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Attractive boson and the gas-liquid condensation
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Gas-liquid condensatiofGLC) in the attractive uniform Bose gas is studied by applying the idea of the
Yang-Lee zeros to its grand partition function. The followings are proti¢dVhen the temperature decreases
and the density increases, the GLC occurs prior to the Bose-Einstein conder{B&©n (ii) an explosive
growth of the Bose-statistical coherence to a macroscopic scale occurs simultaneously with the GLC, which are
triggered by bosons with a zero momentum, &iiid the GLC in the Bose gas is not only a condensation in
coordinate space, but also in momentum space. On the basis of these results, a comparative study of the BEC
and the GLC is developed. Further, we discuss its implication to the trapped atomic gas.
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[. INTRODUCTION Conversely, if the GLC occurs prior to the BEC, the den-
sity increases locally by the GLC, and an overlapping of the
The study of the relationship between the Bose-Einsteinwave function will lead to the BEC as depicted in Figb)l
condensatiofBEC) and the gas-liquid condensati¢GLC) (the wavy curve is the wave functinnmrhese natures suggest
is a long-standing problethThey are remarkable phenom- that, in the attractive Bose gas, the BEC and the GLC en-
ena of the many-body system at low temperature and highance each other. In other word)se statistics enhance the
density. GLC.
Normally, the GLC is thought to be an essentially differ- ~ Unfortunately for the low-temperature physics, however,
ent phenomenon from the BEC for the following reasons: helium 4, our most popular Boson system, is not a good
(i) The BEC is regarded as a condensation in momenturaxample for this problem. In helium 4, the GLC occurs as a
space, while the GLC occurs in coordinate space. classical phenomeno(irhe difference between the transition
(i) The BEC is attributed to the Bose statistics so that itemperature irfHe and in®He is small:T,=4.215 K in *“He
still occurs without any interaction between particles, whileand 3.191 K in®He at 1 atm, suggesting that quantum sta-
the GLC does not occur without the interactions. tistics plays a minor role in this GLLCThis well-known but
The GLC is a phenomenon not only in the classical gasiot obvious fact is attributed to the fact that the valuel pf
but also in the quantum gas. An interesting point of the quanis too high for Bose statistics to play a dominant role in this
tum gas is that the reason by which we distinguish the BEGSLC.2 Recently, experimental realizations of the BEC in di-
and the GLC is not as obvious as it looks. This problemlute atomic gas changed this academic problem to a realistic
assumes a quite different aspect in Fermi and Bose statisticsne” The GLC of the ultracold gas has a possibility of elu-
The attractive fermions form the Cooper pairs at low tem-cidating the role of quantum statistics in the GLC clealty.
perature and high density: a BEC in a general sense. Becautlds paper, we consider this role using the uniform Bose gas,
of Fermi statistics, however, the fermion still has a largeand apply it to the trapped Bose gas.
kinetic energy at the zero temperature, and the two fermions The instability of the Bose-Einstein condensate with the
experience a strong repulsive force in the short-distancettractive interaction was already known in the Bogoliubov
Hence, although the Cooper pairs form the BEC, Fermi stamodel as an appearance of an imaginary sign in the velocity
tistics underlying the particle prevents the GLC in generalof the sound propagating through the condensate, which has
[We can find a concrete example of this property in thebeen considered to be a kinematical evidence of the &LC.
Bardeen-Cooper-SchriefédBCS) model. As long as the at- Behind the kinematics of the many-body system, a thermo-
tractive force is increased within the BCS model, the GLC isdynamical reason driving the system to undergo the GLC
impossible, a rigorous proof of which was given recefly. must exist. This paper studies the GLC in the Bose gas from
At high temperature and low density, the bosons are in @ viewpoint of the statistical mechanitaVith decreasing
gas state as well as the fermions. With decreasing temperéemperature and increasing density, the chemical poteatial
ture, however, the bosons lose the kinetic enefigys espe- of the Bose gas approaches zero from a negative side. Hence
cially obvious in the BEC statgFurther, in contrast with the the behavior of the grand partition function at the small
fermion, the boson does not experience a repulsive force inegativeu gives us a crucial information on the BEC and the
the short distance. These behaviors create an instabilitsLC. A key question is which of the BEC and the GLC
which is characteristic of Bose statistics. When the attractiveccurs first when cooling and compressing the attractive
force acts on the bosons having the small kinetic energy, itBose gas.
influence must be drastic. The compressibility is no longer The scheme of this paper is as follows. Section Il de-
positive definite, so that the dilute Bose system will collapsescribes a perturbation-theoretic derivation of the grand parti-
into the dense one, leading to the GLC. This is illustratedion function of the attractive uniform Bose gas. Using this
schematically in Fig. () (the dotted circle is the zero-point result, we prove thati) when cooling and compressing the
motion). attractive Bose gas, the GLC occurs prior to the BEC, and
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A omplementary to their approach, we can directly regar
(’j, o Compl tary to th pp h directly regard
‘O o Zy(u)=0 at u. as an event on the real axis from the
. =’ / beginning. An important point for confirming occurrence or
o) e} o) O nonoccurrence of the GLC in the cold and dense Bose gas is
b IS :> \OQQL/ that one must take into account a large-scale coherence due
. 1 \ 0 Bose statistics in the grand partition function, so that it is

O Ok to Bose statistics in th d partition funct that it
I 'I K -': O

beyond the reach of the conventional linked-cluster expan-

() ,‘6\, sion. If we want to obtairZ,(ux) by means of the perturba-
tive expansion, we must consider many “unorthodox” dia-

grams which are not seen in the ordinary linked-cluster

@ expansion. 1Z,(x) =0 occurs in such an expansiona{,
@ / this means that the gas shows an instability. As a matter of
fact, we can obtain onlyZ,(u) with some approximation
"Q\) /‘Q o) (we call this a model If Z,(x)=0 is confirmed atu
.:} O Q = u., the occurrence of the GLC is proved at least within
‘ '\@ g.) this approximation. Conversely, if such an expansion does
"@,/‘ not lead toZy(u)=0, the nonoccurrence of the GLC is
(b) proved at least within this approximation. In the statistical

physics, the microscopic derivation of the GLC on the basis
of the grand partition function has been a difficult probfem.
9 we find a new workable model of the GLC on the physical
ground, it will help us to understand the GLC.

