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Attractive boson and the gas-liquid condensation
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Gas-liquid condensation~GLC! in the attractive uniform Bose gas is studied by applying the idea of the
Yang-Lee zeros to its grand partition function. The followings are proved:~i! When the temperature decreases
and the density increases, the GLC occurs prior to the Bose-Einstein condensation~BEC!, ~ii ! an explosive
growth of the Bose-statistical coherence to a macroscopic scale occurs simultaneously with the GLC, which are
triggered by bosons with a zero momentum, and~iii ! the GLC in the Bose gas is not only a condensation in
coordinate space, but also in momentum space. On the basis of these results, a comparative study of the BEC
and the GLC is developed. Further, we discuss its implication to the trapped atomic gas.
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I. INTRODUCTION

The study of the relationship between the Bose-Eins
condensation~BEC! and the gas-liquid condensation~GLC!
is a long-standing problem.1 They are remarkable phenom
ena of the many-body system at low temperature and h
density.

Normally, the GLC is thought to be an essentially diffe
ent phenomenon from the BEC for the following reasons

~i! The BEC is regarded as a condensation in momen
space, while the GLC occurs in coordinate space.

~ii ! The BEC is attributed to the Bose statistics so tha
still occurs without any interaction between particles, wh
the GLC does not occur without the interactions.

The GLC is a phenomenon not only in the classical g
but also in the quantum gas. An interesting point of the qu
tum gas is that the reason by which we distinguish the B
and the GLC is not as obvious as it looks. This proble
assumes a quite different aspect in Fermi and Bose statis

The attractive fermions form the Cooper pairs at low te
perature and high density: a BEC in a general sense. Bec
of Fermi statistics, however, the fermion still has a lar
kinetic energy at the zero temperature, and the two fermi
experience a strong repulsive force in the short-distan
Hence, although the Cooper pairs form the BEC, Fermi
tistics underlying the particle prevents the GLC in gene
@We can find a concrete example of this property in
Bardeen-Cooper-Schriefer~BCS! model. As long as the at
tractive force is increased within the BCS model, the GLC
impossible, a rigorous proof of which was given recently2#

At high temperature and low density, the bosons are i
gas state as well as the fermions. With decreasing temp
ture, however, the bosons lose the kinetic energy.~It is espe-
cially obvious in the BEC state.! Further, in contrast with the
fermion, the boson does not experience a repulsive forc
the short distance. These behaviors create an instab
which is characteristic of Bose statistics. When the attrac
force acts on the bosons having the small kinetic energy
influence must be drastic. The compressibility is no lon
positive definite, so that the dilute Bose system will collap
into the dense one, leading to the GLC. This is illustra
schematically in Fig. 1~a! ~the dotted circle is the zero-poin
motion!.
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Conversely, if the GLC occurs prior to the BEC, the de
sity increases locally by the GLC, and an overlapping of
wave function will lead to the BEC as depicted in Fig. 1~b!
~the wavy curve is the wave function!. These natures sugge
that, in the attractive Bose gas, the BEC and the GLC
hance each other. In other words,Bose statistics enhance th
GLC.

Unfortunately for the low-temperature physics, howev
helium 4, our most popular Boson system, is not a go
example for this problem. In helium 4, the GLC occurs a
classical phenomenon.~The difference between the transitio
temperature in4He and in3He is small:Tc54.215 K in 4He
and 3.191 K in3He at 1 atm, suggesting that quantum s
tistics plays a minor role in this GLC.! This well-known but
not obvious fact is attributed to the fact that the value ofTc
is too high for Bose statistics to play a dominant role in th
GLC.3 Recently, experimental realizations of the BEC in d
lute atomic gas changed this academic problem to a real
one.4 The GLC of the ultracold gas has a possibility of el
cidating the role of quantum statistics in the GLC clearly.In
this paper, we consider this role using the uniform Bose g
and apply it to the trapped Bose gas.

The instability of the Bose-Einstein condensate with t
attractive interaction was already known in the Bogoliub
model as an appearance of an imaginary sign in the velo
of the sound propagating through the condensate, which
been considered to be a kinematical evidence of the GL5

Behind the kinematics of the many-body system, a therm
dynamical reason driving the system to undergo the G
must exist. This paper studies the GLC in the Bose gas fr
a viewpoint of the statistical mechanics.6 With decreasing
temperature and increasing density, the chemical potentiam
of the Bose gas approaches zero from a negative side. H
the behavior of the grand partition function at the sm
negativem gives us a crucial information on the BEC and t
GLC. A key question is which of the BEC and the GL
occurs first when cooling and compressing the attrac
Bose gas.

The scheme of this paper is as follows. Section II d
scribes a perturbation-theoretic derivation of the grand pa
tion function of the attractive uniform Bose gas. Using th
result, we prove that~i! when cooling and compressing th
attractive Bose gas, the GLC occurs prior to the BEC, a
©2001 The American Physical Society29-1

https://core.ac.uk/display/70352235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i
r
t

a
d

a

ti

e
ifi

on
e
io

ard

or
s is
due
is

an-
-
a-
ter

r of

in
oes
s
al
sis
.

al

ore

le.

n

-

ard

as

he
er

r-

SHUN-ICHIRO KOH PHYSICAL REVIEW B 64 134529
~ii ! the bosons with a zero momentum play a special role
this instability. Section III describes where the GLC occu
in the phase diagram. Section IV deals with an application
the trapped Bose gas. Section V discusses similarities
differences between the BEC and the GLC, and gives a
ferent view on this long-standing problem.

II. FORMALISM

The GLC is considered as a singularity in the isotherm
pressure vs specific-volume diagram. The pressurep and the
densityr are given by

p

kBT
5 lim

V→`

ln ZV

V
, ~1!

r

kBT
5 lim

V→`

]

]m S ln ZV

V D , ~2!

whereZV is the grand partition function in the volumeV, and
m is a chemical potential. Yang and Lee7 proved the follow-
ing: ~i! As V→` under the constantN/V, V21 ln ZV ap-
proaches a continuous and monotonous increasing func
of m. ~ii ! If ZV approaches zero atm5mc , V21 ln ZV in the
V→` limit is continuous, but (]/]m)V21 ln ZV is in general
discontinuous atm5mc . Hence its isotherm turns out to b
discontinuous and not differentiable at the critical spec
volume, exhibiting the GLC.8

The problem is whether or not the grand partition functi
ZV(m)5Tr exp@2b(H2mN)#, which does not seem to b
singular at first sight, really shows such a singular behav
Yang and Lee pointed out that, if zeros of theZV in the
complexm plane approach the realm axis asV→` at mc ,
such a GLC really occurs.

