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We investigate chiral phase transition of the first order in the quark matter. Using the Nambu-Jona-
Lasinio model, an equation of state of the quark matter which is similar to the van der Waals’s one is
obtained. Moreover the specific heat and the compressibility are calculated. It is shown that they are
enhanced in the symmetry broken phase, in particular, diverge near the tricritical point.
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I. INTRODUCTION

Thermodynamics of the quark matter have been dis-
cussed recently by many authors [1–3]. One of the reasons
comes from the possibility of the quark-gluon plasma
(QGP), which lies in the chirally symmetric phase. It is
expected that the QGP may be realized in high energy
heavy-ion collisions at CERN Large Hadron Collider and
at the Brookhaven National Laboratory Relativistic Heavy-
Ion Collider. On the other hand the usual hadronic matter is
in the chiral symmetry broken phase. Therefore it is of
fundamental interest in the study of the chiral phase tran-
sition in the quark matter.

The chiral dynamics of the quark matter has been
studied mainly in the framework of the Nambu-Jona-
Lasinio (NJL) model or QCD-like theory [4–12].
According to them, the phase transition is second order
in the three-flavor quark matter. On the other hand, it is
second order at low density and first order at high density in
the two-flavor case. The critical point between them is
called a tricritical point [13–18]. This behavior of the
phase diagram was first shown by the NJL model [4] and
then confirmed by the QCD-like model [5–12]. It is very
interesting for us to have the first order transition. The
present author has calculated the latent heat appeared in
the transition and pointed out that it may be used as a signal
of the chiral transition [19].

The classical liquid-gas phase transition is the typical
first order one. There exists large fluctuation near the
tricritical point. This phenomenon is known as ‘‘opales-
cence’’ first observed by T. Andrews in the 19th century
[20]. It is generally expected that there is also large fluc-
tuation in the quark matter and some physical quantities
are enhanced near the point. These may be other signals of
QGP. It is the purpose of this paper to calculate such
quantities, the specific heat, and the compressibility and
investigate their behaviors near the critical temperature, in
particular, the tricritical point. In the course of this work we
will obtain an equation of state of the quark matter, which
is similar to the van der Waals’s one.
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The outline of the paper is as follows: In the next section,
we introduce the NJL model and calculate thermodynamic
potential with the use of the mean field approximation. In
Sec. III, the specific heat and the compressibility are
derived from the potential. The numerical calculation of
the thermodynamic quantities is carried out in Sec. IV.
Section V is devoted to discussions and summary with
the help of the Landau theory of the phase transition.

II. THERMODYNAMIC POTENTIAL

In this section we will derive the thermodynamic poten-
tial of the quark matter in the frame of the NJL model [21].
Our quark matter is supposed that the number of flavors is
Nf � 2 and that of colors is Nc � 3. It is known that there
is the chiral transition of the first order and the tricritical
point exists in this case [4]. The Lagrangian density of the
NJL model is defined by

L � � �i@�m� � g�� �  �2 � � � i	5
 �2�; (1)

where m is a current u- and d-quark mass and neglected in
this paper for the convenience (chiral limit). The g in this
equation denotes a coupling constant of the quark-quark
interaction and 
 is the Pauli matrix for flavors. This
Lagrangian leads to the Hamiltonian density,

H � � ��i	 � r �m� � g�� �  �2 � � � i	5
 �2�: (2)

Here we introduce two mean fields: �1 
 h �  i and
�2 
 h � 	0 i. The expectation values represent thermody-
namic averages and determined from the variational prin-
ciple later. Then we obtain the linearized Hamiltonian
density,

H mf � � ��i	 � r �M�
g
Nc
�2	0� �G�2

1

�
g

2Nc
�2

2; (3)

where G 
 �4Nc � 1�g=4Nc is the renormalized coupling
constant and M is the effective quark mass defined by

M � m� 2Gh �  i: (4)

Now let us introduce the thermodynamic potential
��V; T;�� of our system by (� 
 1=kT)
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� � �kT logTr exp����Hmf ��N�� 
 V!�T;��; (5)

where V and T represent the volume and the temperature of
our system, respectively, and � is the chemical potential.
The mean field Hamiltonian describes an assembly of free
quasiparticles so that we can easily calculate the thermo-
dynamic potential. Substituting Eq. (3) into this equation,
we get

! � E0 �
NcNf
�2 T

Z �

0
p2�log�1� exp���E��r��

� log�1� exp���E��r���dp; (6)

where a cutoff constant � is introduced as usual and the
first term E0 is given by

E0 
 G�2
1 �

g
2Nc

�2
2 �

NcNf
�2

Z �

0
p2Edp: (7)

The quasiparticle energy and the renormalized chemical

potential are defined by E �
�������������������
p2 �M2

p
and �r �

�� �g=Nc��2, respectively. This potential ! plays a cen-
tral role in the following discussion.

