¢ over L™(3). Moreover, we answer
the stable splitting problem for real vector bundles over L™(3) by
means of arithmetic conditions.

1. INTRODUCTION

Throughout this paper, by a vector bundle we mean a real vector
bundle. Let X be a space and A its subspace. A t-dimensional vector
bundle ¢ over A is said to be stably extendible (respectively extendible)
to X if and only if there is a t-dimensional vector bundle over X whose
restriction to A is stably equivalent (respectively equivalent) to ¢ (cf.
2, p.273-p.274], [9, p.20]). We remark that even if ( is stably equivalent
to a bundle which is stably extendible to X, ( is not necessarily stably
extendible. For simplicity, we use the same letter for a vector bundle
and its equivalence class.

For a positive integer n, C'P™ denote the complex projective space
of complex dimension n, and let L"(3) denote the standard lens space
mod 3 of dimension 2n + 1. Let 7: L™(3) — CP™ be the natural
projection, and let yu,, stand for the canonical complex line bundle over
CP". We define n, = 7*p, (cf. [8, p.25]) and call 7, the canonical
complex line bundle over L™(3). Let r: K(L"(3)) — KO(L"(3)) be
the real restriction. Then we also use the same letter n, for rn,.

We study the problem of determining conditions for a given vector
bundle over L™(3) to be stably extendible (respectively extendible) to
L™(3) for every m > n. For any vector bundle ¢ over L"(3), there is an
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integer s such that ¢ is stably equivalent to sn, (cf. [3, Theorem 2]).
For a real number z, let [z] denote the largest integer k& with &k < x.
As for the problem, we have

Theorem 1. Let ¢ be a t-dimensional vector bundle over L"™(3) which
15 stably equivalent to sm,, where s is an integer. Then ( is stably
extendible to L™(3) for every m > n if and only if there is an integer
a satisfying
—s < a3l < t/2 —s.

The corresponding result for vector bundles over the real projective
n-space RP™ has been obtained in [1, Theorem A].

Let 7¢(C'P™) denote the complex tangent bundle of C'P™. Then, as
a corollary to Theorem 1, we have

Corollary 2. rr*7¢(CP") is stably extendible to L™ (3) for every m >
n if and only if n =1, 2 or 3.

For the power of any vector bundle over L™(3), we establish the
explicit formula in KO(L™(3)) as follows.

Theorem 3. Let ¢ be a t-dimensional vector bundle over L"™(3) which
is stably equivalent to sn,, where s is an integer. Then, in KO(L™(3)),
the k-fold power (¥ =( ® ---® ( of € is given by

¢ = Fky + £ — 2£(F),

where f(k) = s gcicpy(t — 3s)tF 170

Using Theorem 3, we have
Corollary 4. In KO(L"(3)), the k-fold power 7(L"(3))* of 7(L"(3))
is given by
(%) T(L"(3))" = g(k)na + (2n+ 1)* — 2g(k),
where g(k) = (n+1) Y cicp_1(—n — 2)¢(2n + 1)F-1-1

The existence of a function g(k) satisfying the equality (x) has been

proved in [4, Lemma 4.1].
Combining Theorem 1 with Theorem 3, we have

Theorem 5. Let ¢ be a t-dimensional vector bundle over L"™(3) which
is stably equivalent to sn,, where s is an integer, and let (¥ = (®---®(
be the k-fold power of (. Then C* is stably extendible to L™ (3) for every
m > n if and only if there is an integer a satisfying

—f(k) < a3l <tk /2 — f(k),

where f(k) is the function given in Theorem 3.
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Corollary 6. The k-fold power (rm*17c(CP™)* of ra*re(CP™) is ea-
tendible to L™(3) for every m >n if k > 2.

Finally, we study the problem of determining conditions for a given
t-dimensional vector bundle over L"(3) to be stably equivalent to a
sum of [t/2] 2-dimensional vector bundles over L"(3). This problem is
the stable splitting problem for vector bundles over L"(3).

Combining Theorem 1 with Theorem 4 of [5], we answer the problem
by arithmetic conditions as follows.

Theorem 7. Let ¢ be a t-dimensional vector bundle over L™(3) which
15 stably equivalent to sm,, where s is an integer. Then ( s stably
equivalent to a sum of [t/2] 2-dimensional vector bundles over L"™(3) if
and only if there is an integer a satisfying

—s < a3l < t/2 —s.