FIG. 1. A schematic view of the role of Bose statistics in t
GLC. ~a! When the attractive force acts on the bosons with the z
momentum~the dotted circle represents the zero-point motion!, it
leads to the GLC.~b! When the wave functions of the bosons ove
lap due to the GLC, it will lead to the BEC.
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Complementary to their approach, we can directly reg
ZV(m)50 at mc as an event on the realm axis from the
beginning. An important point for confirming occurrence
nonoccurrence of the GLC in the cold and dense Bose ga
that one must take into account a large-scale coherence
to Bose statistics in the grand partition function, so that it
beyond the reach of the conventional linked-cluster exp
sion. If we want to obtainZV(m) by means of the perturba
tive expansion, we must consider many ‘‘unorthodox’’ di
grams which are not seen in the ordinary linked-clus
expansion. IfZV(m)50 occurs in such an expansion atmc ,
this means that the gas shows an instability. As a matte
fact, we can obtain onlyZV(m) with some approximation
~we call this a model!. If ZV(m)50 is confirmed atm
5mc , the occurrence of the GLC is proved at least with
this approximation. Conversely, if such an expansion d
not lead toZV(m)50, the nonoccurrence of the GLC i
proved at least within this approximation. In the statistic
physics, the microscopic derivation of the GLC on the ba
of the grand partition function has been a difficult problem9

If we find a new workable model of the GLC on the physic
ground, it will help us to understand the GLC.

Let us consider a spinless Bose gas with a repulsive c
represented byHre and a weak attractives-wave pairing in-
teractionHat with g(,0):10

H5(
p

epap
†ap1Hre1

g

V (
p,p8

ap
†a2p

† a2p8ap8 , ~3!

where the summation overp in the interaction term is cut off
by phc corresponding to the hard-core radius of the partic
Here, we make the following assumptions:~i! diluteness of
the gas allows a contact interactiong as a first approxima-
tion, ~ii ! the slow collision at low temperature allows a
assumption of elastic s-wave interaction11, and we consider
an instability inherent in this gas.

From now, we regard(pepap
†ap1Hre as an unperturbed

Hamiltonian ~kinetic energyep is replaced by quasiparticle
energy ep), and obtain a grand partition functionZV(m)
5Tr exp@2b(H2mN)# by the perturbation theory with re
spect to the attractive interactionHat ,

ZV~m!5Z0(
n50

`
~21!n

n! E
0

b

db1•••

3E
0

b

dbn^THat~b1!•••Hat~bn!&c , ~4!

where Z0 denotesZV of the unperturbed system,b is the
inverse temperature, and the cumulant implies the stand
definition.

~i! In the single phase, a first approximation ofZV(m) is
Z05)p(12e2b(ep2m))21, so that the equation of states h
a form as

p

kBT
5

g5/2~ebm!

l3
2

ln~12ebm!

V
, ~5!

o
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ATTRACTIVE BOSON AND THE GAS-LIQUID CONDENSATION PHYSICAL REVIEW B64 134529
N

V
5

g3/2~ebm!

l3
1

1

V

ebm

12ebm
, ~6!

wherega(x)5(nxn/na andl5(mkBT/2p\2)21/2, the ther-
mal wavelength.

A first correction to Eqs.~5! and ~6! is made by taking
relatively simple diagrams into the expansion of Eq.~4!, a
typical example of which is a sum of the separated ring d
grams made of the bubble diagram like Fig. 2.~The solid line
represents the boson, and the dotted line the attrac
interaction.11! The linked-cluster expansion is a standa
method for evaluating such diagrams. Note that such
grams are only a part of all possible diagrams in Eq.~4!.
Although such diagrams are very useful for describing
normal properties at high temperature and low density,
ZV(m) never can show a singular behavior in the equation
states.

~ii ! With decreasing temperature and increasing den
Bose statistics must be dealt with more carefully in Eq.~4!.
The multiparticle wave function must be wholly symmetr
under the exchange of any two particles, which affects
sum of the ring diagrams like Fig. 2 as follows: When tw
particles (p and p8) belonging to two different bubbles in
Fig. 2 have a same momentum (p5p8), a new diagram in
which the two particles have been exchanged must be
cluded in the expansion of Eq.~4!,12,13which ensures a basi
feature of Bose statistics: many identical bosons are likel
occupy the same state (p5p8). As a result, the Fig. 3-type
diagram, resulting from many particle exchanges betw
the bubbles in Fig. 2, becomes important as an excha
correction. In other words, without such diagrams in the
pansion, the bosons lose their basic feature in the formal

FIG. 2. Some ring diagrams, which are made by connecting
bubbles.

FIG. 3. A joint diagram which is made of the polygons. The ri
diagrams in Fig. 2 are united to form this joint diagram.
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In the process of imposing such a permutation symme
on the sum of ring diagrams, we can generate a new diag
by exchanging particle lines between unlinked ring d
grams: When two particle lines are exchanged between
different bubbles as in Fig. 2, we obtain a square@Fig. 4~b!#,
which links one unlinked diagram to another as in Fig.
Similarly, when three particles are exchanged between th
different bubbles, or when two particles are exchanged
tween a bubble and a square, a hexagon@Fig. 4~c!# is yielded,
which links one unlinked diagram to another one. An oc
gon @Fig. 4~d!# is made by a similar procedure. Such a s
quence will continue to a macroscopically large polygo
Starting froms bubbles, as-size polygon (s gon! is made by
s21 times of the exchange of the particle between
bubbles.

In coordinate space, the exchange of Bose particles
ensuring Bose statistics gives us a many-body coherent w
function obeying Bose statistics. Hence the size of the po
gons~a number of its sides! in momentum space correspond
to a size of the coherent wave function obeying Bose sta
tics in coordinate space. With cooling and compressing th
system, the coherent wave function will become more imp
tant in the cumulant of Eq.~4!. Hence in momentum spac
the perturbative expansion ofZV(m) will experience a struc-
tural change: Much greater networks of the interaction a
particle lines, which are made by connecting the polygo
will appear in the expansion.@More precisely, the complex
large diagrams, which are negligible in the single phase,
make major contributions toZV(m).]