Let us consider a spinless Bose gas with a repulsive core
represented by, and a weak attractivewave pairing in-
2t With g(<0):1°

FIG. 1. A schematic view of the role of Bose statistics in the
GLC. (a) When the attractive force acts on the bosons with the zer
momentum(the dotted circle represents the zero-point motign
leads to the GLC(b) When the wave functions of the bosons over-
lap due to the GLC, it will lead to the BEC.

(il) the bosons with a zero momentum play a special role iféractionH
this instability. Section Ill describes where the GLC occurs
in the phase diagram. Section IV deals with an application to
the trapped Bose gas. Section V discusses similarities and
differences between the BEC and the GLC, and gives a dif-
ferent view on this long-standing problem. where the summation overin the interaction term is cut off
by py,c corresponding to the hard-core radius of the particle.
Il. FORMALISM Here, we make the following assumptioris: diluteness of
) ) ) o ) the gas allows a contact interactignas a first approxima-
The GLC is considered as a singularity in the isothermatjon, (ji) the slow collision at low temperature allows an
pressure vs specific-volume diagram. The prespured the  assumption of elastic s-wave interacfibrand we consider
densityp are given by an instability inherent in this gas.
From now, we regard:pepa;gaer H,. as an unperturbed

g
H=2 eyala,+ Hrety > ala’ a ,a,, (3
p p.p’

P _ lim InZy (1) Hamiltonian (kinetic energye,, is replaced by quasiparticle
keT .o V' energy ep), and obtain a grand partition functiof,(u)
=Trexd —B(H—uN)] by the perturbation theory with re-
3 [InZy spect to the attractive interactid,;,
——=lim— , (2
kBT V_mé',u V .
. 2 (_1)n B
whereZ,, is the grand partition function in the volunv and ZV('“)_ZOn=O n! jo dpy- -

w is a chemical potential. Yang and Lggroved }he follow-

ing: (i) As V—« under the constanN/V, V™ *InZ, ap- B

proaches a continuous and monotonous increasing function x fo dBn(THal(B1) - Had Bn))e “)

of w. (i) If Z, approaches zero at=u., V" *InZ, in the

V—ce limit is continuous, but ¢/dx)V=*InZ, is in general  where Z, denotesz, of the unperturbed systeng is the

discontinuous ag.= u. Hence its isotherm turns out to be inverse temperature, and the cumulant implies the standard

discontinuous and not differentiable at the critical specificgefinition.

volume, exhibiting the GLC. (i) In the single phase, a first approximationZf(u) is
The problem is whether or not the grand partition function20:Hp(l_efﬂ(epw))fl, so that the equation of states has

Zy(u)=Trexd — B(H—uN)], which does not seem to be gz form as

singular at first sight, really shows such a singular behavior.

Yang and Lee pointed out that, if zeros of tAg in the

complexu plane approach the real axis asvV— at u, P G5 €7) _ In(1—e’) (5)

such a GLC really occurs. kgT A3 \ ’
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FIG. 2. Some ring diagrams, which are made by connecting théS=2), & hexagong=3), and an octagons=4).
bubbles.

In the process of imposing such a permutation symmetry
N gg(ef) 1 efr on the sum of ring diagrams, we can generate a new diagram
V2 E V2 1— b’ (6) by exchanging particle lines between unlinked ring dia-
grams: When two particle lines are exchanged between two
whereg,(x) =3 ,x"/n? and\ = (mkgT/2742) "2 the ther-  different bubbles as in Fig. 2, we obtain a squidig. 4(b)],
mal wavelength. which links one unlinked diagram to another as in Fig. 3.
A first correction to Eqs(5) and (6) is made by taking Similarly, when three particles are exchanged between three
relatively simple diagrams into the expansion of E4), a  different bubbles, or when two particles are exchanged be-
typical example of which is a sum of the separated ring diatween a bubble and a square, a hexadtg. 4(c)] is yielded,
grams made of the bubble diagram like Fig(Phe solid line  which links one unlinked diagram to another one. An octa-
represents the boson, and the dotted line the attractiv@on [Fig. 4(d)] is made by a similar procedure. Such a se-
interaction'”) The linked-cluster expansion is a standardquence will continue to a macroscopically large polygon.
method for evaluating such diagrams. Note that such diaStarting froms bubbles, &-size polygon ¢ gon) is made by
grams are only a part of all possible diagrams in Ej. s—1 times of the exchange of the particle between the
Although such diagrams are very useful for describing thebubbles.
normal properties at high temperature and low density, this In coordinate space, the exchange of Bose particles for
Z,(w) never can show a singular behavior in the equation ofnsuring Bose statistics gives us a many-body coherent wave
states. function obeying Bose statistics. Hence the size of the poly-
(i) With decreasing temperature and increasing densitygons(a number of its sidgsn momentum space corresponds
Bose statistics must be dealt with more carefully in ).  to a size of the coherent wave function obeying Bose statis-
The multiparticle wave function must be wholly symmetric tics in coordinate spaceWith cooling and compressing the
under the exchange of any two particles, which affects th&ystem, the coherent wave function will become more impor-
sum of the ring diagrams like Fig. 2 as follows: When two tant in the cumulant of Eg4). Hence in momentum space
particles o and p’) belonging to two different bubbles in the perturbative expansion &f,(«) will experience a struc-
Fig. 2 have a same momentum=£p’), a new diagram in tural change: Much greater networks of the interaction and
which the two particles have been exchanged must be inparticle lines, which are made by connecting the polygons,
cluded in the expansion of E¢4),*>**which ensures a basic Will appear in the expansioriMore precisely, the complex
feature of Bose statistics: many identical bosons are likely tdarge diagrams, which are negligible in the single phase, will
occupy the same stat@£p’). As a result, the Fig. 3-type make major contributions t@(u).]
diagram, resulting from many particle exchanges between An example of such complex diagrams is illustrated in
the bubbles in Fig. 2, becomes important as an exchandeig. 3, which is a joint diagram of four types of the polygons.
correction. In other words, without such diagrams in the ex-As the order of the perturbation expansion increases, a vari-
pansion, the bosons lose their basic feature in the formalisn&ty of such complex diagrams increases rapidhgure 3 is
only one example of all possibilities which may appear in the

