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Do Manufacturing Plants Cluster Across Rural Areas?
Evidence from a Probabilistic Modeling Approach

Introduction

The new economic growth theory of Romer, Krugman, and Venables has

stimulated a renewed interest in the spatial concentration of industrial activity and the

advantages that concentrations provide member establishments.  The focus of this recent

research is the extent of industry clusters or agglomerations at state or metro levels and

evidence of static and/or dynamic locationalization economies attributable to these

concentrations.1   Research on industry clusters in nonmetropolitan areas is also available

but currently limited to case studies of specific industries (Rosenfeld) and analysis of the

association between nonmetro concentrations and industry employment growth (Henry

and Drabenstott)  and wage rates (Gibbs and Bernat).  Yet industry clusters may be

especially important to nonmetro areas if these agglomerations provide (through external

economies) the means to overcome disadvantages inherent with nonmetro locations

(sparse local markets, geographic isolation, and lack of economic diversity). 

The purpose of this study is to provide an overview of establishment clustering

tendencies and trends for nonmetropolitan manufacturing industries (three-digit SIC

level).  Three research questions are of particular interest.  Do manufacturers cluster

establishments in nonmetro areas, and if so, are these agglomeration propensities

relatively strong?  Which manufacturing industries exhibit the greatest or least spatial

concentration in nonmetro areas?   Have nonmetropolitan clustering propensities

increased or decreased over time for manufacturers?  Answers to the above questions
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will provide insights into the determinants of industry clustering in nonmetropolitan

areas (natural advantages versus inter-industry spillovers).    Documentation of

industries’ agglomeration tendencies also will be useful to nonmetro communities that

are attempting to develop or expand industry clusters through targeted industrial

recruitment efforts.  The development of an industry cluster provides greater local

economic development benefits than a less focused industrialization strategy because

establishment clustering promotes external economies, facilitates industrial restructuring,

stimulates inter-firm  networking, and permits greater focusing of public resources

(Barkley and Henry).  However, all industries are not equally attractive candidates for

industry clusters, and industry cluster development programs will have greater success if

the targeted industries tend to spatially concentrate their establishments.

In this paper, industry clustering is addressed through analysis of a statistical

measure of geographic dispersion based on the spatial distribution of nonmetro

establishments in three-digit SIC manufacturing industries.  Thus, an industry cluster is

defined to be a group of establishments in the same or closely related industry, located

in close proximity to one another.  As noted by Bernat, this definition represents an

intermediate view of industry clusters.  Broader interpretations include other industries

linked to the “core” industry through actual or potential buy or sell relationships. 

Narrower interpretations, on the other hand, restrict industry clusters to establishments

in close proximity that are closely connected through networks.  Bernat notes, however,

that neither intra-industry buy- or sell-linkages nor networking are necessary for the

existence of establishment clusters since establishments may be responding to cluster-



3

related externalities provided through the market.

Our analysis of nonmetro establishment concentrations is organized as follows. 

First, we provide a summary of the reasons why establishments in an industry may

locate near one another.  Second, we present a statistical methodology for detecting

“contagious” establishment location patterns, and rank industries’ nonmetro clustering

tendencies based on the “dispersion parameter” of the negative binomial distribution. 

Third, industries with high or low establishment concentrations are compared to provide

insights into the determinants of nonmetro clusters and implications for nonmetro

industrial development policy.

Why Do Industry Establishments Cluster?

Ellison and Glaeser find widespread evidence of industry clustering and attribute

this to two principal forces: industry-specific spillovers and natural advantages. 

Industry-specific spillovers are economies external to the firms but internal to the

regional industry cluster.  These external economies are referred to as static localization

economies if they are attributable to the current scale (e.g. employment or number of

establishments) of the industry cluster or Marshall-Arrow-Romer (MAR) dynamic

externalities if they result from a historical presence and regional specialization in a

particular industry.  More specifically, Henderson (1986) attributes static localization

economies to:

   (1) economies of intra-industry specialization where increased industry size permits
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greater specialization among industry firms in addition to a greater availability of
specialized intermediate input suppliers, business services, and financial markets.

   
   (2) labor market economies resulting from a larger pool of trained, specialized

workers and reduced search costs for firms looking for workers with specific
skills.

   
   (3) scale for networking or communication among firms to take advantage of

complementarities, exploit new markets, integrate activities, and adopt new
innovations.

   (4) scale in providing public goods and services tailored to the needs of a specific
industry.

Alternatively, Marshall-Arrow-Romer externalities are derived from the

accumulation of knowledge and knowledge spillovers among local firms in the same

industry (Glaeser et al.; Henderson, Kuncoro, and Turner).  The build-up and sharing

of knowledge among area firms in the industry are enhanced by a local legacy of and

specialization in a particular industry.

Both static and dynamic externalities encourage the clustering of industry

establishments in a limited number of locations.  Yet, Ellison and Glaeser (p. 921)

suggest that “some of the most extreme cases of concentration are likely due to natural

advantages.”  Natural advantages include climate, topography, proximity to location-

specific inputs, locations that minimize transportation costs associated with shipping

inputs and outputs, and locations with access to pools of labor with desired

characteristics (e.g., lower labor costs or amenities attractive to skilled labor).  McCann

suggests that spatial industry agglomerations resulting from “natural advantages”  may

be purely the incidental result of individual firm optimizing behavior.  The presence of

other establishments in the industry at the location may not provide any benefits in terms
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of external economies.

Insights into the role of industry-specific spillovers versus natural advantages in

nonmetro clusters may be provided by an investigation of clustering propensities across

industries.  A comparison of alternative methodologies for estimating spatial

concentration is presented in the following section.

Methodology for Measuring Industry Agglomerations

Estimating Spatial Concentrations.  Four principal indices are used in previous

research to measure the spatial concentration of industrial activity: spatial concentration

ratio, spatial Hirschman-Herfindahl index, locational Gini coefficient, and the Ellison

and Glaeser concentration index.  The spatial concentration ratio is generally the

percentage of an industry's employment in the most concentrated four or eight

geographic areas (e.g., states, metro areas, or  counties).  Spatial concentration ratios

provide only limited information on differences in the spatial distributions of industries

because the industry's ratios may be sensitive to the number of regions selected and

information on the distribution of employment outside the selected four or eight regions

is not considered.

The spatial Hirschman-Herfindahl index is preferred to the concentration ratio

because the index includes information from all relevant regions.  The Hirschman-

Herfindahl index generally is estimated as:
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where   j = industry

 i = region

 n = number of regions

 si = share of industry j's employment in region i

 xi =share of total employment in region i

The spatial Hirschman-Herfindahl index has a value of zero if the regional distribution

of industry j's employment is identical to the distribution of total employment.  Index

values greater than zero are interpreted to indicate a spatial concentration of industry

activity.

The spatial Hirschman-Herfindahl index has two inherent limitations for 

detecting and measuring the spatial concentration of manufacturing establishments. 