An example of such complex diagrams is illustrated
Fig. 3, which is a joint diagram of four types of the polygon
As the order of the perturbation expansion increases, a v
ety of such complex diagrams increases rapidly.@Figure 3 is
only one example of all possibilities which may appear in t
expansion of Eq.~4! asn515.# ZV(m) which systematically
includes such a large-scale coherence due to Bose stat
will have a crucial importance. For obtaining such aZV(m),
the bubble diagram is not appropriate for a unit of comp
diagrams. Rather, to describe Bose statistics rigorously,
must begin with the polygons, examples of which are lis
in Fig. 4.

The proof of this paper consists of two steps: The fi
step is to obtain a concrete form ofZV(m) including the
macroscopic-scale coherence. For this purpose, we will
ply the method, originated for the attractive Fermi gas
Goudin12 and developed by Langer,13 to the attractive Bose
gas. The second step is to confirmZV(m)50 at a critical

e

FIG. 4. Four examples of polygons: a bubble (s51), a square
(s52), a hexagon (s53), and an octagon (s54).
9-3



an
t
o-

k
o

in
it

d
o

in

a-

s

f

e

r
m

s

th
g
s

d

ld
ia-

of

tin-

at

int

e
ain
s
x-
u-
ale
the

SHUN-ICHIRO KOH PHYSICAL REVIEW B 64 134529
chemical potential. We describe the first in subsection A,
the second in subsection B. For completeness, we repea
formalism in Refs. 12 and 13 in a simplified form, and pr
ceed to the Bose gas.

A. Grand partition function ZV„µ…

To analyze the macroscopic-scale coherence, we thin
two levels of the structure in the perturbative expansion
ZV(m): we call an upper onea joint diagramand a lower one
a polygon. A convenient way to enumerate the cumulant
Eq. ~4! is to associate each factorization of the cumulant w
a joint diagram such as Fig. 3, so thatZV(m) is a sum of the
various types of the joint diagram. Instead of the linke
cluster expansion, we begin with a combinatorial analysis
networks of interaction lines and particle lines in the jo
diagram. Accordingly, instead of the bubble, we regardpoly-
gons depicted in Fig. 4 as elementary units. All joint di
grams are made of various types of polygons.„The bubble is
a simplest polygon@Fig. 4~a!#, so that the ring diagram~Fig.
2! is incorporated into the category of the joint diagrams a
simplest one.…

1. Polygons

As illustrated in Fig. 4, each polygon is composed os
bosons with a common (p,l ), and anothers bosons with a
common (2p,2 l ), an expression of which is given by

S 1

~ep2m!1 i
p l

b
D sS 1

~e2p2m!2 i
p l

b
D s

. ~7!

@In Fig. 4, four exampless51,2,3,4 are depicted. Becaus
the dotted line represents the elastics-wave interaction, we
consider only a common (6 l ,6p) in each polygon.14 We
assumeep5e2p .#

Consider a polygonKs with 2s bosons. We must conside
various environments of the polygons in the joint diagra
Since the polygons in general have different (l ,p) in the joint
diagram, we define a sum of polygons over different (l ,p).
Further, because an interaction line connects two polygon
the joint diagram, we include (g/V)s in each polygonKs so
as to count each interaction only once, so that we define15

Ks5
1

V (
l ,p S 2

g

V

1

b

1

~ep2m!1 i
p l

b

1

~ep2m!2 i
p l

b
D s

.

~8!

This Ks represents a unit diagram more general than
bubble, wheres represents the polygon size, thus indicatin
coherence size in which Bose statistics is satisfied rigorou
~The bubble corresponds toK1.!

2. Joint diagrams

Consider a joint diagram in which the polygonKs
appearsns times, a distribution of which is expresse
as $ns%5$n1 ,n2 , . . . % ~for example, in Fig. 3
$ns%5$6,1,1,1,,0, . . . %). The joint diagram including such
13452
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polygons has a form (K1)n1(K2)n2 . . . . ToobtainZV(m), we
must sum the joint diagram)s(Ks)

ns over all possible infi-
nite sets of positive integers including zero$ns%. This is ac-
complished for eachs ~from 1 to`) by summations overns
from 0 to `. When performing the summation, one shou
keep in mind the following points so as to count each d
gram only once:

~i! For each joint diagram, there arens! ways of rear-
rangement ofs-size polygonKs , which leaves the joint dia-
gram invariant@Fig. 5~a!#. Thus (Ks)

ns must be divided by
ns!.

~ii ! For eachKs , there are 2s ways of rotation, which
leave the polygon invariant@Fig. 5~b!#. Thus Ks must be
divided by 2s.

~iii ! In the joint diagram, there are a number of ways
distributing frequencyl and momentump to each polygon,
and the polygons are connected to each other byna attractive
interaction lines as in Fig. 5~c! (na56). This situation can be
paraphrased by saying that all interaction lines are dis
guishable, having their ‘‘individuality.’’ The interaction line
is characterized by the frequency and the momentum (l ,p)
and (l 8,p8) carried by the particle which enters or emerges
both ends of the line as depicted in Fig. 5~c!. This allowsna!
ways of rearrangements which produce different jo
diagrams.

With these in mind for summing)s(Ks)
ns, we obtain the

following expression ofZV(m):

ZV~m!

Z0
5(

$ns%
na!)

s

`
1

ns!
S 2VKs

2s D ns

, ~9!

where ($ns%
is a summation over infinite sets of positiv

integers including zero subject to a constraint we expl
below. This expansion ofZV(m) is based on an idea which i
entirely different from that of the ordinary linked-cluster e
pansion.~The latter is an expansion in powers of the co
pling constant, including only a small class of the large-sc
coherence. The former is an expansion with respect to

FIG. 5. ~a! A permutation of the same type of polygons.~b! A
rotation of a polygon.~c! A distribution of (l ,p) on the polygons.
9-4
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ATTRACTIVE BOSON AND THE GAS-LIQUID CONDENSATION PHYSICAL REVIEW B64 134529
size of the coherent wave function obeying Bose statist
thus including the large-scale coherence systematically.!