SO expansion of Eq4) asn=15.] Zy,(x) which systematically
. 4 A includes such a large-scale coherence due to Bose statistics

/ p p will have a crucial importance. For obtaining suclE@ ),

\ \ Q the bubble diagram is not appropriate for a unit of complex

M / diagrams. Rather, to describe Bose statistics rigorously, we

P - ”_\ must begin with the polygons, examples of which are listed

i -‘G \ in Fig. 4.
\ I The proof of this paper consists of two steps: The first
N L 1 , step is to obtain a concrete form &,(w«) including the

T Q ﬂ > macroscopic-scale coherence. For this purpose, we will ap-

ply the method, originated for the attractive Fermi gas by
FIG. 3. Ajoint diagram which is made of the polygons. The ring Goudin® and developed by Langét,to the attractive Bose
diagrams in Fig. 2 are united to form this joint diagram. gas. The second step is to confiy(w)=0 at a critical
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chemical potential. We describe the first in subsection A, and
the second in subsection B. For completeness, we repeat the
formalism in Refs. 12 and 13 in a simplified form, and pro-
ceed to the Bose gas.

>
w

o
{O':
(]
Il
o
>

0,
Q

A. Grand partition function Z,(p)

To analyze the macroscopic-scale coherence, we think of
two levels of the structure in the perturbative expansion of b
Zy(w): we call an upper ona joint diagramand a lower one
a polygon A convenient way to enumerate the cumulant in
Eq. (4) is to associate each factorization of the cumulant with
a joint diagram such as Fig. 3, so tt&j( ) is a sum of the
various types of the joint diagram. Instead of the linked-
cluster expansion, we begin with a combinatorial analysis of c .
networks of interaction lines and particle lines in the joint Q Q
diagram. Accordingly, instead of the bubble, we regaoti/-
gOI’\S depicted in F|g 4 as elementary UnitS. A” jOint dia- FIG. 5. (a) A permutation of the same type of p0|ygonib) A
grams are made of various types of polygoii$e bubble is  rotation of a polygon(c) A distribution of (,p) on the polygons.
a simplest polygofiFig. 4a)], so that the ring diagrargFig.
2_) is incorporated into the category of the joint diagrams as Holygons has a formi{;)"1(K,)"2 . . . . ToobtainZy(x), we
simplest one. must sum the joint diagrafi4(K)"s over all possible infi-
nite sets of positive integers including zgra}. This is ac-
complished for eack (from 1 too) by summations over

As illustrated in Fig. 4, each polygon is composedsof from 0 to . When performing the summation, one should
bosons with a commonp(l), and anothes bosons with a keep in mind the following points so as to count each dia-

S
O

2

® O
> 0

c
o
HH
3
O

<

1. Polygons

common (—p,—1I), an expression of which is given by gram only once:
. s (i) For each joint diagram, there aig! ways of rear-
1 1 (77 rangement ofsize polygorKs, which leaves the joint dia-
ol ol | gram invarianfFig. 5@)]. Thus Kg)"s must be divided by
(Ep—M)JFIE (f—p—,u)—lg vyl

(i) For eachKg, there are 8 ways of rotation, which

[In Fig. 4, four examples=1,2,3,4 are depicted. Because |eave the polygon invariaritFig. 5b)]. Thus K; must be
the dotted line represents the elastiwave interaction, we divided by .
consider only a common¥I,=p) in each polygort* We (i) In the joint diagram, there are a number of ways of
assumes,=e€_,.] distributing frequencyt and momentunp to each polygon,

Consider a polygoiKs with 2s bosons. We must consider and the polygons are connected to each other battractive
various environments of the polygons in the joint diagram.interaction lines as in Fig.(6) (n,=6). This situation can be
Since the polygons in general have differelp] in the joint  paraphrased by saying that all interaction lines are distin-
diagram, we define a sum of polygons over differenp].  guishable, having their “individuality.” The interaction line
Further, because an interaction line connects two polygons ig characterized by the frequency and the momentlym) (
the joint diagram, we includeg(V)® in each polygorkKs so  and (’,p’) carried by the particle which enters or emerges at
as to count each interaction only once, so that we d&fine poth ends of the line as depicted in Figch This allowsn,!

ways of rearrangements which produce different joint

1 1 1 S

K== [ - g1 . diagrams.
Vv 3 VvV B ol ol With these in mind for summin§i4(K)”s, we obtain the
(€p—p)+i B (ep—m)—i B following expression ofZ,(u):
tS)
This K, represents a unit diagram more general than the Zy(p) ~S'n |ﬁ i( _VKS) s ©
bubble, wheres represents the polygon size, thus indicating a Zy G ¥ vl 2s '
coherence size in which Bose statistics is satisfied rigorously.
(The bubble corresponds t6;.) where 3, , is a summation over infinite sets of positive

integers including zero subject to a constraint we explain
below. This expansion df,(u) is based on an idea which is
Consider a joint diagram in which the polygols  entirely different from that of the ordinary linked-cluster ex-
appearsvg times, a distribution of which is expressed pansion.(The latter is an expansion in powers of the cou-
as {vg={vi,vp, ...} (for example, in Fig. 3 pling constant, including only a small class of the large-scale
{vs}={6,1,1,1,,0...}). The joint diagram including such coherence. The former is an expansion with respect to the