First, the index does not distinguish between random and non-random distributions of

establishments.  Second, the index is sensitive to the number of establishments in an

industry if establishment numbers are less than the number of regions.  That is, an

industry with a relatively small number of establishments may have a relatively high

index value since si = 0 for many regions simply because the number of regions 

exceeds the number of establishments.  Thus, a small number of establishments will

inflate an industry's index value, making comparisons across industries problematic.2

The locational Gini coefficient is a summary measure of spatial dispersion
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derived from a spatial Lorenz curve.  The locational Gini coefficient for an industry m

is calculated as:

          

         

         i,  j =
regions ( i Ö j)   

             u =  mean of xi

         xi(j ) =  Region i's (j's) share of employment in m
         Region i's (j's) share of total employment

                      n  =  number of regions 

The locational Gini coefficient has a value of zero if employment in industry m is

distributed identically to that of total employment, and a value of .50 if industry

employment is concentrated in one region.  The Gini coefficient has the same limitations

as the Hirschman-Herfindahl index when regional industry activity is measured by

establishment counts — inability to distinguish between random and non-random

distributions and sensitivity to number of establishments in the industry

Ellison and Glaeser recognize that some spatial clustering of industry

employment may result from a random distribution of establishments and traditional

measures of spatial concentration do not reflect whether the observed level of industry

concentration is greater than would be expected to arise randomly based on a

“dartboard” approach to locating employment.  In Ellison and Glaeser's simplest model,
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the estimated spatial Hirschman-Herfindahl index for industry j (gj) is compared with the

expected value of gj [E(gj)], the index value that would arise, on average, if plants

selected locations randomly and no spillovers or natural advantages were present.  The

expected value of gj was estimated as

 where   xi  = share of total manufacturing employment in region i

   zk = share of industry employment in plant k

        n = number of regions

   m = number of plants in industry j

Ellison and Glaeser, using state-level employment data, found that the estimated

Hirschman-Herfindahl index (gj) was larger than E(gj) for 446 of 459 four-digit SIC

manufacturing industries and this difference was more than twice its standard deviation

in 369 of the 446 industries.  They concluded that the level of raw concentration

exceeds what would be expected to arise randomly, thus indicating the influence of

natural advantages and spillovers on plant locations.

Ellison and Glaeser's dartboard approach is a significant improvement over

earlier concentration measures because employment concentration attributable to

randomness is considered.  However, the dartboard approach is not appropriate for our

study of establishment concentrations because the equation provided for the E(gj)
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appears to underestimate the mean spatial Hirschman-Herfindahl index for a distribution

of establishments where establishment counts are less than the number of regions.  

For example, assume there are five plants of equal size in an industry, and ten

regions of equal total employment. There are 2002 number of ways in which five

indistinguishable plants may be distributed among the ten regions.  The expected value

of the Hirschman-Herfindahl index for the 2002 combination is .247 while Ellison and

Glaeser's E(gj) = .180.3  Similarly, for the 715 possible combinations of four plants

among 10 regions, Ellison and Glaeser's E(gj) of .225 is less than the expected value of

the Hirschman-Herfindahl index (.286).  The above examples demonstrate that the use

of E(gj) to distinguish random plant distributions from non-random may overestimate 

the number of industries classified as non-random, and thus, overstate the importance of

agglomerations in establishment location patterns.

In response to shortcomings in the above measures of spatial concentration, we

selected a methodology developed by statisticians for determining whether events (such

as insects per acre, bacteria per colony, or defects per production facility) are spatially

distributed in regular, random, or contagious patterns (Figure 1).  In general, this

methodology follows three steps for detecting and measuring contagious patterns in the

spatial distribution of events (in this study, the events are the presence of manufacturing

establishments in nonmetropolitan areas).

Step one, the distribution of establishments among the regions is analyzed to

determine if the distribution is regular, random, or non-random.  If every region were

exposed equally to the chance of containing an establishment (i.e., plant locations are
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independent random variables), the distribution of establishments across regions would

follow the Poisson distribution.4 Observed establishment distribution frequencies are

compared with the values predicted by the Poisson model under the null hypothesis of

“independent” counts of establishments across regions.  If the observed and predicted

values are significantly different, the null hypothesis of a random distribution is not

accepted.

Step two, if the observed values are neither uniformly or randomly distributed,

then the observations are said to exhibit “contagious” behavior or to “cluster” in space. 

The industry establishment distributions exhibiting contagious behavior are fitted to the

negative binomial distribution, a probabilistic model developed to account for

distributions in which the variance is significantly larger than the mean.  Next, tests are

conducted to determine if the predicted values provided by the negative binomial

distribution closely match the observed values.

Step three, if the observed spatial distribution of establishments for an industry

are approximated by the negative binomial distribution, then the exponent k of the

negative binomial distribution (referred to as the dispersion parameter) may be used as a

measure of the extent of contagious behavior among the establishments.  The estimated k

values are used to classify industries according to their nonmetro agglomeration

propensities and investigate changes in these propensities over time.5 Data Sources. 

The focus of this study is the distribution of manufacturing establishments among

nonmetropolitan areas.  County-level establishment data for 140 three-digit SIC

manufacturing industries for 1981 and 1992 were obtained from the Enhanced County
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Business Patterns.  Establishment counts were collected for only the nonmetropolitan

counties of the BEA's multi-county Component Economic Areas (CEAs).6   Multi-

county CEAs were selected as the appropriate geographic scale because nonmetro

industry concentrations generally are not confined to a single nonmetro county

(Rosenfeld).

Testing for Non-Randomness of Locations.  For each industry, a frequency

distribution was constructed providing the number of nonmetro CEAs containing 

x = 0, 1, 2, 3 . . .n establishments.  If every region were exposed equally to the chance

of containing an establishment, the distribution of establishments would follow a Poisson

series, where the expected frequency (Ex = expected number of CEAs with x

establishments) is computed as:

where

n is the total number of regions, x is number of establishments in a region, Px is the

probability of finding a number of establishments equal to x, and m is the mean number

of establishments per region.

Next chi-square goodness-of-fit tests are used to determine whether observed

counts are consistent with expected counts calculated under the hypothesis that the

Poisson probability model is representative.  Experience has shown that the expected

counts per category (in this case, expected number of regions with x establishments)

should be greater than five in order that the chi-square distribution provides an adequate
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approximation.  Thus, a pooling of categories may be required to attain expected CEA

numbers greater than five.

An example of the application of the Poisson distribution to establishment count

data is provided for the regional distribution of establishments in SIC 382 (Measuring

and Controlling Devices).  In 1992, SIC 382 had 384 nonmetro establishments in the

280 nonmetro CEAs, and the observed and expected frequency distribution of

establishments among the CEAs are provided in table 1, part a.  The observed

distribution of establishments for SIC 382, compared to the expected distribution based

on the Poisson, had a relatively large number of CEAs with no establishments, a

relatively large number with four or more establishments, and a relatively small number

of CEAs with one, two, or three establishments.  The null hypothesis that establishments

in SIC 382 were randomly distributed was rejected.