The corresponding result for vector bundles over the real projective
n-space RP™ has been obtained in [1, Theorem E].

This paper is arranged as follows. We prove Theorem 1 and Corol-
lary 2 in §2, Theorem 3 and Corollary 4 in §3, and Theorem 5 and
Corollary 6 in §4. In §5 we study the stable splitting problem for
vector bundles over L™(3) and obtain Theorem 7.

2. PROOFS OF THEOREM 1 AND COROLLARY 2

Let Z/p denote the cyclic group of order p, where p is an integer > 1.
The reduced Grothendieck ring KO(L"(3)) is determined as follows.

Theorem 2.1 (cf. [3, Theorem 2]).
KO(L"(3)) = 2/ (3"%) + @,

where G = Z/2 for n = 0 mod 4 and = 0 otherwise. The direct
summand 7./ (3["/2]) 15 generated by n,—2. Moreover, the ring structure
15 given by the equalities

(7 — 2)* = =3(n, — 2), namely (n,)* = n, + 2,
and (n, — 2)IV+1 = 0.

As for stable non-extendibility of a vector bundle over L"(3), we
recall the following result.

Theorem 2.2 (cf. [6, Theorem 3.1)). Let o be a t-dimensional vector
bundle over L™(3). Assume that there is a positive integer | such that
a is stably equivalent to a sum of [t/2] + | non-trivial 2-dimensional
vector bundles and [t/2] +1 < 32, Then n < 2[t/2] + 2l and « is not
stably extendible to L™ (3) for every m > 2[t/2] + 2I.
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Proof of Theorem 1. First, we prove the “if” part. By the assumption
we have ( = sn, +t — 2s in KO(L"(3)). By Theorem 2.1 the equality

a3l"/?(n, —2) = 0 holds in KO(L"(3)) for any integer a. Hence we
obtain the equality

¢ = (a3 + s)n, +t — 25 — 2a3"/

in KO(L"(3)). Set X = a3 + s and Y =t — 2s — 2a3"/4. Then
we may take a so that X > 0 and Y > 0 by the assumption, and we
have ( = X1, +Y in KO(L"(3)). Since the Whitney sum Xn, @Y is
extendible to L™(3) for every m > n, ( is stably extendible to L™(3)
for every m > n.

For the “only if” part, we prove the contraposition. Assume that
every integer a satisfies

a3? < —s or [t/2] —s < a3/,

Let A be the maximum integer such that A3"/2 < —s. Then, since
(A+1)3"2 > —5 we have [t/2] —s < (A+1)3["/2 by the assumption.
Put o = ¢ and | = (A + 1)3"2 — [t/2] + s in Theorem 2.2. Then
1>0,[t/2] +1 = (A+1)32 5 < 302 and ([t/2] + 1)n, = {(A+
1)37/2 4 sp,, = sn, +2(A+1)3"/2 by Theorem 2.1. Hence we see that
n < 2(A+1)3"2 425 and that ¢ is not stably extendible to L™ (3) for
every m > 2(A + 1)3/2 4+ 2s. O

Proof of Corollay 2. Clearly rn*1o(CP™) is of dimension 2n. More-
over,

ri*1a(CP") @2 =rn*(1c(CP") & 1) = (n+ 1)n,

(cf. [8, p.169-p.170], [3, p.145]). Put ¢ = ra*7c(CP"), t = 2n and
s =n+1in Theorem 1. Then we have the result because, for n > 0,
there is an integer a satisfying —n — 1 < a3[*/? < —1 if and only if
n=1, 2or3. ]

3. PROOFS OF THEOREM 3 AND COROLLARY 4

Proof of Theorem 3. We prove the equality by induction on k. By the
assumption ¢ = sn, +t —2s in KO(L"(3)). Hence the equality clearly
holds for k£ = 1.
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Assume that the equality holds for £ > 1. Then, by the inductive
assumption,