As the size of the system approaches infinity~the thermo-
dynamic limit!, large polygons appear more frequently in t
joint diagram. This means in Eq.~9! that the size of the
polygons represented by)s and the number of each type o
polygon represented by($ns%

goes to infinity.

3. Summation over the number of polygonsns

Let us consider the number of each type of polygon fi
If the sum overns can be carried out independently tona in
Eq. ~9!, we simply obtainZV(m)/Z05na! )s

` exp(2VKs/2s),
but in reality the distribution of the polygons and the numb
of the attractive interaction line are related to each other
na5(ssns . This relation is attributed to a fact that 2s inter-
action lines emerge from each polygonKs . To include this
constraint in the summation, and to transformna! to a sim-
pler form, an identity

na! 5VE
0

`

dt~Vt!nae2Vt, ~10!

is used, andna in (Vt)na is replaced by(ssns . Using Eq.
~10! in Eq. ~9!, we obtain,

ZV~m!

Z0
5VE

0

`

dte2Vt)
s

`

(
ns

1

ns!
S 2VKs

2s D ns

~Vt!sns.

~11!

We can combine (Ks)
ns with (Vt)sns, since they have a com

mon form asxsns. We defineKs8(t) in such a way that 1/V in
the right-hand side of Eq.~8! is replaced byt as

Ks8~ t !5
1

V (
l ,p S 2t

g

b

1

~ep2m!21S p l

b D 2D s

, ~12!

and we rewrite Eq.~11! as

ZV~m!

Z0
5VE

0

`

dte2Vt)
s

`

(
ns

1

ns!
S 2VKs8~ t !

2s D ns

. ~13!

This allows the individual sums onns to be done. Hence we
obtain a parameter representation ofZV(m),

ZV~m!

Z0
5VE

0

`

dt expS 2Vt2V(
s

1

2s
Ks8~ t ! D . ~14!

4. Summation over the size of polygons s: Coherence-size
expansion

Next, let us consider the size of the polygons. In t
single phase, the thermodynamic quantities are determ
by the small-scale coherence in which only a few partic
are participating. This means thatZV(m) is well approxi-
mated by the simple diagrams like Fig. 2, so thatns of only
small-size polygons are summed to infinity. For example,
13452
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sum of the ring diagram like Fig. 2 is a simplest case
which only the bubbleK18(t) has a nonzero value in Eq.~14!,
so that16

ZV~m!5Z0VE
0

`

dte2Vt)
l 50

)
p50

3expS t
g

2b

1

~ep2m!21S p l

b D 2D . ~15!

This ZV(m) always has a positive value, so that it leads to
continuous and differentiablep andr as the isothermal line
of the single phase. Even if other types ofKs8(t) (s>2) are
added in Eq.~14!, we get a qualitatively similar result.

With decreasing temperature and increasing density, h
ever, the contribution of polygons in the exponent of Eq.~14!
will gradually change. SinceKs8(t) is of an order ofts, the
exponent is a power series oft, (Cst

s, beinga coherence-
size expansion. In view of Eqs.~12! and~14!, a ratio of the
coefficientCs of ts to that of ts21 is given by

Cs

Cs21
52

s21

s

g

Vb

(
l ,p

F ~ep2m!21S p l

b D 2G2s

(
l ,p

F ~ep2m!21S p l

b D 2G2(s21) .

~16!

„Sincet in Eq. ~14! is a parameter which is renormalized b
V as in e2Vt, we replacet in Ks8(t) @Eq. ~12!# by t/V for
obtaining this ratio.…

Let us estimateCs /Cs21 for a larges. At m!0 ~high
temperature and low density!, the numerator and the denom
nator of Eq. ~16! is approximated by (2m)22s and
(2m)22(s21), respectively, for a smallp and l. Hence the
former is smaller than the latter for a larges, leading to
Cs /Cs21!1. This means that the large polygons make
minor contribution in Eq.~14!, which validates the approxi
mation like Eq.~15!.

As m→0, however, for a larges, a contribution froml
50 becomes dominant in the summation in Eq.~16!. Hence
an asymptotic form ofCs /Cs21 is given by

Cs

Cs21
→2

g

Vb (
p

1

~ep2m!2
. ~17!

When cooling and compressing the system, 1/b decreases
and 1/(ep2m)2 increases. Sincem approaches zero at th
finite temperature~the BEC!, the growth of 1/(ep2m)2 for
p50 is faster than the decrease of 1/b, leading to
Cs /Cs21→`. This implies that, asm→0, the large polygons
made of thep50 Boson becomes remarkably important,
that the size of polygons contributing to Eq.~14! grows ex-
plosively to reach a macroscopic scale.~For comparison with
the BEC, see Sec. V.!

Hence, for obtainingZV(m) at low temperature and high
density, one must sumKs8(t)/s over an integers from 1 to`
in Eq. ~14!. With an aid of the identity
9-5
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SHUN-ICHIRO KOH PHYSICAL REVIEW B 64 134529
2(
s51

`
~2x!s

s
5 ln~11x!, ~18!

in Eqs.~12! and~14!, we obtain the formula derived in Refs
12 and 13,

ZV~m!

Z0
5VE

0

`

dte2Vt)
l 50

)
p50

3S 11t
g

b

1

~ep2m!21S p l

b D 2D . ~19!

An important point for our purpose is that, following Bos
statistics, one must calculate the infinite product with resp
to the frequency in Eq.~19! over an even integerl ~including
zero!. By use of the identity

)
n51

` S 11
z2

~2n!2D 5
2

pz
sinh

pz

2
, ~20!

in the numerator and the denominator of each factor in
~19!, we obtain a final form,

ZV~m!5Z0VE
0

`

dte2Vt)
p50

S 11
gt

b

1

~ep2m!2D
3S sinhbA~ep2m!21

gt

b

sinhb~ep2m!

3
~ep2m!

A~ep2m!21
gt

b

D 2

. ~21!