Tests for randomness of establishment locations were conducted for the 140 3-

digit SIC manufacturing industries.  Non-random distributions of establishments were

found for 119 industries for 1992, the establishments in SIC 385 (Ophthalmic goods)

were distributed randomly among nonmetro CEAs, and 20 industries were non-testable

because of too few establishment observations.  For 1981, non-random distributions of

establishments were found for 112 manufacturing industries, and 28 industries had too

few establishments to test for randomness using this procedure.7

Negative Binomial Distribution.  The results of the previous statistical analysis

indicate that the geographic distribution of manufacturing establishments in nonmetro

CEAs is contagious, i.e., non-random concentrations or agglomerations are evident for
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most three-digit manufacturing industries.  A measure of the extent of contagious

behavior for each industry is provided by “fitting” the industry's establishment

distribution data to the negative binomial distribution.

Each negative binomial distribution is defined by two parameters--the population

mean (m) and the exponent k (the dispersion parameter).  The variance (v) of the

negative binomial distribution is

Note that as k ÷4, v approaches the mean m and the distribution approaches Poisson. 

On the other hand, as k ÷o  from above, the variance increases indicating a contagious

distribution.  Thus, the parameter k of the negative binomial distribution may be used to

indicate the “spatial affinity” that establishments in an industry have for one another.  

Estimates of the exponent k (provided by maximum likelihood methods) are 

acceptable measures of agglomeration propensities only if the industry establishment data

fit the negative binomial distribution.  The standard test of adequacy of the negative

binomial distribution in representing a non-random distribution is the similarity between

the observed number of CEAs with x establishments (Ox) and the expected number of

CEAs (Ex) as computed from the statistics of the sample (m and k).  For example, the

first expectation, Eo for x = 0 is determined as
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The observed and expected frequencies are compared using the chi-square test.

An example of fitting the negative binomial distribution to manufacturing

establishment data for nonmetro CEAs is provided in table 1, part b for SIC 382

(Measuring and Controlling Devices). In contrast with the previous test, the frequencies

predicted by the negative binomial distribution approximate the observed values.  Thus,

we cannot reject the null hypothesis that the spatial distribution of establishments in SIC

382 has a negative binomial distribution.8

In sum, the negative binomial distribution approximated the observed

establishment distributions for 113 of the 119 industries that we found to be non-

randomly distributed in 1992.  For the 1981 establishment data, 107 of the 112 non-

random distributions were represented by the negative binomial distribution.  The results

of the maximum likelihood estimation of the exponent k for the 113 1992 establishment

distributions and the 107 1982 distributions are provided in Appendix Table 1.

Different Sized Regions.  The theory of negative binomial distributions assumes

that numbers of events are counted on sample regions of equal geographic and

economic size, that is, each region is equally exposed to the chance of containing an

event.  For the previous estimates of the exponent k, the number of industry
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establishments are counted for each nonmetro CEA assuming that the CEAs are the

same size or equally exposed to establishment locations.

Yet nonmetropolitan CEAs vary significantly in terms of geographic and

economic size, and the “equal exposure” assumption may not be appropriate.9  

Variations in region size may be accommodated in the negative binomial model through

the introduction of a variable representing the relative size of each region (Bissell).   

Specifically, Bissell proposed using the weight (wi) representing the ratio of the size of

the ith region (ai) to the mean size of all regions.

Bissell

described maximum likelihood estimators for a negative binomial model with different

sized regions. Consider a set of n regions yielding a set of establishment counts xi (i=1,

. . . n), represented by Xn.  The relative sizes of the n regions are denoted by wi (i=1, .

. . , n), similarly represented by Wi. The probability of observing xi establishments in a

region of size wi from a negative binomial distribution with dispersion parameter kwi

and mean mwi is given by 
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For a set of establishment counts {Xn} from a sample of nonmetro CEAs of size n with 

region sizes {Wn}, the log likelihood function is 

Using the above log likelihood function, the maximum likelihood estimators for k can 

be obtained through an
iterative process as follows:  
 

For this study, three sets of weights (wa, we, and wt) were used to adjust for

differences in regions' sizes.

wa = weight based on nonmetro CEA area size (square miles)

we = weight based on nonmetro CEA manufacturing employment in 1981 or
1992.

wt, = weight based on nonmetro CEA total employment in 1981 or 1992.

Table 1 in the Appendix provides the maximum likelihood estimates of the dispersion

parameter k for (1) no adjustments for differences in the sizes of nonmetro CEAs, 
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k=k*; (2) weights used to adjust for differences in CEA geographic size, k=ka; (3) 

weights used to adjust for the differences in CEA manufacturing employment, k=ke;

and (4) weights used to adjust for differences in total employment, k=kt,.10 

The findings presented in Appendix Table 1 for k*, ka, ke, and kt indicate that

our measures of dispersion may be sensitive to the weights selected to account for

region size.  The introduction of weights for geographic size had little impact on the

estimates of the exponent k relative to the estimates provided in the unweighted model. 

The estimated k values for manufacturing industries were relatively low for both the

unweighted and “weighted-by-area” models, indicating extensive concentration for

establishments in these industries.  Moreover, the rank-order of k values provided by

the unweighted and weighted-by-area models were very similar (correlation coefficient 

=.950).  Industries with low (high) k values in the unweighted model also had low

(high) k values in the weighted-by-area models. 

The introduction of weights for economy size (as measured by manufacturing or

total employment) resulted in greater changes in the estimate k values.  The k values in

the weighted-by-employment estimations were generally higher and had greater

variation than those estimated for the unweighted and weighted-by-area models.  Thus,

manufacturing establishments were less concentrated among the nonmetro CEAs when

CEA size was measured (weighted) by manufacturing or total employment.  Larger k

values (less spatial clustering) when CEA size was measured by employment

(manufacturing or total) were expected since the use of Bissell’s weighting procedure
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treats “large” regions as if they were multiple “average” regions.  That is, a region with

employment twice the average regional employment is treated as two regions in the

maximum likelihood estimations of k.  The “larger” regions must have proportionately

more establishments than “average” regions if the dispersion parameter k is to remain

relatively unchanged after weighting for size (see, for example, SICs 221 and 228). 

However, if the number of establishments does not increase proportionately with region

size, then the distribution becomes more dispersed and k values increase relative to the

unweighted estimates (for example, SIC 254).11

Interpretations of Exponent k

As noted earlier, the exponent k of the negative binomial distribution is a

summary measure of the extent of concentration or contagious behavior among

establishments in an industry.  The possible range of the exponent k is 0 to +4. A k

value close to zero indicates that the industry is highly concentrated, while a large k

value indicates that the distribution of establishments is relatively dispersed.  The

sensitivity of the spatial distribution of establishments to changes in k and the total

numbers of establishments is discussed below.  