Lastly we must determine the mean fields�1 and�2. We
take the variational principle of the thermodynamic poten-
tial: @!=@�1 � @!=@�2 � 0. These equations lead to
self-consistency ones,8<
:
�1 � �

MNcNf
�2

R
�
0
p2

E �1� n�p; �r� �m�p; �r��dp;

�2 �
NcNf
�2

R
�
0
p2

E �n�p; �r� �m�p; �r��dp:

(8)

The first equation is nothing but the gap equation in the
BCS theory and the second determines the renormalized
chemical potential.
III. SPECIFIC HEAT AND COMPRESSIBILITY

Now let us calculate thermodynamic quantities of the
quark matter in order to study the critical behavior near the
chiral phase transition. The specific heat and the com-
pressibility reflect the large fluctuation because they are
proportional to the fluctuations of the entropy and the
density, respectively. The thermodynamic quantities are
classified into two groups: extensive state quantities and
intensive ones. As for the extensive state quantities, we use
those per unit volume in this paper. For example, we
consider rather the number density than the volume itself
and discuss the thermodynamic potential per unit volume
and so on.

The differential of the thermodynamic potential reads to

d! � �SdT �  d�; (9)

where S and  denote the entropy density and the number
density, respectively. These quantities have discontinuities
at the critical temperature of the transition [19]. From
Eq. (9), they are represented by
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S � �
NcNf
�2

Z �

0
p2�n log�n� � �1� n� log�1� n�

�m log�m� � �1�m� log�1�m��dp; (10)

 � �
NcNf
�2

Z �

0
p2�n�m�dp: (11)

This expression for the density is nothing but the mean
field �2, which is a natural result from the definition. At
this stage it should be noticed that we can obtain an
equation of state for the quark matter. The pressure of the
quark matter is given by p � �!�T;��. On the other hand
Eq. (11) shows that  is a function of T and �. From these
equations we get the equation of state: p � F�T;  �.

Next let us consider the second derivatives of the ther-
modynamic potential, the specific heat and the compressi-
bility. These quantities reflecting the fluctuation are
supposed to be sensitive to the phase transition. They are
defined by

C � T
�
@S
@T

	
�
; (12)

# �
1

 

�
@ 
@p

	
T
: (13)

However this expression for # is not useful for our calcu-
lation. It should be transformed into more tractable form.
Using the formula of the Jacobian, it is rewritten to

�
@ 
@p

	
T;�

�
@� ; T�
@�p; T�

�

@� ;T�
@��;T�
@�p;T�
@��;T�

�

�
@ 
@�

	
T�

@p
@�

	
T

�
1

 

�
@ 
@�

	
T
;

with the use of  � �@!=@� � @p=@�. From this trans-
formation, the compressibility turns out

# � �

�
@ �1

@�

	
T
: (14)

We will calculate these equations numerically and discuss
the chiral phase transition in the next section.
IV. NUMERICAL RESULTS

In order to calculate the thermodynamic quantities con-
sidered in the previous section, the first task is to solve the
self-consistency Eqs. (8) with given values � and T. The
parameters of the NJL model are the same as those used in
Ref. [4]: g � 5:074
 10�6 MeV�2, � � 631 MeV, m �
0. As shown in the paper, the qualitative features of the
phase transition do not depend on them. Then we have two
solutions: M � 0 and M � M1 > 0. The former corre-
sponds to the chiral symmetric phase and the latter to the
broken phase. An example with � � 0:31 GeV (first order
transition) is illustrated as a function of T in Fig. 1. The
third solution appears in the range T2 < T < T1. It is,
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FIG. 1. The effective mass M as a function of the temperature
at � � 0:31 GeV. The critical temperatures Tc, T1, and T2 are
defined in the text.
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however, always unstable so that we do not consider it. The
stable state is realized by the solution with lower thermo-
dynamic potential: The other solution corresponds to a
metastable state. When the two solutions give the same
value for the thermodynamic potential (degenerate), the
phase transition occurs at the critical temperature T � Tc.
Thus we have a phase diagram shown in Fig. 2 where the
critical temperature Tc is drawn as a function of the chemi-
cal potential [22–24]. The broken phase (hadron) is real-
ized in the lower temperature (T < Tc) and the symmetric
phase (QGP) in the higher one (T > Tc). The tricritical
point is denoted by Ttcp. It should be noted that the solution
M1 with the symmetry breaking is metastable even in the
symmetric phase above Tc. This situation is known as
supercooling. This metastable state exists in the range Tc <
T < T1 as shown by the broken line in Fig. 1. On the other
hand, the solution M � 0 is also metastable in the broken
phase (T2 < T < Tc). Hence the domain enclosed by the
two dotted lines (T2 < T < T1) has metastable states so
FIG. 2. The critical temperature Tc as a function of the chemi-
cal potential �. The tricritical temperature is denoted by Ttcp.
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that there would be large fluctuations in this domain. We
call this domain transition region hereafter.