This formula is the concrete form of the grand partition fun
tion of the attractive Bose gas including the macroscop
scale coherence.@Equation ~21! includes the linked-cluste
expansion as a part.#

B. Zero of ZV„µ…

Our concern is whether or notZV(m)50 occurs in Eq.
~21! in the course of cooling and compressing. The fact t
the chemical potential approaches zero when cooling
compressing the system is a fundamental property of
boson system, which does not depend on details of the in
action. An important factor for creating the zero in Eq.~21!
is

)
p50

S 11
gt

b

1

~ep2m!2D ~22!

which comes froml 50 contribution in Eq.~19!. At high
temperature and low density (m!0), this product is positive
With decreasing temperature and increasing density, h
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ever, the m in the denominator of the second term a
proaches zero as illustrated in Fig. 6, and the second term
the brackets begins to cancel the first term 1 because o
negative signg,0 ~attractive interaction!. @Although 1/b
decreases when cooling, 1/(ep2m)2 increases more rapidly
as in Eq.~17!.#

Among many factors in the above product, an especia
important one is

S 11
gt

b

1

m2D , ~23!

which comes fromp50 boson. Compared with other fac
tors, it decreases most rapidly as them approaches zero from
the negative side, because (ep2m)2.m2. Finally, for a
given t, Eq. ~23! reaches zero. More precisely, at a critic
valuemc(,0), two integrals, which are obtained by splittin
the integrand of Eq.~21! into two parts at this factor, cancel
each other. This leads us to conclude thatZV(m) becomes
zero in the course of cooling and compressing. A concr
estimation of this cancellation will be done in Sec. III. In
stead, we discuss the physics behind it in this section.

In summary, the following changes take place asm ap-
proaches zero.

~i! At m!mc , the system is in the gas phase, which
properly described byZV(m) in which the small-scale coher
ence is dominant (Cs /Cs21!1).

~ii ! At m,mc , ZV(m) begins to include the large-sca
coherence.

~iii ! At m5mc(,0), the large-scale coherence grows a
ZV(m)50 occurs. This implies that the densityr becomes
discontinuous in Eq.~2! and that the system really changes
the liquid state in a discontinuous manner. Sincemc,0, we
conclude that the GLC occurs prior to the BEC. This su
gests that what is necessary for the GLC is not the BEC,
‘‘statistical attraction’’ due to Bose statistics.~The occupa-
tion of the lowest-energy state by a macroscopic numbe
particles is a too strong condition for the GLC.!

~iv! Normally, the GLC is associated with the metastab
state. For anym less thanmc , ZV(m) is always positive, but
for mc<m, ZV(m)50 becomes possible. In this sense,mc

FIG. 6. A schematic graph of2AugukBT/V5m(T), where the
thin solid curve represents2AugukBT/V and the thick solid curve
m(T).
9-6
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gives us a lower limit of the chemical potential for the GL
For mc<m,0, if only the system crosses the energy barr
the GLC must occur prior to the BEC.17

One can take the following alternative view on the orig
of the instability: The ring diagrams made of the bubbles
Fig. 2 are united to forma joint diagram in Fig. 3 by ex-
changing the particle lines. This can be viewed as‘‘a con-
densation of the diagrams’’occurring in momentum space
All the joint diagrams can be viewed as a result of suc
condensation. This view influences the discussion about
relationship between the BEC and the GLC~see Sec. V!.

For the classical gas, the microscopic derivation of
GLC on the basis of the grand partition function has bee
difficult problem.9 In the attractive Bose gas, however, the
is a clear physical origin of the instability due to Bose s
tistics. Hence a model of the GLC of the attractive Bose
would be simpler than that of the imperfect classical gas
that of the attractive Fermi gas. This circumstance is a rea
why ZV(mc)50 is derived through a relatively simple pro
cedure. The factor coming froml 50 in Eq. ~21! is a math-
ematical ingredient of what was predicted by the physi
argument on the role of Bose statistics for the GLC.

C. Role of the zero-momentum boson

In view of the above argument, one notices that the ze
momentum boson appears twice in the instability mec
nism.

~i! As s→`, the ratio of two slightly different-size poly
gonsCs /Cs21 increases most rapidly in the zero-momentu
boson@Eq. ~17!#.

~ii ! The cancellation of the integrals leading toZV(m)
50 occurs in the zero-momentum boson@Eq. ~21!#.

Both facts indicate a special role of the zero-moment
boson in the GLC. Since the system is not in the BEC ph
at m5mc , the number of the zero-momentum boson is n
yet a macroscopic one. But it plays a role of trigger for t
instability.

Further, one notices also the following:
~iii ! For the appearance of the term Eq.~22! in the expres-

sion of ZV(m), the infinite sum over the polygon sizes @Eq.
~18!# is crucially important. This fact suggests that the exp
sive growth of the large-scale coherence is essential for
GLC.

~iv! As a condition of the explosive growth of the cohe
ence in ZV(m), one can useCs /Cs2151 for the zero-
momentum boson in Eq.~17!. As a result, we obtain
2(g/Vb)(1/m2)51, that is,m52AugukBT/V. On the other
hand, the condition ofZV(m)50 in Eq.~21! is more compli-
cated. If two conditions agree completely, this means t
Cs /Cs2151 andZV(m)50 take place simultaneously du
to the zero-momentum bosons. In Sec. III, we will prove t
prediction within a first approximation toZV(m)50.

To understand the role of the zero-momentum boson
tuitively, we must return to the equation of states. Since
integrand ofZV(m) in Eq. ~21! has a product form with
respect top, in Eqs.~1! and ~2! one can approximately dis
tinguish the pressure and the density by the zero-momen
boson from that by other bosons. The total pressure by al
13452
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bosons has a positive value atmc , but the pressure by the
zero-momentum boson becomes negative atmc because
ln ZV(m),0 for p50. Similarly, the total density by all the
bosons has a positive value, but the density by the ze
momentum boson discontinuously decreases beca
] ln ZV /]m→2` for p50. A natural interpretation of this
fact is thatit is the zero-momentum bosons that escape fr
the dilute gas first, making a liquid droplet, whenm reaches
mc. This assembly of the zero-momentum bosons with h
density is a favorable environment for the BEC. But wheth
or not this assembly immediately leads to the BEC is a d
ficult problem~see Sec. V!.

D. Comparison with the Fermi gas

If we deriveZV(m) under Fermi statistics and compare
with Eq. ~21!, we will obtain a deeper understanding of th
role of Bose statistics for the GLC. Let us consider sp
one-half fermions having a same form of Hamiltonian as E
~3! except that the operators obey Fermi statistics. Its gr
partition function has a similar structure as in the boson ca
In the Fermi gas, however, one must calculate the infin
product in Eq.~19! over an odd integerl. By use of the
identity

)
n51

` S 11
z2

~2n21!2D 5 cosh
pz

2
, ~24!

in the numerator and the denominator of Eq.~19!, we
obtain,18

ZV~m!