Changes in k with Total Establishments Held Constant.  Figure 2 provides an

example of establishment distributions that would be associated with different k values

but the same total number of establishments.  The hypothetical data for this figure are

derived for an industry with 1,700 establishments in the 280 nonmetro CEAs in 1992. 
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The numbers of expected CEAs in figure 2 are calculated by changing the value of k

with the total number of establishments held constant.  The hypothetical distributions

show that if k is small (e.g., k = .50 or .10), there are many regions with no

establishments and a few CEAs with a very large number of establishments.  As k

increases, the number of empty regions decreases and the number of CEAs with large

numbers of establishments also decreases.  Thus an increase in k indicates that

establishments are distributed more randomly, with a greater number of regions having

establishment numbers closer to the CEA mean (m = 6.07).  And negative binomial

distributions with k > 1.50 begin to take a shape similar to a Poisson distribution (that

is, a skewed normal distribution).  Based on the distributions displayed in figure 2, we

shall adopt the convention of referring to industries with k < .50 as highly concentrated

spatially and industries with k > 1.50 as exhibiting weak concentrations.

Changes in Establishment Numbers with k Held Constant.  The negative

binomial distribution is defined by two parameters, the mean (m) number of

establishments per region and the exponent k.  Thus, two industries with the same k but

different numbers of establishments (and m values) will have different distributions of

establishments among CEAs.  Figure 3 provides examples of establishment distributions

among nonmetro areas that are associated with different m values but the same estimated

value for the exponent k.  The three industries selected (SICs 281, 286, and 365) have

the same estimated exponent k (k* = 0.545) but different numbers of nonmetropolitan

establishments (SIC 365 —  86; SIC 286 —  186; and SIC 281 — 276).  As expected,

the distribution of establishments among the 280 CEAs was sensitive to the total number
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of establishments in the industry, k held constant.  An increase in industry establishment

numbers was associated with a slight “flattening” of the distribution--fewer regions with

zero establishments and more regions with a large number of establishments.  However,

the shape of the distribution remained relatively unchanged in response to changes in m

as compared to changes in k (Figure 1).  Thus comparisons of k parameters across

industries of different sizes provide significant insights into which industries have similar

and dissimilar spatial distribution patterns.

Summary of Findings

Prevalence of Industry Concentrations.  The statistical procedures applied in this

study indicate that the propensity to concentrate manufacturing establishments in

nonmetro CEAs was pervasive. Contagious establishment location patterns were found

for 119 of the 120 3-digit manufacturing industries for which sufficient observations

were available for statistical analysis. These findings of non-random location patterns for

nonmetro plants are consistent with those of Ellison and Glaeser’s state-level

employment distributions for 4-digit SIC manufacturing industries.

The extent of spatial concentration among nonmetro manufacturing

establishments may be appreciated by analyzing the estimated dispersion parameters for

1981 and 1992.  For discussion purposes, we will focus on kt, the dispersion parameter

weighted by total nonmetro CEA employment.  Histograms illustrating the frequency

distributions of  kt for 1981 and 1992 are presented in figure 4.  In each figure, the bars

represent the number of 3-digit SIC industries for which  kt lies in an interval -.10 to
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+.10 of the value on the horizontal axis for all  kt less than 3.00.  For  kt values 3.00

and greater, the interval is -.50 to +.50 of the value on the horizontal axis.

The histogram for 1992 kt estimates indicates that the propensity to concentrate

establishments in nonmetro areas varied widely among manufacturing industries.  The

mean dispersion parameter value was 2.51 and the median value was 1.08.  Only

19.6% of the industries exhibited extensive establishment clustering (kt <.50) while 

44.7% were classified as moderately concentrated (.50 < kt < 1.50) and 35.7% of the

manufacturers had relatively weak agglomeration tendencies (kt > 1.50). 

A comparison of 1981 and 1992 kt estimates indicates that the clustering of

industry establishments in nonmetro areas has become less prevalent over time (Figure

3).  From 1981 to 1992, the mean dispersion parameter increased from 1.70 to 2.51

and the median kt increased from .95 to 1.08.   In addition, among the 104 industries

with computable k exponents for 1981 and 1992, 80 industries had higher dispersion

parameters in 1992 than in 1981, indicating an increase in spatial dispersion.  And more

manufacturing industries were highly concentrated ( kt < .50) in 1981 (28.7%) than in

1992 (19.6%).  These findings of a decline in establishment clustering over time do not

reflect a widespread movement to the spatial concentration of industry establishments in

nonmetro areas.

Industries experiencing an increase in nonmetro establishment clustering from

1981 to 1992 include “high technology” manufacturers that have been the focus of

much of the research on external economies and industry clustering (e.g., electrical

industrial apparatus, 362; communications equipment, 366; aircraft and parts, 372; and
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measuring and controlling devices, 382).  Other industries with significant increased

spatial concentration include fat and oils (207), beverages (208), paper mills (262),

paperboard mills 9263), plastics materials (282), asphalt paving and roofing (295), and

plumbing and heating (343).  These manufacturers do not appear to fit the classic

examples of increased spatial concentration resulting from rapid technological change,

shorter product life cycles, and enhanced need for inter-firm information flows.

A recent study by Dumais, Ellison, and Glaeser suggests that industry expansion

or contraction may influence geographic concentration as well as the rate of

technological change and industrial restructuring.  Specifically, the authors find that the

births of new firms tend to reduce agglomeration while plant closures reinforce

clustering.  The 1981-1992 growth experiences of the seven low tech industries with

significant increased clustering generally fit the findings of Dumais, Ellison, and Glaeser

that declining industries become more spatially concentrated.  Five of these seven

industries had fewer nonmetro establishments in 1992 than in 1981.  A thorough

analysis of the relationship between industry growth (decline) and nonmetro spatial

concentration is beyond the scope of this paper; however, our preliminary evidence

indicates that further study of this issue is warranted.

Spatially Concentrated Industries.  As noted earlier, establishments in an industry

may concentrate spatially to take advantage of “natural advantages” and/or “inter-

industry spillovers” provided by select locations.  This typology of industry

concentrations (natural advantages and inter-industry spillovers) provides a useful

framework for analyzing the types of manufacturing industries that exhibit high versus
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low concentrations in nonmetro areas.  Our data set does not permit a detailed analysis

of the specific determinants of nonmetro concentrations. Nevertheless, interesting

insights into nonmetro agglomerations are provided through a comparison of industry

types.

Table 2 lists the 30 industries with the greatest concentrations in nonmetro areas

based on the dispersion parameter kt.  The most striking observation is the prevalence of

textile and apparel manufacturers among the most concentrated.  The six most

concentrated industries (SICs 228, 222, 235, 224, 221, and 226) are textile and apparel

manufacturers and 11 of the top 30 industries are from SIC 22 or 23.  Nonmetro textile

and apparel manufacturers historically have been characterized by routinized production

processes relying on low-skill, low-wage labor (Perloff, et al.).  As such, Enright

suggests that nonmetro textile/apparel concentrations may be attributable to the incidental

agglomerating of establishments in areas with low labor costs.  Rosenfeld documents

that concentrations of manufacturers with routinized production processes may lead to

the development of localization economies in the form of labor pooling, specialized

service providers and accommodating institutions.  Thus, as noted by Ellison and

Glaeser, regions with high concentrations of textile and apparel plants may provide both

natural advantages (e.g., access to low labor costs) and spillover economies.