2. Joint diagrams
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size of the coherent wave function obeying Bose statisticssum of the ring diagram like Fig. 2 is a simplest case in
thus including the large-scale coherence systematigally.  which only the bubblé&(t) has a nonzero value in E(L4),
As the size of the system approaches infiifithye thermo-  so that®
dynamic limif, large polygons appear more frequently in the
joint diagram. This means in Eq9) that the size of the R
polygons represented By and the number of each type of ZV(“)_ZOVJ dte th;[ 1;[
polygon represented by, . goes to infinity.
g 1

3. Summation over the number of polygons, X ex tz_

(15

| 2
i i (ep— )2+ —
Let us consider the number of each type of polygon first. P B

If the sum overvg can be carried out independentlyrig in This 7 | h . | hat it lead
Eq. (9), we simply obtairZy(u)/Zo=n,! T~ exp(—VKJ2s), is Zy(u) always has a positive value, so that it leads to a

but in reality the distribution of the polygons and the numberContinuous and differentiable andp as the isothermal line
y pod f the single phase. Even if other typeskof(t) (s=2) are

of the attractive interaction line are related to each other b>9 ’ N S\
n,=3.Sv.. This relation is attributed to a fact thas tnter-  added in Eq(14), we get a qualitatively similar result.

action lines emerge from each polyg&n. To include this With deCfe?Si“Q temperature a_nd increasing density, how-
constraint in the summation, and to transfongi to a sim- €€ the contribution of polygons in the exponent of Eid)
pler form, an identity will gradually change. Sinc&(t) is of an order oft®, the

exponent is a power series §f>C.t5, beinga coherence-
size expansionIn view of Egs.(12) and(14), a ratio of the

n,! =Vj dt(Vt)hae v, (100  coefficientCs of tS to that oftS™! is given by
0
| 21-s

is used, andh, in (V)" is replaced by=svs. Using Eg. > (ep— )2+ _) }
(10) in Eq. (9), we obtain, Cs s-1g Tp B

) Ce s VB " M)z ml\2]-(6=1)-

Zyp) _ vt 1 Ks " il B
Z dt H E il o (V1)S7s. 16
11

(Sincet in Eq. (14) is a parameter which is renormalized by
We can combinek)"s with (Vt)®’s, since they have a com- V @s in ert., we replacet in Kq(t) [Eq. (12)] by t/V for
mon form asx”s. We definek () in such a way that Y in ~ OPtaining this ratio.

the right-hand side of E¢8) is replaced byt as Let us estimateCS/CS,_l for a larges. At ©<0 (high .
temperature and low densjfythe numerator and the denomi-
1 g 1 s nator of Eq. (16) is approximated by € u) 2° and
K== > [ —t= -, (1@ (—w)?¢71), respectively, for a smalp and . Hence the
V15 B (€,— )2+ 1) former is smaller than the latter for a large leading to
P M B Cs/Cs_1<<1. This means that the large polygons make a
minor contribution in Eq(14), which validates the approxi-
and we rewrite Eq(11) as mation like Eq.(15).
: As u—0, however, for a large, a contribution froml
Zy(p) * VK(t)) " =0 becomes dominant in the summation in ELf). Hence
:Vf dte” VtH % (—> - 13 gn asymptotic form oC,/C,_; is given by
This allows the individual sums ong to be done. Hence we Cs g 1
obtain a parameter representationZgf u), C.. VB 5 m (17)

o 1 When cooling and compressing the systenB tlecreases
:Vfo dtexp{ _Vt_Vz ng(t))- (14) and 1/, —u)? increases. Since. approaches zero at the
finite temperature{the BEQ, the growth of 1/€,— w)? for
p=0 is faster than the decrease ofB1l/leading to
Cs/Cg_1—. This implies that, ag.— 0, the large polygons
made of thep=0 Boson becomes remarkably important, so
Next, let us consider the size of the polygons. In thethat the size of polygons contributing to E44) grows ex-
single phase, the thermodynamic quantities are determingglosively to reach a macroscopic scaleor comparison with
by the small-scale coherence in which only a few particleshe BEC, see Sec. V.
are participating. This means that,(u«) is well approxi- Hence, for obtainindy(w) at low temperature and high
mated by the simple diagrams like Fig. 2, so thaof only  density, one must sud.(t)/s over an integes from 1 tox
small-size polygons are summed to infinity. For example, thén Eq. (14). With an aid of the identity

4. Summation over the size of polygons s: Coherence-size
expansion

134529-5
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s=1

(—x)°

S

=In(1+Xx), (18

in Egs.(12) and(14), we obtain the formula derived in Refs.
12 and 13,

Z
v(m) —vV
VA

j “ate V] T1
0 I1=0 p=0

g 1

X| 1+t—

] 2 (19)

B

An important point for our purpose is that, following Bose

(Ep_l’v)2+

PHYSICAL REVIEW B 64 134529

7

TBEC

FIG. 6. A schematic graph of |g|kgT/V=pu(T), where the

statistics, one must calculate the infinite product with respedhin solid curve represents [g|kgT/V and the thick solid curve

to the frequency in Eq.19) over an even integér(including
zerg. By use of the identity

s

2 2

S
mz

A
(2n)?

(20

I -

h’]TZ
A=1 2’

w(T).

ever, theu in the denominator of the second term ap-
proaches zero as illustrated in Fig. 6, and the second term in
the brackets begins to cancel the first term 1 because of the
negative signg<<O (attractive interaction [Although 18

in the numerator and the denominator of each factor in Eqdecreases when cooling, &) w)? increases more rapidly

(19), we obtain a final form,

1+ ot !
B (fp_M)z

Zy(p)=ZoV J dte V'[]
0 p=0

sinhB\/ (ep— )%+ %t

sinhB(ep— )

x (€p—n)

(21)
gt

B

This formula is the concrete form of the grand partition func-
tion of the attractive Bose gas including the macroscopic
scale coherencgEquation(21) includes the linked-cluster
expansion as a paft.