5Z0VE
0

`

dte2Vt)
p50 S cosh

b

2
A~ep2m!21

ugut
b

cosh
b

2
~ep2m!

D 2

.

~25!

This is the grand partition function of the attractive Fer
gas including the large-scale coherence due to Fermi st
tics, which is equivalent to the BCS model.12,13

Consider a complexm plane.m, which satisfies

b

2
A~ep2m!21

ugut
b

5 i S n1
1

2Dp, ~26!

gives us zeros ofZ(m). Such am has a form

m5ep6 iAugut
b

1S ~2n11!p

b D 2

. ~27!

This means that there is no possibility ofZV(m)50 for a real
m. Hence, for the attractive Fermi gas equivalent to the B
model, even if the large-scale coherence is taken into
count, the GLC is impossible~see Ref. 2!. This conclusion
supports the physical argument in Sec. I that Fermi statis
prevents the GLC, and that quantum statistics plays an
portant role for the GLC of the quantum gas.
9-7
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III. GAS-LIQUID CONDENSATION IN THE PHASE
DIAGRAM

A. Critical chemical potential

Let us obtainmc in a case of the weakly attractive inte
action. We approximate the temperature dependence ofm by
that of the free Bose gas~a thick solid curve in Fig. 6!, and
use the well-known formula of the free Bose gas abo
TBEC , which is derived from Eq.~6! as19

m~T!52S g3/2~1!

2Ap
D 2

kBTBECF S T

TBEC
D 3/2

21G2

, ~28!

wherem(T) depends also on the number densityn(5N/V)
throughTBEC as

kBTBEC5
2p\2

m S n

g3/2~1! D
2/3

. ~29!

When we knowmc , the transition temperatureTc of the
GLC is defined asm(Tc)5mc for a given density. As the
system approachesTc from above temperature, the Fig
3-type diagrams become important inZV(m). When it
reachesTc , the large joint diagram leads toZV(m)50.

Since Eq.~21! has a form of infinite product, it is difficult
to estimate its exact value. To obtain a first approximat
of mc , we consider only the most important fact
@11(gt/b)(1/m2)# in the integrand of Eq.~21!, and simpli-
fies ZV(mc)50 as follows:

E
0

`

dte2VtS 11kBTc

gt

mc
2D 50. ~30!

@We numerically confirm that an inclusion of thepÞ0 com-
ponents to Eq.~30! does not change the result so muc#
From Eq.~30!, we getmc>2AugukBTc /V as a first approxi-
mation ~a thin solid curve in Fig. 6!.

This condition ofmc is exactly a condition ofCs /Cs21
51 in Eq. ~17! for the zero momentum boson:m5
2AugukBT/V. At least within the approximation forZV(m)
50 such as Eq.~30!, the explosive growth of the coherenc
(Cs /Cs2151) and the GLC@ZV(m)50# take place simul-
taneously~for its implication, see Sec. V!.

The mc and theTc are determined as a point of interse
tion of the thick solid and the thin solid curve in Fig. 6, bein
a solution of an equation:2AugukBTc /V>m(Tc). Substitut-
ing this equation intoT5Tc in Eq. ~28!, we get

mc52S g3/2~1!

2Ap
D 2

kBTBECF S mc
2

ugu
V

kBTBEC
D 3/2

21G 2

,

~31!

and solvemc for the smallg as

mc>2S 2ApkBTBEC

g3/2~1!
D 2/5S ugu

V D 3/5

. ~32!
13452
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Equation~32! is a critical value of the chemical potential fo
the GLC of the weakly attractive Bose gas, showing tha
threshold value for the GLC does not exist in the strength
the attractive force:An arbitrary small attractive force is
sufficient for the GLC to occur before the chemical poten
reaches zero.

B. Condition of the GLC

Next, let us obtain a condition of this GLC in the pha
diagram. For the BEC of the free Bose gas, we have a w
known condition:nl35g3/2(1), which is derived from Eq.
~6!. This condition indicates the positions of (n,l) in the
phase diagram at whichZV(m)→` because ofm50.

We modify this formula in such a way as to indicate t
position of (n,l) at which ZV(m)→0 because ofm5mc .
Accordingly, we replacem50 in nl35g3/2(15e0) by mc
such thatnl35g3/2(e

bmc), which determines the density an
the temperature at which the GLC occurs. In comparing
two conditions, one notices that, becauseebmc,1 and
g3/2(x) is a monotonic increasing function, one obtainsnc
,nBEC for a constantT, andTc.TBEC for a constantn. In
the BEC of the free Bose gas,nl35g3/2(1) is a universal
line in the (n,l) phase diagram.~All bosons are plotted on
this line.! For the GLC, however, a position ofnl3

5g3/2(e
bmc) in the phase diagram depends on the mass

the boson through themc as

mc~n!52S \

Apm
D 2/5

n4/15

@g3/2~1!#2/3S ugu
V D 3/5

. ~33!

Figure 7 is the (n,l) phase diagram, showing a solid an
a dotted curve fornl35g3/2(e

bmc(n)) ~GLC line!. The solid
curve represents the GLC line of the Rb atom withmc @Eq.
~33!# for g/V525 nK, and the dotted curve represents th
for g/V525mK. The shaded area represents the BEC ph
of the free Bose gas:nl3>g3/2(1). In this figure, the hori-

FIG. 7. (n,l) phase diagram of the attractive bosons, wheren is
a number density andl5(mkBT/2p\2)21/2. In this figure, the hori-
zontal axis can be viewed just like the temperature axis@in the case
of Rb atom:T nK530l22 mm]. A solid curve is a GLC line of
the Rb atom defined bynl35g3/2(e

bmc(n)) with mc(n) @Eq. ~33!#
for g/V525 nK, and a dotted curve forg/V525 mK. Shaded
area is the BEC phase of the free Bose gas defined bynl3

>g3/2(1).
9-8
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ATTRACTIVE BOSON AND THE GAS-LIQUID CONDENSATION PHYSICAL REVIEW B64 134529
zontal axis representingl5(mkBT/2p\2)21/2 can be
viewed just like the temperature axis.@In Rb atom,l is re-
lated to the temperature byT nK530l22mm.#

We note the following features of Fig. 7:
~i! Compared with the BEC region, the GLC lines appe

on higher-temperature and lower-density side. Hence, w
we start from the ordinary condition, decreasing the tempe
ture and increasing the density of the system, the GLC
curs prior to the BEC.