Three leather products manufacturers also were present among the 13 most

spatially concentrated industries (SICs 311, 314, and 319).  These industries also appear

to fit the pattern of incidental concentration resulting from selecting locations with

availability of specific inputs (e.g., low-cost labor and/or animal hides).  
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A relatively large number of the most concentrated industries have significant 

dependence on natural resources or agricultural products, inputs that are 

geographically concentrated.  For example, paper mills (262), petroleum refining (291),

miscellaneous primary metal products (339), logging (241), petroleum and coal products

(299), structural clay products (325), and dairy products (202) all have dispersion

parameters less than .60.  The location of establishments in these industries appears to

be sensitive to location-specific inputs or transport costs for such inputs.

Finally, among the most spatially concentrated are industries where production

processes may require special labor skills or adaptability to changes in technology

(jewelry and silverware, 396; ordnance and accessories, 348; glass and glasswares,

322; communications equipment, 366; and computer and office equipment, 357).  These

industries appear, more so than the others, to be likely candidates for the dynamic and

static localization economies that have received much attention in the recent literature.12

The manufacturing industries with relatively little spatial concentration are a

diverse group, but some commonalities among the industries are evident (table 3).13 

Many of the less concentrated industries are market oriented (e.g., commercial printing,

275; bakery products, 205; newspapers, 271; periodicals, 272; miscellaneous

publishing, 274; and beverages, 208), or manufacture products related to the packaging

and shipping of market oriented goods (e.g., metal cans and shipping containers, 341;

paperboard mills, 263; and wood containers, 244). The distribution of establishments

for these manufacturers more closely follows the distribution of total employment and

population. Other less concentrated industries are also local market oriented because
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they have high transportation costs relative to the value of the product (concrete,

gypsum, and plaster, 327; cement, hydraulic, 324; and agricultural chemicals, 287). 

Finally, many of the low concentration 3-digit SICs are diverse industries with relatively

large numbers of varied products (e.g., paints and allied products, 285; soaps, cleaners,

and toilet goods; meat products, 201; toys and sporting goods, 394; cutlery, handtools,

and hardware; and motor vehicles and equipment, 371).  A large number of product

lines in a 3-digit SIC may result in less spatial concentration of establishments if the

individual products have different input and product markets or if locations near other

industry members provide few spillover benefits. 

Conclusions and Implications

The findings of this study indicate that nonmetropolitan manufacturing

establishments are more concentrated spatially than would be expected to arise from a

random distribution of establishments.  Of the 120 industries with sufficient numbers of

establishments for statistical analysis, 119 industries exhibited non-random location

patterns for nonmetro plants.  And approximately two-thirds of these industries had

estimated dispersion parameters indicating a high or moderate level of spatial

concentration. This propensity to cluster plants in nonmetro CEAs was evident for both

1981 and 1992, though weaker in 1992.

Analysis of manufacturing industries with highly concentrated distributions of

nonmetro establishments provides insights into factors influencing geographic

concentration and trends in the spatial evolution of the sector.  Among rural
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manufacturers, spatial concentration appears to be most prevalent among industries

characterized by routinized production processes using low-skilled labor and industries

relatively dependent on natural resources or agriculture.  A relatively small number of

the more spatial concentrated manufacturers fit the characteristics generally associated

with industries generating and benefitting from localization economies (high technology,

skilled labor dependent, specialized production, short product cycles).  Thus, only

limited examples are available of industry establishment clusters in nonmetro areas

primarily attributable to the presence of inter-industry spillovers.

Differences among industries in establishment clustering tendencies (and reasons

for concentrating) have implications for industry targeting programs.  The targeting of

industrialization programs at specific industries is a popular local economic development

strategy because it is perceived to be a means for promoting industry clusters and the

resulting localization economies.  The findings of this study generally support this

strategy.  Nonmetro areas with an existing industry cluster probably offer natural

advantages for the industry and/or the potential for or availability of external economies. 

Thus, the targeting of establishments in, or related to, the existing industry cluster

should provide a greater likelihood of success (attraction or development of new

establishments) than a less focused industrial development strategy.  In addition,

nonmetro areas with good access to input and product markets or specialized local

inputs appear more likely to develop the extensive establishment concentrations

necessary to stimulate external economies. 

Alternatively, we also found evidence of many manufacturing industries whose
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establishment location patterns were not strongly influenced by natural advantages or the

availability of localization economies.  These industries with low clustering propensities

will be more realistic targets for rural areas not already blessed with industry-specific

natural advantages or existing industry clusters.  However, competition among

communities for manufacturers with low clustering tendencies may be intense since

many communities will perceive themselves as viable establishment locations.  Thus, all

communities targeting establishments in the low clustering industries are not likely to be

successful.  But this targeting approach remains more cost effective than the ‘shoot

anything that flies” industrialization strategy of the past.
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Endnotes

    1. See, for example, Glaeser, et al.; Rauch; Henderson, Kunkoro, and Turner;

Soroko; O'hUallacháin and Satterthwaite; Partridge and Rickman;  Henderson;

Palivos and Wang; and Ciccone and Hall.

    2.  For example, assume the nation is divided into 10 equal sized regions (xt =.10),

and assume an industry with only three establishments.  The spatial Hirschman-

Herfindahl index for this industry has a minimum value of .233, a maximum

value of .900, and a mean value of .354.  Alternatively, for 10 equal sized

regions and an industry with four establishments, the index has a minimum value

of .150, a maximum value of .900,  and a mean value of .286.  Thus, the index

provides a higher mean value for the three establishment industry than for the

four establishment industry even if establishments in both industries are randomly

distributed among the 10 regions.

    3. According to occupancy theory, there are (n + r - 1)!/(n-1)!r! number of ways

in which r indistinguishable plants can be distributed among n regions, with no

restrictions as to the number of plants permitted in any one region (Freund).  

The 2002 number of ways for distributing 5 plants among 10 regions include: 10

ways where all 5 plants are in one region, 180 ways where 5 plants are divided

among 2 regions (4, 1 or 3, 2); 720 ways where 5 plants are divided among

three regions (3, 1, 1 or 2, 2, 1); 840 ways where 5 plants are distributed

among 4 regions (2, 1, 1, 1) and 252 ways where a region has at most one plant

(1, 1, 1, 1, 1,).  The Hirschman-Herfindahl index (g) for the various

combinations of 5 plants are: 5 in one region (g = .90); 4 and 1 (g = .58); 3

and 2 (g = .42); 3, 1, and 1 (g = .34); 2, 2, and 1 (g = .27), 2, 1, 1, 1 (g =

.18); and 1, 1, 1, 1, 1 (g = .10).  Thus the expected value of g =
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 (10/2002) (.90) + (90/2002) (.58) + (90/2002) (.42) + (360/2002) (.34) +

(360/2002) (.27) + 840/2002 (.18) + 252/2002 (.10) = .247.