This circumstance is understood more clearly by study-
ing the equation of state; the pressure is illustrated as a
function of the inverse density as shown in Fig. 3 with T �
30 MeV. At once it is noticed that this equation of state is
similar to the van der Waals’s one. This behavior is based
on the fact that an interaction between two particles in
many-particle systems is attractive at large distance and
repulsive at short distance. In the present case, our system
has both the attractive force (quark-quark interaction) and
the repulsive one due to the Pauli principle. Hence our
equation of state in the Fig. 3 is natural. The straight line
AB where the chemical potential is constant is the Maxwell
constraction. If the hadron phase is regarded as ‘‘liquid’’
and the quark gas phase as ‘‘gas,’’ the present phase
transition is opposite to that in the usual liquid-gas tran-
sition. The state ‘‘A’’ (and outside) corresponds to the
hadron (liquid) phase and the state ‘‘B’’ (and inside) to
the quark gas phase. The segment AC (BD) of the curve
represents metastable state, which is called superheated
liquid (supercooled gas). The remaining segment CD de-
notes unstable state. Therefore the quark matter jumps
from A to B across the critical temperature Tc. This be-
havior is also understood by the solutions of the gap Eq. (8)
as illustrated in Fig. 4. Here three solutions are drawn as a
function of � where four points (A, B, C, and D) corre-
spond to those in Fig. 3.

Moreover we show the equations of state at three typical
temperatures in Fig. 5. The equation of state at T �
100 MeV is monotonic since the phase transition is second
order and the others are first order. The equation of state at
T � 0 has been already calculated in Ref. [25].

Next let us calculate the specific heat and compressibil-
ity by difference approximation of Eqs. (12) and (14),
respectively. They are shown in Figs. 6 and 7 as a function
of T at three chemical potentials: The case of � � 0:25
corresponds to the phase transition of the second order and
the others to that of the first order.
FIG. 3. The equation of state of the quark matter at T �
30 MeV.
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FIG. 6. The specific heat of the quark matter as a function of
the temperature at � � 0:25; 0:29; 0:31 GeV.FIG. 4. The effective mass M as a function of the chemical

potential at T � 30 MeV.
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The black circles in these figures represent the calcu-
lated values in the broken phase and the white ones in the
symmetric one. Generally the specific heat in the broken
phase is larger than that in the symmetric phase as well as
the compressibility. The gray circles denote those in the
metastable states. Although these are not realized within
the mean field approximation, they may play an important
role in the actual process. In fact soft modes will grow up in
this transition region [21–26]. Namely, the thermodynamic
quantities of second derivatives are divergent near the
temperature T1, in particular, the tricritical point. These
properties may be used as a signal of the existence of the
phase transition of the quark matter [27].

V. DISCUSSIONS AND SUMMARY

It has been shown that there appears the large enhance-
ment of the specific heat and the compressibility near the
tricritical point. These behaviors are due to the large fluc-
tuation of the order parameter. Here we will clarify them in
the context of the Landau mean field theory of phase
transitions [17].
FIG. 5. The equation of states at T � 100; 60; 30 MeV.
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To this end we take �1 as an order parameter of the
chiral phase transition and investigate the thermodynamic
potential (6) as a function of �1. The other mean field �2 is
regarded as a function of �1 through Eq. (8). If �1 is
denoted by &, the thermodynamic potential is expanded
as a power series of & as follows:

! � !0 � A&2 � B&4 �D&6 � � � � ; (15)

where A, B, and D are functions of T and �. Moreover the
D is assumed to be always positive because of the stability
of our system.