~ii ! Under the same strength of the attractive force,
BEC region and the GLC line come apart at lower tempe
ture.

~iii ! As the strength of the attractive interactiong in-
creases, the position of the GLC line in the phase diag
moves to the higher temperature and lower density regio
more accessible environment. Note that the GLC is very s
sitive to g/V. It seems natural since the GLC is a strong
cooperative phenomenon.

IV. TRAPPED BOSE GAS

Let us explore an application to the trapped Bose gas
discussed in Sec. I, the ultracold trapped Bose gas h
possibility of proving the role of Bose statistics for the GL
The trapped system, however, has its own properties w
complicate the argument developed so far in the unifo
system.

The trapped atomic gas is the boson system in the sph
cal harmonic potential

U~r !5
1

2
U0S r

RD 2

, ~34!

where r 25x21y21z2 and R is a range parameter of th
potential. The energy level is specified by an integerM
(5mx1my1mz , a sum of the quantum number! as eM

5\v0(M11) wherev05AU0 /(R2m). Under this poten-
tial, we consider a Hamiltonian of the spinless Bose gas

H5(
M

eMaM
† aM1Hre1

g

V (
M ,M8

aM
† a2M

† a2M8aM8 ,

~35!

with g,0. As in Sec. II, we consider(MeMaM
† aM1Hre as

an unperturbed Hamiltonian (eM is replaced byeM), and we
consider only the elastics-wave interaction.

This confined system does not have the thermodyna
limit in a strict sense. AsV→`, the size of the potential@R
in Eq. ~34!# increases, which weakens the potential. As
confinement becomes weaker, the gas near the bottom o
potential approaches the uniform gas in the infinite spa
losing the characteristics of the trapped system.~The limit of
N→` under a constantNv0

3 does not maintain the charac
teristics of the trapped system, which is another expres
of N/V 5constant for the infinite system existing behind i!
Hence the thermodynamic limit of the trapped gas is imp
sible not only in a practical sense, but also in principle. W
must regard the size of the trapped gas in the experimen
an intermediate scale before approaching the limit. This
nite system cannot show mathematical singularities wh
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are established only in the thermodynamic limit. But t
trapped gas locally realizes the ultralow temperature
high density, which are impossible in the corresponding u
form gas for technical reasons. Hence it shows macrosc
changes seemingly similar to the phase transition of the
form gas.~This expectation is supported by some compu
simulations of the finite-size systems.! The BEC-like phe-
nomenon is an example of such phenomenon, suggesting
we can expect a GLC-like phenomenon as well. When
focus on such properties, we can study the trapped gas u
the grand partition function of the corresponding infin
system.20

This infinite system has a unique density of states wh
reflects the shape of the potential. The lowest energy s
which is localized in the bottom of the potential has a re
tively large volume in the phase space, compared with
p50 state of the uniform gas: Under a constantM5mx
1my1mz , a possible number of states is

(
i 50

M

~M112 i !5
~M11!~M12!

2
. ~36!

In theV→` limit, the number of states can be approximat
by M2/2. In the single phase,ZV(m) is approximated byZ0

5)M(12e2b(eM2m))2M2/2. Hence the equation of states
given by

p

kBT
5

g4~eb(m2\v0)!

l t
3

2
ln~12eb(m2\v0)!

R3
, ~37!

n5
g3~eb(m2\v0)!

l t
3

1
1

R3

eb(m2\v0)

12eb(m2\v0)
, ~38!

where n5N/R3 the number density, l t

5@m(kBT)2/A3 2G(3)U0\2#21/2 the thermal wavelength o
the trapped gas, andV5R3.20

ZV(m) in Eq. ~21! is revised using a different density o
states, so that

ZV~m!5Z0VE
0

`

dte2Vt )
M50

S 11
gt

b

1

~eM2m!2D
3S sinhbA~eM2m!21

gt

b

sinhb~eM2m!

3
~eM2m!

A~eM2m!21
gt

b

D M2

. ~39!

A zero of thisZV(m) occurs by a similar mechanism as
Eq. ~21!. At m5mc , the explosive growth of the large dia
gram made ofM50 boson inZV(m) (Cs /Cs2151) takes
place simultaneously withZV(m)50, signaling the GLC.
9-9
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SHUN-ICHIRO KOH PHYSICAL REVIEW B 64 134529
The bosons on the bottom of the potential, the numbe
which is not yet a macroscopic one atmc , play a role of a
trigger for the instability.21

In the trapped system, a formula corresponding to
~28! has a form such as

m~T!5\v02S g3~0!

K D kBTBECF S T

TBEC
D 3

21G , ~40!

where

K5E
0

`

dx
x2

~sinhx!2
, ~41!

and the BEC-like transition temperature is defined by20

kBTBEC5
\

z~3!1/3
AU0n

m
. ~42!

Using a similar approximation as in Eq.~30!, we get a con-
dition of mc from Eq. ~39! as mc>\v02AugukBTc /V.
Hence theTc is obtained by\v02AugukBTc /V5m(Tc).
Substituting this equation toT5Tc in Eq. ~40!, we get a
critical value of the chemical potential for the GLC as

mc>\v02
K~kBTBEC!2/5

g3~0! S ugu
V D 3/5

. ~43!

In analogy with nl35g3/2(e
bmc) in the uniform gas, one

obtains from Eq.~38! a condition of the instability for the
trapped gas asnl t

35g3(eb[mc(n)2\v0] ). Using this formula,
we can expect a seemingly similar phase diagram to Fig
~The details of the GLC in the trapped Bose gas, includ
numerical estimation ofn andl t , will be given in a future
paper.!

The BEC-like state with the attractive interaction was o
served in trapped7Li gas as a metastable state.22 ~At first
sight, this contradicts the conclusion of this paper. The m
stability atmc,m prevents the GLC, which complicates th
situation.! A peculiar feature of the atomic gas is that we c
control the sign of the interaction between the atoms us
so-called ‘‘Feshbach resonance.’’ Using this technique,
condensate over a wide range of interaction strength is r
ized. By a sudden switching of the interaction from the
pulsive to the attractive one, a collapse of the BEC gas
high density spot was predicted. Recently such a phen
enon was really observed in85Rb.23 When such an experi
ment is performed with an enough number of atoms to re
ize the thermal equilibrium, and when a wide region of t
normal phase is searched for the occurrence of the GLC,
experiment will provide us with a method of finding a GLC
like line of the trapped gas, which corresponds to the G
line of the uniform Bose gas in Fig. 7.