    4. The Poisson distribution is selected as the probabilistic model for many random

distributions of events because the Poisson distribution approximates the binomial

distribution for independent random variables when the number of trials (n) is

large and the probability of success (p) is small.

    5. Most research applying the proposed statistical methodology uses regions of

equal size (e.g., field plots).  However, statistical procedures are available for

applying the methodology to regions of different sizes (e.g., counties and states),

and these procedures are summarized later in the paper.

    6. Component Economic Areas (CEAs) are multi-county-regions developed by the

Bureau of Economic Analysis, U.S. Department of Commerce.  Each area

consists of one or more economic nodes (metropolitan areas or similar areas that

serve as centers of economic activity) and the surrounding counties that are

economically related to the nodes (Johnson).  The main factor used in

determining the economic relationships among counties in a CEA is commuting

patterns, so each component economic area includes, as far as possible, the place

of work and the place of residence of its labor force.  The 3,141 counties in the

U.S. are divided into 348 CEAs.  Of the 348 CEAs, 38 CEAs are constituted

by only nonmetropolitan counties, 30 CEAs are constituted by only metropolitan

counties, and 280 CEAs have both metro and nonmetro counties. Our analysis

was restricted to the nonmetro counties of the 280 CEAs with both metro core

counties.
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    7.  In retrospect, one might skip step one of this analysis and proceed directly to

measuring the extent of contagious behavior by estimating a negative binomial

distribution.  An advantage of this approach would be the possibility that some

of the industries with too few observations for the non-randomness test might

have sufficient observations for the negative binomial test.  A disadvantage of

skipping step one would be that we would have less information on the spatial

distribution of industries that did not “fit” the negative binomial distribution.

    8. The observed industry establishments' distribution for SIC 382 fit a negative

binomial with an unweighted k (k*) = .500.

    9. For example, among the 280 nonmetro CEAs, land area ranged from 235 to

541,186 square miles and 1992 manufacturing employment ranged from 3 to

144,601 employees.

    10. Bissell noted that an important condition for the use of the weighed model is that

the region sizes and local event rates should be conceptually independent. There

is one situation in which the violation of this condition will invalidate either the

model or the above methods of estimating its parameters. That is, the likelihood

function may become L (Wn \ k, m, Xn)  rather than L (Xn \ k, m, Wn) because of

dependency between region size and local event rate (Xn represents a set of

establishment counts from n number of nonmetro CEAs and Wn represents the

relative region sizes for nonmetro CEAs).  If the above situation occurs, the

likelihood function leads to entirely different estimators.  Bissell suggests a

simple means of monitoring the validity of the present model, which is to

estimate crude local event rates 8i = xi / wi and to calculate the correlation

between 8i and wi.  The results of the correlation test between 8i and wi. indicate

that there is no serious violation of the independence criterion for this study.
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    11. The use of alternative measures of concentration (k*, ka, ke ,kt) resulted in

different rankings of industries from most to least concentrated.  However, in

general, industries with low (high) values for the unweighted measure k* also

had low (high) values for the weighted measures ka, ke , and kt.

    12. An analysis of the location of nonmetro CEAs with establishment clusters was

undertaken for a limited number of industries.  Our findings indicate that CEAs

with industry clusters also tend to be concentrated regionally.  For example,

nonmetro CEAs with establishment clusters in SIC 395 (Pens, Pencils, and

Office Supplies) are located in the Southwest, upper Midwest, and east Texas.  

Nonmetro CEAs with clusters in SIC 282 (Plastics Materials and Synthetics) are

located near Atlanta, along the Mississippi River Valley, and throughout the

Mid-Atlantic.

    13. Table 3 does not include miscellaneous manufacturers such as miscellaneous

wood products (SIC 249).  
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Table 1.  Observed and Expected Distributions of Establishments, SIC 382, 1992.

Part A.  Poisson Distribution
           No. of              No. of

No. Est.         Observed           Expected (Ox - Ex)
2    

in CEA (x)         CEAs (Ox)              CEAs (Ex)         Ex

    0 142 71.05 70.85
    1   61 97.44 13.63
    2   27 66.81 23.73
    3   17 30.54   6.01
    4+   33             14.16             25.07
Total 280           280.00           139.29a

aCritical Value (Chi square) = 11.30.

Part B.  Negative Binomial Distribution
            No. of   No. of

No. Est.          Observed Expected   (Ox - Ex)
2    

in CEA (x)          CEAs (Ox)    CEAs (Ex)            Ex

    0 142 144.70         .05
    1   61   53.05       1.19
    2   27   29.16         .16
    3   17   17.81         .04
    4   10               11.42         .18
    5     6     7.53          .31
    6     3     5.06         .84
    7     4     3.44         .09
    8+   10        7.83         .60
Total 280             280.00                  3.44b

bCritical Value (Chi square) = 12.6.



Table 2.  Manufacturing Industries with Greatest Nonmetro Concentrations, 
               k = kt, 1992

SIC Industry     kt

228 Yarn and Thread Mills .103

222 Broadwoven Fabric Mills, Manmade .129
235 Hats, Caps, and Millinery .136
224 Narrow Fabric Mills .157
221 Broadwoven Fabric Mills, Cotton .164
226 Dyeing & Finishing Textiles .188

311 Leather Tanning & Finishing .217
262 Paper Mills .245
278 Blankbooks & Bookbinding .252
291 Petroleum Refining .271
314 Footwear .277

234 Women's Undergarments .306
319 Leather Goods, NEC .332
339 Misc. Primary Metal Products .333
236 Girls' and Children's Outerwear .381
391 Jewelry, Silverware, & Plated Ware .405

252 Office Furniture .441
373 Ship & Boat Building  .447
241 Logging .457
396 Costume Jewelry .486
299 Misc. Petroleum & Coal Products .498

325 Structural Clay Products .506
202 Dairy Products .550
348 Ordnance & Accessories, NEC .561
322 Glass and Glassware .562
345 Screw Machine Products .576

232 Men's & Boys' Furnishings .629
366 Communications Equipment .677
233 Women's Outerwear .679
357 Computer & Office Equipment .704



Table 3.  Manufacturing Industries with Least Concentration in Nonmetro CEAs,
               k = kt, 1992

SIC Industry    kt

341 Metal Cans & Shipping Containers           45.227

275 Commercial Printing                  26.618 
327 Concrete, Gypsum, & Plaster           16.797
344 Fabricated Structural Metal Products           7.349
205 Bakery Products           6.353
271 Newspapers           5.413

