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Introduction 

Global characterization of consumer preferences is critical to policy analyses involving 
large changes in prices (e.g., trade liberalization) or large changes in per capita income (e.g., 
long run projections of economic activity for climate change policy).  To accommodate large 
changes in both prices and income, it is essential to have a demand system that can adequately 
reflect consumer responses observed in international cross section data.  The goal of this paper is 
to develop a demand system that is globally well-behaved, and yet incorporates greater flexibility 
in the face of large changes in price and/or income than existing alternatives. 

Stone’s (1954) linear expenditure system (LES) and its extensions remain widely used 
demand systems for empirically-based policy simulation models.  Rimmer and Powell (1992b) 
note that a serious drawback of the LES, as well as the Rotterdam system (Barten, 1964, 1968; 
Theil 1965, 1967) is the fact that the marginal budget shares are constant.  They also observe that 
models based on Working’s specification, such as the additive specification developed by Theil 
and Clements (1987) and the AIDS model (Deaton and Muellbauer, 1980), overcome this 
problem, but at the cost that expenditure shares may stray outside the permissible range for large 
changes in total expenditure. This renders them unworkable for the kind of large-change policy 
analysis emphasized here. 

This led Rimmer and Powell to develop the AIDADS demand system.  Their work is 
inspired in part by Stone’s LES demand system as well as by Hanoch (1971, 1975).  Hanoch 
develops a general specification of an implicit, additive relationship between utility and 
consumption in the direct case or between utility and prices normalized by total expenditure in 
the indirect case, he points out that these may be viewed as generalizations of the constant 
elasticity of substitution (CES) relationship of Arrow et al. (1961). The indirect case has been 
used extensively in policy modeling (Huff et al., 1997) in the form of the Constant Difference of 
Elasticities (CDE) system.  The CDE is particularly attractive because it is parsimonious in 
parameters, globally well-behaved, and can be readily calibrated to own-price and income 
elasticities of demand (Hertel et al., 1990a). However, an important shortcoming of the CDE is 
the lack of flexibility of the income elasticities, which vary with total expenditure only through 
the variation of expenditure shares as total expenditure rises.   

AIDADS is similar to Hanoch’s more general direct model, in which utility is related to 
quantities consumed, except that Rimmer and Powell introduce subsistence quantities in the 
spirit of the LES.  A key shortcoming of AIDADS is the fact that, as total expenditure rises, the 
asymptotic Engel elasticities and asymptotic Allen partial substitution elasticities are unity for all 
goods (Rimmer and Powell, 1992; Powell, et al., 2002). The price responsiveness of AIDADS is 
particularly constrained, and this has limited its effectiveness for policy simulations.  
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Here, we propose alternative variants of Hanoch’s more general case, via the inclusion of 
subsistence quantities, which are not addressed in Hanoch, for both the direct and indirect cases.  
These new functional forms may again be viewed as generalizations of the CES, and are selected 
so as to include the CDE as a special case, as well as a relationship that is similar in spirit to 
AIDADS.  As with both AIDADS and the CDE, these relationships are implicit.  In addition, 
these functions are more flexible than either the CDE or AIDADS. The additional flexibility is 
obtained without the kind of expansive proliferation of parameters associated with fully flexible 
functional forms.  (The number of parameters for the proposed functions is linear in the number 
of goods, while the number of parameters for flexible functional forms is quadratic in the number 
of goods.)  Finally, and of critical importance for policy analysis,  these new functional forms are 
designed to be globally well behaved, yielding a unique vector of preferences for given prices 
and total expenditure and avoiding the problem of negative budget shares even with very large 
changes in prices or total expenditures.  (Regularity proofs for the direct and indirect cases may 
be found in Appendices A and B, respectively.) 

Extending the CES – Direct Case 

The CES is commonly written in the following explicit form 
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where u denotes utility and xi denotes consumption of the i-th good. Suppressing the arguments 
of u and rearranging (1) leads to the following implicit expression of the same relationship. 
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In this expression, the exponents on each of the xi have the same value, the exponent on u in each 
term of the sum has the same value, and the βi are constant.  The generalization that is consistent 
with the work of Hanoch (1975) is as follows: 
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where the βi are now functions of utility.  We take the additional step of introducing subsistence 
quantities that depend upon the level of utility:   
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The regularity conditions for this function are as follows.  Either all of the bi must be 
strictly between zero and unity, or they all must be negative.  (The results presented here can also 
be extended to the limiting case where all of the bi are equal to zero as suggested in Hanoch 
(1975).)  The ei must all be negative.  The βi(u) must be bounded, strictly positive, and their first 
derivatives must have sign opposite to bi.  Finally, the γi(u) must be bounded, non-decreasing 
functions if u.  Given these conditions, it can be shown that utility is uniquely defined for any 
vector of demands x, the relationship between utility and demands is quasi-concave, and 
demands defined by maximization of utility subject to a budget constraint and (4) are decreasing 
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in their own prices.  (Of course, these regularity conditions apply only so long as income is 
sufficiently large to allow purchase of the subsistence bundle.  See appendix A.)   