In the experimentally observed BEC-like state with t
attractive interaction, there exists a possibility that so
well-known properties of the superfluid, which are believ
to be due to the presence of the repulsive interaction, wo
be altered. But it can happen only within a short lifetime
the metastable state. There is a more drastic catastr
behind it.
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V. DISCUSSION

~i! The idea that the GLC is a condensation in coordin
space while the BEC is a condensation in momentum sp
is questionable. Such a question has been raised by m
people in the past. In view of the result of this paper, t
GLC of the attractive Bose gas is a phenomenon not only
coordinate space but also in momentum space. We can
this answer in the structural change of the perturbative
pansion~from Fig. 2 to Fig. 3!, that is, thecondensation of
the diagrams in momentum space. This view on the GLC is
probably true also in the classical gas, though its proo
more difficult than that of the Bose gas. Because of Bo
statistics, it becomes possible to understand the GLC sim
not only in coordinate space but also in momentum spac

~ii ! The explosive growth of the Bose-statistical coheren
in the GLC seen in Eq.~16! reminds us of the famous pictur
of the BEC by Matsubara24 and by Feynman.25

Feynman expressed the grand partition functionZV(m)
5(Ne2mN*dẑ zue2bHuz& in terms of the path integral on
the imaginary time axis (u5 i t /\) from 0 to b as follows:

^zue2bHuz&

5E
tr

expH 2E
0

bF m

2\2 S dx

duD 2

1V@x~u!#GduJ Dx~u!,

~44!

wherex(u) denotes ‘‘coordinate’’ of the particle, andDx(u)
denotes a path integral withtr taken on all trajectories form
ing a circle such thatx(0)5z andx(b)5z.

When this formulation is applied toN-boson system,~i!
the path of a particlex(u) is replaced by the entire set o
paths ofN bosonsxi(u), and~ii ! whereas the initial coordi-
nates arexi(0)5zi , the final coordinates need not be th
same, but may be some permutations of these. Thus
circle in Eq.~44! is replaced by the permutation circles, ea
of which is visualized by a ‘‘polygon’’ made of lines joining
atomic centers. HenceZV(m) is expressed in terms of th
path integral over the polygons.

Note that this polygon has a slightly different meani
from that in the GLC.~i! The polygon in the BEC is a real
ization of the permutation symmetry essentially in the kine
energy, in which the interaction is taken into account on
through the effective mass. Hence this polygon has no in
action line. It is appropriate to consider the path integral o
the polygons as an advanced treatment ofZ0 in Eq. ~4!. On
the other hand, the polygon in the GLC, from which t
interaction line emerges at each vertex, is a realization of
permutation symmetry in the interaction term.~ii ! While the
polygon in the BEC is defined in coordinate space, the po
gon in the GLC is originally defined in momentum spac
~iii ! The size of the polygon in the BEC can have any po
tive integers, while the size of the polygon in the GLC h
only even positive integers because of the pairing-interac
approximation in Eq.~3!. In spite of these differences, how
ever, both polygons reflect the size of the wave function
which Bose statistics is satisfied rigorously in coordina
space.
9-10
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At high temperature, the contribution of large polygons
Eq. ~44! is small. But as the temperature falls, it sudden
becomes important. The explosive growth of the large po
gons in Eq.~44!, which results in the macroscopic occup
tion of the lowest-energy state, is a definition of the BE
These ‘‘motions’’ of particles in the partition function mus
not be considered as a real description of what the atoms
doing, but as a formal description of the expression. But
true behavior of the atoms may have some analogy to it
this sense, this formulation provided us with a realistic p
ture of the BEC in coordinate space, which had been
garded as a phenomenon in momentum space.

In the GLC as well, we show that the explosive growth
the polygon occurs in the grand partition function, whi
results in the drastic change of the spatial distribution of
system through Yang-Lee zeros. In contrast with the BE
the argument on the GLC develops in a reverse direct
The GLC has been regarded as a phenomenon in coord
space, but the polygon picture of the GLC provides us wit
realistic picture of the GLC in momentum space. In th
sense, we can find a parallelism in the BEC and the GLC

Our conclusion that, when cooling and compressing
attractive Bose gas, the GLC occurs prior to the BEC, i
plies that, in the attractive Bose gas, the remarkable cha
of the permutation symmetry of the state occurs in two ste
first driven by the attractive-interaction energy, and seco
by the kinetic energy.

Considering similarities and differences between th
two explosive growths of coherence will lead us to a dee
understanding of the relation between the BEC and the G

~iii ! In the attractive Bose gas, a possibility of the bos
pair has been explored by many people in analogy with
Cooper pair.26 In view of the result of this paper, howeve
f
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the attractive force responsible for such a boson pair m
have a property such that there is no residual attractive in
action between the boson pairs. When such a residual fo
is there, the GLC must occur instead of the boson-pair f
mation. Forbidding the residual interaction between the
son pair, however, should impose a somewhat artificial c
straint on the nature of the attractive interaction between
bosons.

~iv! This paper deals with only an initial stage of th
instability. Once the Bose gas changes to the liquid drop
the repulsive core due toHre plays a dominant role. Accord
ingly, the ladder-type diagrams must be taken into accoun
the perturbative expansion ofZV(m) as well. ~When the
bosons are in a gas state with high density at high temp
ture, the situation is similar.! This makes Fig. 7 a more com
plex phase diagram: The critical point (nc ,lc) will appear
on the GLC line, and the GLC line below the (nc ,lc) in Fig.
7 must be replaced by the gas-liquid coexisting region.
explicit inclusion of the repulsive force inZV(m) will reveal
a competition between the repulsive core and the attrac
interaction of bosons, and leads us to understand a m
complex nature of the later stage of this instability. An e
tension of the model along this line is also necessary to
derstand the unanswered question of whether the liquid d
let made of the zero-momentum boson immediate
undergoes the BEC. The later stage of this instability is
open problem.
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