(ep_ﬂ)2+

B. Zero of Zy,(p)
Our concern is whether or na,(x)=0 occurs in Eq.

as in Eq.(17).]
Among many factors in the above product, an especially
important one is

(23

which comes fromp=0 boson. Compared with other fac-
tors, it decreases most rapidly as flhepproaches zero from
the negative side, becausepe,u)2>,u2. Finally, for a
givent, Eq. (23) reaches zero. More precisely, at a critical
value u.(<0), two integrals, which are obtained by splitting
the integrand of Eq(21) into two parts at this factor, cancels
each other. This leads us to conclude tAgf{u) becomes
zero in the course of cooling and compressing. A concrete
estimation of this cancellation will be done in Sec. lll. In-
stead, we discuss the physics behind it in this section.

In summary, the following changes take placeasp-
proaches zero.

(i) At u<pu., the system is in the gas phase, which is
properly described b¥,,(x«) in which the small-scale coher-
ence is dominant@s/Cg_1<<1).

(i) At u<pu, Zy(p) begins to include the large-scale

(21) in the course of cooling and compressing. The fact thatoherence.
the chemical potential approaches zero when cooling and (iii) At u=u.(<0), the large-scale coherence grows and

compressing the system is a fundamental property of th

&,(n)=0 occurs. This implies that the densipybecomes

boson system, which does not depend on details of the intetliscontinuous in Eq2) and that the system really changes to

action. An important factor for creating the zero in Eg1)
is

(22)

which comes froml =0 contribution in Eq.(19). At high
temperature and low density.&0), this product is positive.

the liquid state in a discontinuous manner. Sipge<0, we
conclude that the GLC occurs prior to the BEC. This sug-
gests that what is necessary for the GLC is not the BEC, but
“statistical attraction” due to Bose statisticéThe occupa-
tion of the lowest-energy state by a macroscopic number of
particles is a too strong condition for the GL\C.

(iv) Normally, the GLC is associated with the metastable
state. For any less thanu., Zy(w) is always positive, but

With decreasing temperature and increasing density, howfor u.<u, Zy(w)=0 becomes possible. In this senge,
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gives us a lower limit of the chemical potential for the GLC. bosons has a positive value at, but the pressure by the
For u.<u<0, if only the system crosses the energy barrierzero-momentum boson becomes negativeugt because
the GLC must occur prior to the BEE. In Z,,(«)<0 for p=0. Similarly, the total density by all the
One can take the following alternative view on the origin bosons has a positive value, but the density by the zero-
of the instability: The ring diagrams made of the bubbles inmomentum boson discontinuously decreases because
Fig. 2 are united to forma joint diagramin Fig. 3 by ex-  dInZ,/du——= for p=0. A natural interpretation of this
changing the particle lines. This can be viewed‘@ason-  fact is thatit is the zero-momentum bosons that escape from
densation of the diagramsdccurring in momentum space. the dilute gas first, making a liquid droplet, whgnreaches
All the joint diagrams can be viewed as a result of such gu.. This assembly of the zero-momentum bosons with high
condensation. This view influences the discussion about théensity is a favorable environment for the BEC. But whether
relationship between the BEC and the Glsee Sec. Y. or not this assembly immediately leads to the BEC is a dif-
For the classical gas, the microscopic derivation of theficult problem(see Sec. V.
GLC on the basis of the grand partition function has been a
difficult problem? In the attractive Bose gas, however, there
is a clear physical origin of the instability due to Bose sta- ) . o .
tistics. Hence a model of the GLC of the attractive Bose gas _|f we deriveZy(x) under Fermi statistics and compare it
would be simpler than that of the imperfect classical gas oWith Eq. (21), we will obtain a deeper understanding of the
that of the attractive Fermi gas. This circumstance is a reasdiple of Bose statistics for the GLC. Let us consider spin
why Zy(x.)=0 is derived through a relatively simple pro- one-half fermions having a same form of_Hamlltgman as Eq.
cedure. The factor coming froi=0 in Eq.(21) is a math- (3) except that the operators obey Fermi statistics. Its grand

ematical ingredient of what was predicted by the physicapPartition function has a similar structure as in the boson case.
argument on the role of Bose statistics for the GLC. In the Fermi gas, however, one must calculate the infinite
product in Eq.(19 over an odd integet. By use of the

identity

D. Comparison with the Fermi gas

C. Role of the zero-momentum boson

In view of the above argument, one notices that the zero- I (1+ z? ) _ coshw—z, (24)
momentum boson appears twice in the instability mecha- n=1 (2n—1)2 2
nism.

(i) As s—oo, the ratio of two slightly different-size poly- in the numerator and the denominator of E49), we
gonsC,/C,_, increases most rapidly in the zero-momentumobtain;®
boson[Eq. (17)].

(i) The cancellation of the integrals leading Zq,(u) Zy()
=0 occurs in the zero-momentum boddtg. (21)]. B gkt

Both facts indicate a special role of the zero-momentum B coshz\/ (ep— )2+ —
boson in the GLC. Since the system is not in the BEC phase :ZOVI dteWtH 2 B
at u=pu., the number of the zero-momentum boson is not 0 p=
yet a macroscopic one. But it plays a role of trigger for the coshy (ep— )
instability.

Further, one notices also the following: (25

(iii) For the appearance of the term E2) in the expres-  Thjs is the grand partition function of the attractive Fermi
sion of Zy(u), the infinite sum over the polygon sisdEq.  gas including the large-scale coherence due to Fermi statis-
(18] is crucially important. This fact suggests that the explo-tics, which is equivalent to the BCS modét:
sive growth of the large-scale coherence is essential for the consider a complex plane.u, which satisfies
GLC.