The Allen-Uzawa partial substitution elasticities can be derived following Hanoch (1971) 
as: 
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where ii
n
k pp γγ 1' =Σ= , δij is the Kronecker delta, and the discretionary budget shares are 

)/()( 1 kk
n
kii

d
i pcxs γγ =Σ−−= .  Notice that (5) varies with the level of consumption of the i-th and 

j-th goods, total expenditure (both directly through c and indirectly through u), and the 
discretionary budget shares of all goods.  Thus, these substitution elasticities vary with prices and 
income indicating a level of flexibility that is not present with the direct CES.   

The income elasticities may be derived in a manner parallel to the development of 
Hanoch (1975, pp. 405-406): 
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where cxps ii
t
i /=  are the total budget shares.  These income elasticities vary with the level of 

consumption of the i-th and j-th goods, total expenditure (both directly through c and indirectly 
through u), and the discretionary budget shares of all goods, again demonstrating substantially 
greater flexibility than the CES. 

Extending the CES – Indirect Case 

In the indirect case, xi is reinterpreted as pi/c where pi denotes the price of the i-th good, 
and c again denotes total expenditure.  The functional form remains as in (4), but there are minor 
differences in the regularity conditions, which are as follows.  This function may be viewed as a 
generalization of the Constant Difference of Elasticity (CDE) functional form due to Hanoch 
(1975), which can itself be viewed as a generalization of an indirect version of the CES as 
described in the previous section.  The generalizations are the inclusion of subsistence quantities 
that are functions of the level of utility and the possibility that the βi(u) vary with the level of 
utility.   
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The regularity conditions for this functional form follow. All of the bi must be strictly 
between zero and unity, or they all must be negative.  The ei must all be positive.  The βi(u) must 
be bounded, strictly positive, and their first derivatives must have sign opposite to bi.  Finally, 
the γi(u) must be bounded, non-decreasing functions if u.  Given these conditions, it can be 
shown that utility is uniquely defined for any vector of normalized prices x, the relationship 
between utility and normalized prices is quasi-concave, and demands are decreasing in their own 
prices.  (Again, these regularity conditions apply only so long as income is sufficiently large to 
allow purchase of the subsistence bundle.)  

 The expressions for the Allen-Uzawa partial substitution elasticities and income 
elasticities are derived using the approach described in Hanoch (1975).  Thus, the Allen-Uzawa 
partial substitution elasticities (for ji ≠ ) are given as: 
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where )'/()( γγ pcxps iii
d
i −−=  is the i-th good’s discretionary share of discretionary 

expenditure.  The aggregation condition 01 =Σ = ij
t
i

n
i s σ  is used to obtain iiσ .  Because the 

subsistence quantities are functions of utility, which is in turn a function of total expenditure, 
these elasticities will, in general, vary with the expenditure level and thus are more flexible than 
the comparable expressions for the CDE.   

 The income elasticities are derived by taking the derivative of demand with respect to 
expenditure.  After some simplifications, the following relationship results: 
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In the CDE case, the income elasticities are functions only of the expenditure shares and the 
(constant) parameters.  While the expression above is considerably more complex, the degree to 
which it is more flexible remains an empirical question. 

Conclusions 

The functional forms introduced here show promise for use in empirical simulation work 
where the possibility of large changes in both prices and income exist.  They are globally well 
behaved, producing uniquely defined consumer responses to prices and income that conform to 
economic theory.  Furthermore, these systems have the added feature that they nest special cases 
used previously in the literature (i.e., CES, CDE, etc).  Future work will explore alternative 
strategies for estimating the parameters governing these functions and evaluating their 
performance over a wide range of prices and expenditure.  One promising approach to estimation 
will be to follow along the lines of Cranfield et al. (2000).  Alternative approaches to calibration 
based on literature-based estimates of price and income elasticities will likely draw on the work 
of Hertel et al. (1990b) and Cranfield (1999). 
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Appendix A:  Regularity for the Direct Case 

Regularity for the generalized CES in the direct case is established much as it is for 
CRES (Hanoch, 1975), and we adopt the parametric restrictions from that work with slight 
modifications: ω > Bi(u) > ε > 0 and ι > γi(u) > 0 for all values of u > 0 (i.e., the functions Bi(u) 
and γi(u) are bounded with Bi(u) bounded below by a strictly positive number), ei < 0 and for all 
i, and either 0 < bi < 1, or bi < 0.  We also require that the )(' uBi  have sign opposite to bi, and 

0)(' ≥uiγ .  (Note that the added restrictions )(' uBi = 0 and γi(u) = 0 result in the CRES system.)   

 The regularity proof must demonstrate three things.  First, for given xi, a solution to (4) 
must always exist and must always be unique.  Second, the relationship between utility and 
consumption defined by (4) must be quasi-concave.  Third, utility must be an increasing function 
of each xi.  (These conditions are sufficient.)   