Ck+1 — C ® Ck
= (81 + 1 — 28)(f(k)nn +t* = 2 (k)
= 5f(k)(m)* + {s(t* = 2f (k)) + (¢t — 25) f (K)}1pm
+ (t — 28)(tF — 2f(k))
= {sf(k) + st* = 2sf (k) +tf(k) — 25 (k) }n,
+ 25 f (k) +t5 — 2t f (k) — 2st* + 4dsf(k)
= {st" 4+ (t — 35) f(k)}np, + t°TF — 2{st* + (t — 3s) f(k)}
since (9,)? = 1, + 2 by Theorem 2.1. On the other hand,
st (t—3s)f(k) =st* +5 D (t—3s) A1

0<i<k—1
=5 Z (t —3s)t" " = f(k+1).
0<i<k
Hence the desired equality holds for k& + 1. O

Proof of Corollary 4. 7(L"(3)) is of dimension 2n + 1. Moreover,
T(L"(3)® 1= (n+ 1), (cf. [3, p.145]).

Putting ¢ = 7(L™(3)), t =2n+1 and s = n+ 1 in Theorem 3, we have
the result. O

We study the properties of g(k) defined in Corollary 4.
Lemma 3.1. For k > 1,
glk+1)=(n+1)2n+1)" — (n+2)g(k).
Proof. By the definition of g(k), we have
—(n+2)g(k) =(n+1) Z (—n —2)™(2n 4 1)1
0<i<k—1

=(n+1) > (-n—2\2n+1)"" = (n+1)2n+1)"
— gk +1) = (n+ 1)2n + D)F.
O

Lemma 3.2. Let n and k be integers with n > 3 and k > 2. Then the
following inequalities hold.

(2n 4+ 1) < g(k) < (2n + 1)F)2.
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Proof. For any fixed n > 3, we prove the inequalities by induction on
k.

Let k = 2. Then g(2) = (n+ 1)(n — 1) = n? — 1. Clearly the
inequalities 2n + 1 < n? — 1 < (2n 4+ 1)?/2 hold for n > 3.

Assume that the desired inequalities hold for £ > 2. Then, by
Lemma 3.1 and by the inductive assumption,

gk +1) — (2n 4+ 1)
=(n+1)2n+1)" — (n+2)g(k) — (2n + 1)
>n+1)2n+ 1D —(n+2)2n+1)%/2— (2n+ 1)*
= (n/2 - 1)(2n 4+ 1)" > 0 for n > 3,

and

(2n 4+ 1)"1/2 — g(k + 1)
= (2n+ 1)"/2 — (n+1)(2n + 1)* + (n + 2)g(k)
>2n+ D)2 —(n+ D@2+ 1D 4+ (n+2)(2n + 1)F!
=3(2n+1)"1/2>0.
Hence the desired inequalities hold for k£ + 1. U

The existence of the function g(k) satisfying the equality of Lemma 3.1
and the inequalities of Lemma 3.2 has been proved in [4, Lemmas 4.1
and 4.2].

4. PROOFS OF THEOREM 5 AND COROLLARY 6

Proof of Theorem 5. ¢* is of dimension t* and, by Theorem 3, (¥ is
stably equivalent to f(k)n,. Hence the result follows from Theorem 1.
O

As applications of Theorem 5, we have the following two results.
Lemma 4.1. (r7*1c(CP"))? is extendible to L™(3) for every m > n.

Proof. rm*71o(CP™) is of dimension 2n and is stably equivalent to (n +
1)n, by the proof of Corollary 2. Hence, by the definition of f(k) in
Theorem 3, f(2) = (n+ 1)(n — 3). Then, for every positive integer n,
there are integers a satisfying

—f(2) < a3 < (2n)%/2 - f(2).

For example, a =4 forn =1,a =1 forn =2 and a = 0 for n > 3.
Hence (rm*7c(CP™))? is stably extendible to L™(3) for every m > n
by Theorem 5.
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Since dim(rm*7¢(CP"))* = (2n)? > 2n + 1 = dim L"(3) for n > 1,
(rm*1o(C'P™))? is extendible to L™ (3) for every m > n (cf. [7, Theorem
2.2]). O

Lemma 4.2. (r7*7c(CP™))? is extendible to L™ (3) for every m > n.

Proof. As in the proof of Lemma 4.1, f(3) = 3(n + 1)(n? + 3). Then,
for every positive integer n, there are integers a satisfying

—f(3) < a3 < (2n)*/2 - f(3).