285 Paints & Allied Products          4.405
386 Photographic Equipment           4.351
243 Millwork, Plywood 3.822
254 Wood Partitions & Fixtures 3.314
284 Soaps, Cleansers, & Toilet Goods 3.091

201 Meat Products 2.910
272 Periodicals 2.910
324 Cement, Hydraulic 2.614
394 Toys and Sporting Goods 2.552 
356 General Industrial Machinery 2.461

274 Miscellaneous Publishing 2.368
342 Cutlery, Handtools, & Hardware 2.363
371 Motor Vehicles & Equipment 2.359
358 Refrigeration & Industrial Machinery Service 2.322
355 Special Industrial Machinery 2.289

361 Electrical Transmission Equipment 2.254
287 Agricultural Chemicals 2.212
263 Paperboard Mills 2.188
244 Wood Containers 1.989
267 Converted Paper Products 1.923

353 Construction & Related Machinery 1.772
208 Beverages 1.755
204 Grain Mill Products 1.742
364 Electric Lighting & Wiring Equipment 1.703











SIC
k* ka ke kt k* ka ke kt

201 0.86272 0.76504 2.04893 2.89944 0.90292 0.83154 2.07092 2.90998
202 0.38138 0.38540 0.51832 0.58515 0.36958 0.37547 0.49410 0.55055
203 0.37829 0.36910 0.45633 0.49091 0.52082 0.52464 0.68698 0.83222
204 0.67034 0.63288 1.28430 1.63092 0.71444 0.65846 1.53126 1.74177
205 0.82774 0.71224 1.53471 2.99386 0.96578 0.87083 1.89205 6.35250
206 0.34587 0.33973 0.37602 0.42014 0.66829 0.66836 0.76071 1.00171
207 0.68636 0.74856 1.25041 1.73073 0.49703 0.52223 1.08540 1.08922
208 0.93873 0.89779 3.41419 8.42460 0.71735 0.76807 1.21577 1.75488
221 0.07268 0.07059 0.10129 0.08420 0.12775 0.12239 0.20942 0.16360
222 0.08387 0.08181 0.11702 0.09787 0.10704 0.10415 0.15575 0.12923
224 0.22123 0.18482 0.28929 0.25898 0.12596 0.11726 0.17534 0.15749
225 0.12563 0.11548 0.18565 0.15253 N/A N/A N/A N/A
226 0.09996 0.09428 0.15048 0.09428 0.14160 0.13492 0.24426 0.18796
228 0.08984 0.08387 0.12727 0.10459 0.08837 0.08369 0.12193 0.10352
229 0.23765 0.21551 0.49215 0.33341 N/A N/A N/A N/A
231 0.25514 0.25163 0.67086 0.46206 0.33254 0.33240 1.44540 0.74211
232 0.31856 0.27955 0.75732 0.53298 0.34439 0.31499 0.91776 0.62901
233 0.34348 0.28077 0.70359 0.52517 0.40627 0.34292 0.93605 0.67892
234 0.22631 0.20084 0.38832 0.30719 0.22120 0.20052 0.34620 0.30590
235 N/A N/A N/A N/A 0.10842 0.11833 0.13091 0.13632
236 0.22213 0.18862 0.33429 0.26471 0.28643 0.24648 0.47415 0.38103
238 0.34346 0.33086 1.26634 0.77352 0.44385 0.42960 1.50094 1.02341
239 0.76478 0.62859 3.37131 2.79323 0.86107 0.73324 3.12154 4.68235
241 N/A N/A N/A N/A 0.28581 0.28800 0.48650 0.45674
242 0.48877 0.40663 1.22023 1.00921 0.48955 0.41052 1.19109 1.07126
243 0.83564 0.70934 1.90324 1.98951 0.97872 0.75001 2.63911 3.82185
244 0.51775 0.42211 1.50180 1.28710 0.64272 0.47621 2.99146 1.98861
245 0.57042 0.54685 1.24155 1.15749 0.65292 0.58016 1.23013 1.19101
249 0.65218 0.53709 1.20976 1.18769 0.72202 0.57558 2.02809 2.32304
251 0.45595 0.39992 1.31254 0.91456 N/A N/A NIA N/A
252 0.15812 0.15732 0.20511 0.20172 0.28108 0.27830 0.51119 0.44085
253 0.54658 0.52008 1.99935 1.33964 0.42290 0.40570 1.59558 0.99471
254 0.61429 0.56498 1.72990 1.99885 0.81849 0.68563 3.10780 3.31433
259 N/A N/A N/A N/A 0.41740 0.41417 1.44639 0.97171
262 0.30160 0.40826 0.31144 0.41318 0.20005 0.20028 0.22957 0.24492
263 1.53091 0.95790 1180 5.68640 0.71055 0.56083 3.88510 2.18766
265 0.57245 0.43655 2.90268 1.39939 0.48342 0.38591 2.80188 1.25093
267 0.42359 1.27354 0.42359 1.07238 0.54119 0.45912 2.93339 1.92293
271 1.12968 1.05091 1.91949 5.10940 1.18577 1.17003 2.16219 5.41255
272 0.51356 0.49505 0.86191 1.04940 0.80600 0.74437 1.30356 2.90994

Appendix Table 1. Estimated Dispersion Parameters (k), Weighted and Unweighted, 1981 and 1992