(iv) As a condition of the explosive growth of the coher- B lg[t
ence inZy(u), one can useC,/Cs =1 for the zero- 2 (Ep—,u)z+ 7=|
momentum boson in Eq(17). As a result, we obtain
—(9/VB)(1/n?)=1, that is,u=—\/|g[kgT/V. On the other  gives us zeros oZ(u). Such au has a form
hand, the condition oZ,(x)=0 in Eq(21) is more compli-
cated. If two conditions agree completely, this means that _\/|g|t (2n+1)m\2
C./Cs_1=1 andZ,(u)=0 take place simultaneously due m=€p*l 7+ T) :
to the zero-momentum bosons. In Sec. Ill, we will prove this
prediction within a first approximation téy(u)=0. This means that there is no possibilitys§(x) =0 for a real

To understand the role of the zero-momentum boson inu. Hence, for the attractive Fermi gas equivalent to the BCS
tuitively, we must return to the equation of states. Since thenodel, even if the large-scale coherence is taken into ac-
integrand ofZ,(u) in Eq. (21) has a product form with count, the GLC is impossiblésee Ref. 2 This conclusion
respect top, in Egs.(1) and(2) one can approximately dis- supports the physical argument in Sec. | that Fermi statistics
tinguish the pressure and the density by the zero-momentuprevents the GLC, and that quantum statistics plays an im-
boson from that by other bosons. The total pressure by all thportant role for the GLC of the quantum gas.

2

n+§

1
T, (26)

(27)
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Il. GAS-LIQUID CONDENSATION IN THE PHASE
DIAGRAM
A. Critical chemical potential

Let us obtainu, in a case of the weakly attractive inter-
action. We approximate the temperature dependengelnf
that of the free Bose gaa thick solid curve in Fig. § and

use the well-known formula of the free Bose gas above

Tgec, Which is derived from Eq(6) as®
2
g3 1)

T 3/2 2
27 (E) _1}' 9

where u(T) depends also on the number densify=N/V)
throughTgec as
)2/3

When we knowu., the transition temperaturg, of the
GLC is defined asu(T.)=u. for a given density. As the
system approache$. from above temperature, the Fig.
3-type diagrams become important i, (u). When it
reachesT ., the large joint diagram leads #,(x)=0.

Since Eq.(21) has a form of infinite product, it is difficult

kBTBEC

M(T)=—(

n
J32(1)

KeTgec=—— (29

2ah?
m

to estimate its exact value. To obtain a first approximation

of wu., we consider only the most important factor
[1+ (gt/B)(1/x?)] in the integrand of Eq(21), and simpli-
fiesZy(uc) =0 as follows:

J’ dte™ V!
0

[We numerically confirm that an inclusion of tipe=0 com-
ponents to Eq(30) does not change the result so mych.
From Eq.(30), we getu.=—|g|ksT./V as a first approxi-
mation (a thin solid curve in Fig. 6

This condition of i is exactly a condition ofc,/C,_4
=1 in Eq. (17) for the zero momentum bosonu=
—|g|kgT/V. At least within the approximation faZ(u)
=0 such as Eq(30), the explosive growth of the coherence
(Cs/Cs_1=1) and the GLJ Z\(u)=0] take place simul-
taneously(for its implication, see Sec. V

The u. and theT. are determined as a point of intersec-
tion of the thick solid and the thin solid curve in Fig. 6, being
a solution of an equation: |g|kgT./V=u(T.). Substitut-
ing this equation intal =T, in Eq. (28), we get

gt

2
He

1+KgTo— | =0. (30)

2
:_<93/2(1) T e 3/2_1 ?
Mc —2\/; B!BEC —|g| )
VkBTBEC
(31
and solveu for the smallg as

_ 2\mkaTeec) ™ lgl| ¥ 32
BE Ty | v
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gas

1 03 01 003
A(pm)

FIG. 7. (n,\) phase diagram of the attractive bosons, wheie
a number density ankl= (mkgT/27%2) ~ 2, In this figure, the hori-
zontal axis can be viewed just like the temperature Erishe case
of Rb atom:T nK=30\"2 um]. A solid curve is a GLC line of
the Rb atom defined bgx3=gg(ef#<(M) with wu.(n) [Eq. (33)]
for g/V=-5 nK, and a dotted curve fay/V=-5 uK. Shaded
area is the BEC phase of the free Bose gas definechhy

=03(1).

Equation(32) is a critical value of the chemical potential for
the GLC of the weakly attractive Bose gas, showing that a
threshold value for the GLC does not exist in the strength of
the attractive forceAn arbitrary small attractive force is
sufficient for the GLC to occur before the chemical potential
reaches zero

B. Condition of the GLC

Next, let us obtain a condition of this GLC in the phase
diagram. For the BEC of the free Bose gas, we have a well-
known condition:n\3=gs,(1), which is derived from Eq.
(6). This condition indicates the positions of,{) in the
phase diagram at which,(u)—0o because ofu=0.

We modify this formula in such a way as to indicate the
position of (n,\) at which Z,,(u)—0 because ofu= ..
Accordingly, we replaceu=0 in N\3=g5(1=¢€° by u.
such thain\ 3= g,,(e#c), which determines the density and
the temperature at which the GLC occurs. In comparing the
two conditions, one notices that, becausé“c<1 and
032(X) is a monotonic increasing function, one obtams
<nggc for a constantl, and T.>Tggc for a constann. In
the BEC of the free Bose gas\3=gs,(1) is a universal
line in the (h,\) phase diagramAll bosons are plotted on
this line) For the GLC, however, a position of\®
=gg(€#c) in the phase diagram depends on the mass of
the boson through thg. as

n4/15 (

ﬁ 2/5
peln)= _( ﬁm) [0 1)17°

Figure 7 is the ,\) phase diagram, showing a solid and
a dotted curve fon\3=gg(ef#<M) (GLC line). The solid
curve represents the GLC line of the Rb atom with[Eq.
(33)] for g/V=—5 nK, and the dotted curve represents that
for g/V=—5uK. The shaded area represents the BEC phase
of the free Bose gasin3=gs,(1). In this figure, the hori-

lol
V

3/5
) . (33
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zontal axis representingh=(mkgT/27%%) "2 can be are established only in the thermodynamic limit. But the
viewed just like the temperature ax[¢n Rb atom,\ is re-  trapped gas locally realizes the ultralow temperature and
lated to the temperature By nK=30\ "2um.] high density, which are impossible in the corresponding uni-

We note the following features of Fig. 7: form gas for technical reasons. Hence it shows macroscopic

(i) Compared with the BEC region, the GLC lines appearchanges seemingly similar to the phase transition of the uni-
on higher-temperature and lower-density side. Hence, wheform gas.(This expectation is supported by some computer
we start from the ordinary condition, decreasing the temperasimulations of the finite-size system3’he BEC-like phe-
ture and increasing the density of the system, the GLC ochomenon is an example of such phenomenon, suggesting that
curs prior to the BEC. we can expect a GLC-like phenomenon as well. When we

(i) Under the same strength of the attractive force, thocus on such properties, we can study the trapped gas using
BEC region and the GLC line come apart at lower temperathe grand partition function of the corresponding infinite
ture. systen?’