For example, a = —24 forn = 1, a = =21 for n = 2, a = —48 for
n=3a=—-31lforn=4, a=—-56forn=>5and a =0 forn > 6.
Hence (rm*7o(CP™))? is stably extendible to L™(3) for every m > n
by Theorem 5.

Since dim(r7*7c(CP™))? = (2n)* > 2n + 1 = dim L"(3) for n > 1,
(rm*1c(C'P™))? is extendible to L™ (3) for every m > n (cf. [7, Theorem
2.2]). 0

Proof of Corollary 6. If both two vector bundles o and 3 over A(C X)
are extendible to X, then so is a ® f. Put ( = ra*7¢(CP") and let
s > 1. Then, since (% = (¢?)® and ¢***1 = (¢?)*'®@(3, ¢* is extendible
to L™(3) for every m > n if k > 2 by Lemmas 4.1 and 4.2. O

The following theorem is proved in [4]. We prove it here again using
Theorem 5.

Theorem 4.3 (cf. [4, Theorem 4]). 7(L"(3))* is extendible to L™(3)
for everym >n if k > 2.

Proof. Since 7(L'(3)) is trivial and since 7(L?(3)) is stably trivial (cf.
[4, p.407]), T7(LY(3))¥ is trivial and 7(L?(3))* is stably trivial if k > 1.
Hence 7(L'(3))* is extendible to L™(3) for every m > 1 and 7(L?(3))*
is stably extendible to L™(3) for every m > 2 if k > 1.

Suppose that n > 3. In Theorem 5, putting ( = 7(L"(3)), s = n+1,
t=2n+1and f(k) = g(k), we see that 7(L"(3))* is stably extendible
to L™(3) for every m > n if and only if there is an integer a satisfying

—g(k) < a3l™? < (2n + 1)F/2 — g(k).

But, by Lemma 3.2, a = 0 satisfies the inequalities above for n > 3 and
k > 2. Hence 7(L™(3))" is stably extendible to L™(3) for every m > n
if k> 2.

Since dim7(L"(3))* = (2n + 1)* > 2n + 1 = dim L*(3) for k > 2,
7(L"(3))* is extendible to L™(3) for every m > n by [7, Theorem
2.2]. O
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5. THE STABLE SPLITTING PROBLEM FOR VECTOR BUNDLES

Let ¢ be a t-dimensional vector bundle over a space X. We consider
two types of the stable splitting problem. The first type is the problem
of determining conditions for { to be stably equivalent to a sum of ¢
line bundles over X, and the second type is the problem of determining
conditions for ¢ to be stably equivalent to a sum of [t/2] 2-dimensional
vector bundles over X.

Let p be a prime. Then, for a positive integer ¢, we denote by v,()
the exponent of p in the prime power decomposition of i. In [5, p.53],
for a positive integer k, a number ,(k) is defined as follows.

Bp(k) =min{i —v,(i) — 1|k <i}.

If p = 2, then fy(k) is equal to G(k) which was defined in [9, p.20] by
R. L. E. Schwarzenberger.

For X = L"(3), the second type of the problem has been answered
in the following theorem.

Theorem 5.1 (cf. [5, Theorem 4]). Let ¢ be a t-dimensional vector
bundle over L™(3), where t > 1. Then the following four conditions are
equivalent one another.

(i) ¢ is stably extendible to L™(3) for every m > n.
(i) ¢ is stably extendible to L™(3), where m > n, m > 2t and
[m/2] = [n/2] + Bs([t/2]).
(iil) ¢ is stably extendible to L™(3), where m = 2(3[(+D/2 — 1)
(iv) ¢ is stably equivalent to a sum of [t/2] 2-dimensional vector
bundles over L™(3).

Combining Theorem 5.1 with Theorem 1, we have

Theorem 5.2. Let ( be a t-dimensional vector bundle over L"(3),
where t > 1. Then the four conditions (i)~(iv) in Theorem 5.1 and the
condition (v) below are equivalent one another.

(v) There is an integer a satisfying
—s < a3l < t/2 — s,
where ( = sn, +t — 2s in KO(L"(3)).

Theorem 7 is contained in Theorem 5.2.
For the first type of the problem, a similar result for X = RP" is
obtained (cf. [1, Theorems 4.1 and 4.2]).
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