1981 1992



SIC 1992
k* ka ke kt k* ka ke kt

273 0.62575 0.61705 1.10980 1.57145 0.65601 0.63005 1.01404 1.57486
274 0.51998 0.50973 0.83082 0.96010 0.84353 0.77026 1.32432 2.36821
275 1.15149 0.78248 4.19386 31.59880 1.06348 0.77075 3.56038 26.61840
276 0.38240 0.36765 1.05096 0.92073 0.44809 0.40555 1.03201 0.95283
278 0.14027 0.14092 0.24321 0.21039 0.16958 0.17422 0.27708 0.25213
279 0.34207 0.33059 0.44813 0.48907 0.56059 0.46954 0.94596 1.31526
281 0.57348 0.61211 0.98454 1.21189 0.54453 0.58061 0.90382 1.05624
282 1.17850 0.77763 7.32040 5.49383 0.68741 0.53065 1.50553 1.17415
283 0.51080 0.49371 0.92261 1.09990 0.53561 0.57931 0.96319 1.21986
284 0.47354 0.42524 1.08764 1.06168 0.56776 0.50256 2.96973 3.09128
285 0.47540 0.42909 1.599515 1.32821 0.57377 0.55552 530 4.40515
286 0.66519 0.64897 1.05534 1.03483 0.54467 0.50464 0.85138 0.86704
287 0.65601 0.59042 1.22196 1.36177 0.75289 0.81110 1.69581 2.21217
289 0.63455 0.65778 1.07941 1.62355 0.88764 0.91460 2.15313 3.75439
291 0.26356 0.37943 0.29467 0.38340 0.21604 0.38470 0.24541 0.27128
295 0.57613 0.51024 1.44728 1.62686 0.44899 0.39590 1.00290 1.08713
299 N/A N/A N/A N/A 0.38716 0.41171 0.45017 0.49823
305 N/A N/A N/A N/A 0.45869 0.47606 1.16140 1.46894
306 0.35563 0.77206 0.35952 0.59252 0.47370 0.39340 1.36671 0.90986
308 0.63476 2.49590 0.68209 2.20934 0.72429 0.52269 3.41742 2.58931
311 N/A N/A N/A N/A 0.18321 0.19033 0.22071 0.21688
314 0.18409 0.17805 0.29526 0.26280 0.19595 0.18936 0.31306 0.27717
315 0.11060 0.10952 0.12523 0.12311 N/A N/A N/A N/A
317 0.42264 0.29480 0.45008 0.42166 0.42264 0.49650 0.65896 0.77203
319 0.24365 0.28206 0.29316 0.30897 0.27905 0.33418 0.32286 0.33181
322 0.18090 0.16391 0.22916 0.23402 0.36144 0.31597 0.51917 0.56251
323 0.56607 0.49907 1.32462 1.20097 0.50136 0.45094 1.33645 1.25338
324 0.33910 0.38270 0.48402 0.56158 0.69095 0.98120 1.41891 2.61390
325 0.29931 0.28750 0.48276 0.46299 0.31068 0.29699 0.55414 0.50632
326 0.41549 0.38420 0.69370 0.73308 0.56956 0.56044. 0.80577 1.04216
327 1.28484 0.94719 2.74108 10.84285 1.26620 0.96503 3.51455 16.79739
329 0.89105 0.77958 2.19653 3.67217 0.89975 0.84.422 11.07520 19.01590
331 0.45713 0.39781 0.87976 0.91935 0.51199 0.40312 1.17191 1.01872
332 0.41450 0.34261 0.79249 0.71252 0.46829 0.39512 1.00731 0.86122
333 0.15393 0.18133 0.17771 0.18652 N/A N/A N/A N/A
335 0.45480 0.37229 1.35660 0.93553 0.51165 0.40804 1.63769 1.19461
336 0.46330 0.43010 0.88810 0.91117 0.43964 0.41542 0.94059 0.91484
339 0.23760 0.22204 0.30643 0.30371 0.25029 0.22742 0.37332 0.33332
341 0.60843 0.56596 2.08061 - 1.71549 0.9-1868 0.76858 1721 45.22700
342 0.53839 0.45187 1.24430 1.20530 0.77816 0.61087 2.61344 2.36327

1981

Appendix Table 1:  Estimated Dispersion Parameters (k), Weighted and Unweighted, 1981 and 1992



SIC 1981 1992

k* ka ke kt k* ka ke kt

343 0.68967 0.74815 1.38003 1.89122 0.65126 0.60478 1.23496 1.39609
344 0.89636 0.67609 4.25657 7.45890 1.07761 0.72322 4.52373 7.34876
345 0.32563 0.28471 0.49143 0.46116 0.35792 0.32077 0.63137 0.57648
346 0.36585 0.28748 0.61265 0.53842 0.44728 0.36970 0.95899 0.82789
347 0.48356 0.39191 0.94463 0.82366 0.49831 0.42156 1.39916 1.18782
348 N/A N/A N/A N/A 0.35545 0.46599 0.45706 0.56129
349 0.68577 0.51607 1.80637 1.72175 0.91091 0.63728 2.99426 2.86302
351 N/A N/A N/A N/A 0.63281 0.51437 1.64647 1.18398
352 0.43568 0.48775 0.63287 0.75253 0.49900 0.54566 0.71605 0.84989
353 0.58324 0.57599 0.90563 1.38200 0.69487 0.64780 1.25064 1.77243
354 0.37955 0.30899 0.76211 0.67034 0.43163 0.32876 0.95904 0.84471
355 0.53164 0.46268. 2.10648 1.52461 0.61841 0.52815 3.08733 2.28856
356 0.58467 0.47718 1.58940 1.64394 0.76500 0.57248 2.55394 2.46093
357 0.27929 0.28031 0.46542 0.46988 0.37392 0.44048 0.60719 0.70371
358 0.53746 0.45573 1.47672 1.29391 0.61478 0.58108 2.73654 2.32162
359 1.12080 0.74590 3.19313 6.86191 1.00826 0.70995 3.80575 8.39189
361 0.44878 0.37009 0.86949 0.88458 0.75757 0.58142 1.88122 2.25424
362 0.60273 0.49157 2.07868 2.04435 0.55176 0.47215 1.33351 1.27943
363 0.31728 0.27865 0.63256 0.54072 0.40990 0.37979 1.35077 1.04235
364 0.53697 0.44806 1.48715 1.21448 0.75683 0.58135 1.81489 1.70291
365 0.47696 0.36096 0.81209 0.68984 0.54457 0.41033 0.83611 0.84309
366 0.48535 0.52235 0.82679 1.10365 0.44368 0.44468 0.61860 0.67669
367 0.53536 0.46629 0.96245 1.05024 0.56259 0.52426 0.95627 1.22405
369 0.44682 0.39726 1.06652 0.92633 0.50146 0.47698 1.14303 1.04776
371 0.66494 0.51948 1.63507 1.61837 0.69218 0.54964 3.22671 2.35877
372 0.53289 0.63060 0.83140 1.15462 0.47111 0.59340 0.67094 0.85519
373 0.25246 0.24014 0.32261 0.32884 0.30734 0.31117 0.41232 0.44696
379 0.44338 0.46138 0.72908 0.72914 0.49830 0.55445 1.00692 1.02387
381 0.32246 0.32462 0.59363 0.57544 0.73161 0.66598 _ 1.17038 1.67188
382 0.58218 1.06697 0.58472 1.51649 0.50040 0.53213 0.80526 1.04082
384 0.46199 0.47510 1.14702 1.22507 0.54991 0.55637 1.13671 1.45981
386 N/A N/A N/A N/A 1.40377 0.88141 3.19710 4.35148
391 0.34491 0.38752 0.32551 0.37394 0.32461 0.44581 0.33499 0.40535
393 0.42080 0.42325 0.85536 0.94950 0.39024 0.42793 0.61672 0.72885
394 0.69762 0.74168 1.88825 2.29165 0.77770 0.83056 1.67784 2.55189
395 0.23109 0.23653 0.41705 0.35610 0.54821 0.52572 2.33996 1.44526
396 0.32543 0.31628 0.47606 0.49432 0.38015 0.34897 0.44268 0.48583
399 0.94409 0.80891 3.44683 5.20185 0.95824 0.83590 3.50082 10.18744

Appendix Table 1. Estimated Dispersion Parameters (k), Weighted and Unweighted, 1981 and 1992

ke Weighted by CEA Manufacturing Employmentk' Unweighted

ka Weighted by CEA Geographic Area kt Weighted by CEA Total Employment
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