(i) As the strength of the attractive interactignin- This infinite system has a unique density of states which
creases, the position of the GLC line in the phase diagrameflects the shape of the potential. The lowest energy state
moves to the higher temperature and lower density region, which is localized in the bottom of the potential has a rela-
more accessible environment. Note that the GLC is very sertively large volume in the phase space, compared with the
sitive to g/V. It seems natural since the GLC is a stronglyp=0 state of the uniform gas: Under a constauht=m,
cooperative phenomenon. +my+m,, a possible number of states is

IV. TRAPPED BOSE GAS % M+ 1) _(M+1H(M+2)

5 (36)

Let us explore an application to the trapped Bose gas. As
discussed in Sec. |, the ultracold trapped Bose gas has
possibility of proving the role of Bose statistics for the GLC.
The trapped system, however, has its own properties whic
complicate the argument developed so far in the umformg

It the V— oo limit, the number of states can be approximated
Ry M?2/2. In the single phase?,v(,u) is approximated by,
w(1—e Alev=m)~M?2 Hence the equation of states is

system. en by
The trapped atomic gas is the boson system in the spheri- B B
cal harmonic potential P ga(ePrhien) In(1-eflrfieo)
T 3 - 3 . @37
1 (2 B A R
U(r)=—Uo(—> , (34)

2 7R ga(eBr00) 1 eBlu—hwy)

wherer’=x?+y?+27? and R is a range parameter of the n= \S + R 1_ eBlu—twg)’ (38)

potential. The energy level is specified by an intedér
(=my+my+m,, a sum of the quantum numbeas ey, where  n=N/R® the number density, \;
—ﬁwo(M+1) where wo=+Uo/(R?m). Under this poten- =[m(kgT)2/3/2T(3)Ug%2] 2 the thermal wavelength of
tial, we consider a Hamiltonian of the spinless Bose gas, the trapped gas, and=R32°

Zy(w) in Eq. (22) is revised using a different density of

states, so that
H= 2 eMaMaM+Hre+V > ahalya_waw:,

M,M’
(35 o 1
. . . ; Zy(w)=2oV | die™ ][ —
with g<0. As in Sec. Il, we consideE yeyayay+H;e as 0 = B (em—m)?

an unperturbed Hamiltoniare(, is replaced b)), and we
consider only the elastiswave interaction. sinh3 /(6 — )2+ g_t
This confined system does not have the thermodynamic Mo B
limit in a strict sense. A¥—, the size of the potentigR X sinhB(ey— 1)
in Eq. (34)] increases, which weakens the potential. As the
confinement becomes weaker, the gas near the bottom of the
potential approaches the uniform gas in the infinite space, M2
losing the characteristics of the trapped systérhe limit of
N—c under a constarllw3 does not maintain the charac- o lem—p) (39
teristics of the trapped system, which is another expression gt '
of N/V =constant for the infinite system existing behind it. (em—m)>+ E
Hence the thermodynamic limit of the trapped gas is impos-
sible not only in a practical sense, but also in principle. WeA zero of thisZ,(ux) occurs by a similar mechanism as in
must regard the size of the trapped gas in the experiment &57. (21). At u=u., the explosive growth of the large dia-
an intermediate scale before approaching the limit. This figram made oM =0 boson inZy(ux) (Cs/Cs_1=1) takes
nite system cannot show mathematical singularities whictplace simultaneously wittZ,,(u)=0, signaling the GLC.
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The bosons on the bottom of the potential, the number of V. DISCUSSION
which is not yet a macroscopic one at, play a role of a
trigger for the instability’*

In the trapped system, a formula corresponding to Eq

(28) has a form such as
EERRl
( Teec 1. “O
(41)

(i) The idea that the GLC is a condensation in coordinate
space while the BEC is a condensation in momentum space
is questionable. Such a question has been raised by many
people in the past. In view of the result of this paper, the
GLC of the attractive Bose gas is a phenomenon not only in
coordinate space but also in momentum space. We can see
this answer in the structural change of the perturbative ex-
pansion(from Fig. 2 to Fig. 3, that is, thecondensation of
the diagrams in momentum spadéis view on the GLC is
probably true also in the classical gas, though its proof is
more difficult than that of the Bose gas. Because of Bose
statistics, it becomes possible to understand the GLC simply
not only in coordinate space but also in momentum space.

(i) The explosive growth of the Bose-statistical coherence
in the GLC seen in Eq16) reminds us of the famous picture
of the BEC by Matsubafd and by Feynma#A®

Feynman expressed the grand partition functi{w)
=3ye “Nfdzzle P1|z) in terms of the path integral on
the imaginary time axisu=it/#) from O to 8 as follows:

w(T)=hwo—| ——|keTged

where

2

[

[or,
0o (sinhx)?

and the BEC-like transition temperature is defined’by
h

fUgn
(3B NV m-

Using a similar approximation as in E(0), we get a con-
dition of u. from Eq. (39) as u.=fwy—|glkgTc/V.
Hence theT, is obtained byhwy— |glkgT/V=pu(T.).

K

kKgTgec= (42

Substituting this equation td =T, in Eq. (40), we get a (zle PH|z)
critical value of the chemical potential for the GLC as )
B
K(KaT 2/5 3/5 :j ex;{—f —(— +V[x(u)] du]Dx(U),
Mczﬁwo_ﬂ @) _ (43) tr 0| 242\du
gs(0) \4
(44)

In analogy withn\®=gg,(ef#c) in the uniform gas, one
obtains from Eq(38) a condition of the instability for the wherex(u) denotes “coordinate” of the particle, arfix(u)
trapped gas aB\?=gs(efl#(M~fedly Using this formula, denotes a path integral with taken on all trajectories form-
we can expect a seemingly similar phase diagram to Fig. 7ng a circle such that(0)=z andx(8)=z.