The order parameter should be determined by the sta-
tionary condition: �@!=@&� � 2&�A� 2B&2 � 3D&4� �
0. This equation has three solutions,8<

:
&0 
 0;

&2
� 
 �B�

��������������
B2�3AD

p

3D ;
(16)

where &� > 0 is assumed. Here our discussion is separated
into two cases according to the sign of B: (a) B> 0 and (b)
B< 0. In the case (a), the transition is second order. The
FIG. 7. The compressibility of the quark matter as a function
of the temperature at � � 0:25; 0:29; 0:31 GeV. The values at
� � 0:31 GeV are divided by 10.
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stationary point with the minimum energy becomes & �
&0 (for A> 0) or & � &� (for A < 0). Since the critical
phenomena of the second order transition is well known,
we will not consider this case hereafter. In a later discus-
sion we will restrict ourselves to the other case (b) that is
the first order transition.

Then we have the following solutions depending on A,
B, and D or (T, �):8>><

>>:
�1� �&0�; &� �for A< 0�

�2� &0; &�; �&�� �for 0< A< B2=3D�

�3� &0 �for A > B2=3D�:

(17)

The solution in the parentheses means an unstable solution.
In the case (2) which is called the transition region, one of
two extrema gives a stable state and the other a metastable
state. The condition of the degeneracy [!�&0� � !�&�� or
A � B2=4D] determines the critical temperature Tc. The
T1 (T2) is determined by A � B2=3D (A � 0). These cir-
cumstances are confirmed in the previous section by cal-
culating our self-consistency Eqs. (8) directly. An example
is shown in Fig. 1 (� � 0:31 GeV). It is seen that the
above case (2) is realized in 26< T < 47 MeV.

Next we discuss the critical behavior of the specific heat
near the temperature T1. Since the condition of T � T1 is
given by A � B2=3D, we can expand as A� �B2=3D� �
a�T � T1� where a is a positive function of �. Then the
thermodynamic potential becomes

! � !0 �
1

27D2 �X� B��X� B�2; (18)

where X 

����������������������
B2 � 3AD

p
. Differentiating with respect to T,

we get

S � S0 �
a
3D

�
B�

����������������������������
3aD�T1 � T�

q 	
;

C � C0 �
a

����������
3aD

p

6D
T�T1 � T��1=2:

(19)

It is seen that the entropy has finite gap across the tem-
perature T1. This generates the latent heat as discussed in
Ref. [19]. On the other hand, the specific heat diverges at
T1, which is consistent with the numerical result (Fig. 6).
As for the compressibility, we pay attention to the equation
of state drawn in Fig. 3. Noting that the compressibility can
be rewritten as # � � �@ �1=@P�, it is related to the
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derivative of the equation of state. From the curve we see
the compressibility is enhanced in the metastable phase, in
particular, divergent at T � T1, which is also seen in Fig. 7.

The divergence of the specific heat and the compressi-
bility also can be explained by using the thermodynamic
potential. The temperature T1 is defined by B2 � 3AD,
which gives

! � !0 � �A� B&2
��&

2
� �D&6

� � !0 �D&6
�: (20)
This cancellation of the second and fourth order terms
leads to the large fluctuation of the order parameter.

In conclusion, we have developed the chiral phase tran-
sition of the first order in the framework of the NJL model.
The quark matter discussed in this paper contains six kinds
(two-flavor and three-color) of quark. Each of them has the
same particle number, which means that our state is color
singlet but not electric neutral. If this theory is applied to
the bulk system, the charge neutrality condition would be
important. Our calculation has been carried out using the
mean field approximation, which does not take into ac-
count the pairing correlation, color superconductivity [28–
31]. This effect may be important for the high density and
low temperature region and one of the future problems
[32–34]. We have obtained the equation of state of the
quark matter, which is similar to the van der Waals’s
equation. Moreover the specific heat and the compressibil-
ity have been calculated. They are enhanced in the broken
phase and are divergent in the metastable state, in particu-
lar, at the tricritical point. It may be expected that this
singular behavior appears in the expanding (cooling) pro-
cess of the QGP generated in the high energy heavy-ion
collisions. This expansion is like to the big bang and the
inflationary expansion of the early universe [35–37]. This
singular behavior near the tricritical point may become a
precursor of the chiral phase transition.
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