(The details of the GLC in the trapped Bose gas, including When this formulation is applied tbl-boson system(i)

numerical estimation ofi and \,, will be given in a future
papen

The BEC-like state with the attractive interaction was ob-
served in trappedLi gas as a metastable stdfe(At first

the path of a particl(u) is replaced by the entire set of
paths ofN bosonsx;(u), and(ii) whereas the initial coordi-
nates arex;(0)=z;, the final coordinates need not be the
same, but may be some permutations of these. Thus the

sight, this contradicts the conclusion of this paper. The metaeircle in Eq.(44) is replaced by the permutation circles, each
stability atu.<u prevents the GLC, which complicates the of which is visualized by a “polygon” made of lines joining
situation) A peculiar feature of the atomic gas is that we canatomic centers. Hencg,(u«) is expressed in terms of the
control the sign of the interaction between the atoms usingath integral over the polygons.
so-called “Feshbach resonance.” Using this technique, the Note that this polygon has a slightly different meaning
condensate over a wide range of interaction strength is reafrom that in the GLC(i) The polygon in the BEC is a real-
ized. By a sudden switching of the interaction from the re-ization of the permutation symmetry essentially in the kinetic
pulsive to the attractive one, a collapse of the BEC gas to &nergy, in which the interaction is taken into account only
high density spot was predicted. Recently such a phenonthrough the effective mass. Hence this polygon has no inter-
enon was really observed iPRb2® When such an experi- action line. It is appropriate to consider the path integral over
ment is performed with an enough number of atoms to realthe polygons as an advanced treatmenZgfn Eq. (4). On
ize the thermal equilibrium, and when a wide region of thethe other hand, the polygon in the GLC, from which the
normal phase is searched for the occurrence of the GLC, thisteraction line emerges at each vertex, is a realization of the
experiment will provide us with a method of finding a GLC- permutation symmetry in the interaction ter(i) While the
like line of the trapped gas, which corresponds to the GLCpolygon in the BEC is defined in coordinate space, the poly-
line of the uniform Bose gas in Fig. 7. gon in the GLC is originally defined in momentum space.
In the experimentally observed BEC-like state with the(iii) The size of the polygon in the BEC can have any posi-
attractive interaction, there exists a possibility that someive integers, while the size of the polygon in the GLC has
well-known properties of the superfluid, which are believedonly even positive integers because of the pairing-interaction
to be due to the presence of the repulsive interaction, wouldpproximation in Eq(3). In spite of these differences, how-
be altered. But it can happen only within a short lifetime of ever, both polygons reflect the size of the wave function in
the metastable state. There is a more drastic catastroplehich Bose statistics is satisfied rigorously in coordinate
behind it. space.
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At high temperature, the contribution of large polygons tothe attractive force responsible for such a boson pair must
Eq. (44) is small. But as the temperature falls, it suddenlyhave a property such that there is no residual attractive inter-
becomes important. The explosive growth of the large poly-action between the boson pairs. When such a residual force
gons in Eq.(44), which results in the macroscopic occupa- is there, the GLC must occur instead of the boson-pair for-
tion of the lowest-energy state, is a definition of the BEC.mation. Forbidding the residual interaction between the bo-
These “motions” of particles in the partition function must son pair, however, should impose a somewhat artificial con-
not be considered as a real description of what the atoms asdraint on the nature of the attractive interaction between the
doing, but as a formal description of the expression. But théosons.
true behavior of the atoms may have some analogy to it. In (iv) This paper deals with only an initial stage of the
this sense, this formulation provided us with a realistic pic-instability. Once the Bose gas changes to the liquid droplet,
ture of the BEC in coordinate space, which had been rethe repulsive core due td,. plays a dominant role. Accord-
garded as a phenomenon in momentum space. ingly, the ladder-type diagrams must be taken into account in

In the GLC as well, we show that the explosive growth ofthe perturbative expansion &,(u) as well. (When the
the polygon occurs in the grand partition function, whichbosons are in a gas state with high density at high tempera-
results in the drastic change of the spatial distribution of theure, the situation is similarThis makes Fig. 7 a more com-
system through Yang-Lee zeros. In contrast with the BECplex phase diagram: The critical poina(,\.) will appear
the argument on the GLC develops in a reverse directionon the GLC line, and the GLC line below the(,\.) in Fig.

The GLC has been regarded as a phenomenon in coordinalemust be replaced by the gas-liquid coexisting region. An
space, but the polygon picture of the GLC provides us with axplicit inclusion of the repulsive force B, (u) will reveal
realistic picture of the GLC in momentum space. In thisa competition between the repulsive core and the attractive
sense, we can find a parallelism in the BEC and the GLC. interaction of bosons, and leads us to understand a more

Our conclusion that, when cooling and compressing the&omplex nature of the later stage of this instability. An ex-
attractive Bose gas, the GLC occurs prior to the BEC, imtension of the model along this line is also necessary to un-
plies that, in the attractive Bose gas, the remarkable changgerstand the unanswered question of whether the liquid drop-
of the permutation symmetry of the state occurs in two stepdet made of the zero-momentum boson immediately
first driven by the attractive-interaction energy, and secondindergoes the BEC. The later stage of this instability is an

by the kinetic energy. open problem.
Considering similarities and differences between these

two explosive growths of coherence will lead us to a deeper
understanding of the relation between the BEC and the GLC.

(iii ) In the attractive Bose gas, a possibility of the boson The author thanks K. Miyake, Y. Tsue, H. Okamoto,
pair has been explored by many people in analogy with th&/. Nagaoka, and K. Burnett and his group for valuable
Cooper paif® In view of the result of this paper, however, discussion.
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