 First, consider the existence of a solution to (4).  The limit of each term in (4) as u 
decreases to zero from above is positive infinity if bi > 0 (zero if bi < 0).  This is because the iibeu  
term dominates in the limit due to the requirement that Bi(u) and γi(u) are bounded, with Bi(u) 
bounded to be strictly greater than zero.  By a symmetric argument, the limit of each term in (4) 
as u increases without bound is zero if bi > 0 (positive infinity if bi < 0).  Thus, there will always 
be a positive value of u sufficiently small and a value of u sufficiently large such that the value 
of the right-hand side of (4) is bracketed by these two values.  Appealing to the Implicit Function 
Theorem and Rolle’s Theorem, we know that a solution to (4) must exist.   

Now consider the uniqueness of the solution to (4).  Each term in (4) has the following 
derivative with respect to u: 
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The first term inside the parentheses has sign opposite to the sign of bi.  The second term also has 
sign opposite to bi because ei < 0, given that u > 0.  The third term in the parentheses has sign 
opposite to the sign of bi because of the negative sign in front of the term and the regularity 
condition 0)(' ≥uiγ .  Thus, the left-hand side of (4) is a strictly monotonic function of u, and 

hence any solution to (4) is unique.   

 Second, consider the quasi-concavity of the relationship between utility and consumption.  
The matrix of Allen-Uzawa partial substitution elasticities given by (5) is negative semi-definite.  
This matrix of partial substitution elasticities has exactly the same form as in Hanoch (1975) 
except that the rows and columns are rescaled by the positive factors iii xxpcc /)()]'/([ 2/1 γγ −−  

and jjj xxpcc /)()]'/([ 2/1 γγ −− , respectively.  This symmetric rescaling has no impact on the 

definiteness properties of this matrix, and hence, Hanoch’s arguments for quasi-concavity of the 
relationship between utility and consumption (over the region xi > γi) proceeds directly. 

  Third, consider the change in utility as an input is increased.  Again appealing to the 
Implicit Function Theorem, we have the following: 
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The first term in the product has the same sign as bj.  The second term is one over the sum of the 
terms (A1) which were argued to have sign opposite to bj.  Combined with the negative sign in 
front of the expression, we find that the derivative is strictly positive.  Thus, utility is strictly 
increasing in each of its inputs, and the relationship described by (4) is regular over the region 
where xi > γi(u) for all i, and u > 0. 
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Appendix B:  Regularity for Indirect Case 

Regularity for the generalization of the indirect CES is established much as it is for CDE 
(Hanoch, 1975), and we adopt the parametric restrictions from that work with slight 
modifications: ω > Bi(u) > ε > 0 and ι > γi(u) > 0 for all values of u > 0 (i.e., the functions Bi(u) 
and γi(u) are bounded with Bi(u) bounded below by a strictly positive number), ei > 0 and either 0 
< bi < 1, or bi < 0 for all i.  We also require that the )(' uBi  have the same sign as bi and 

0)(' ≥uiγ .   

To demonstrate regularity for the generalization of the indirect CES over the region 
where total expenditure is strictly greater than the cost of the subsistence bundle and prices are 
strictly positive, it is necessary to show three properties.  First, there must be a unique solution to 
the defining equation (4) for all strictly positive normalized price vectors.  Second, the 
relationship between utility and prices normalized by discretionary expenditure must be quasi-
concave, and third, demand for each good must be downward sloping with respect to its own 
price. 

First, consider the existence of a solution to (4) for any strictly positive price vector such 
that discretionary expenditure is strictly positive (implying normalized prices are strictly 
positive).  Given the stated regularity conditions, the limit of every term in the summation as u 
increases without bound is determined by the sign of bi.  If bi is positive, then this limit is plus 
infinity, and if bi is negative, this limit is zero.  This is because the limit is dominated by the term 

iibeu due to the bounded nature of Bi(u) and γi(u).  Similarly, the limit of every term the sum as u 
decreases toward zero is zero if bi is positive or positive infinity if bi is negative.  In the case of 
either sign for bi, there are always values for u which are sufficiently large and small such that 
the sum will exceed and fall short of unity in turn.  By the Implicit Function Theorem, there 
exists at least one intermediate value such that the sum is equal to unity.  Thus, a solution to (4) 
exists.  

Now consider the uniqueness of a solution to (4).  The derivative of the left-hand side of 
the defining equation (4) is: 
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The sign of this sum is determined by the sign of the final term in large brackets as all preceding 
terms are non-negative.  The first term inside the large brackets has the sign of bi by the 
regularity conditions.  The second term likewise has the same sign due to positivity of u and ei.  
The final term also has the same sign due to positivity of the price vector and discretionary 
expenditure.  Thus, the derivative in (B1) has constant sign over the region for which we need 
regularity.  That is, G() is strictly monotonic with respect to u, and there can be only one level of 
utility that satisfies (4) for a given normalized price vector. 
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 Second, consider the quasi-concavity of the relationship between utility and normalized 
prices as specified in (4).  The matrix of Allen-Uzawa partial substitution elasticities as given by 
(7) and the aggregation condition is negative semi-definite.  This matrix of partial substitution 
elasticities has exactly the same form as in Hanoch (1975) except that the rows and columns are 
rescaled by the positive factors iii xxpcc /)()]'/([ 2/1 γγ −−  and jjj xxpcc /)()]'/([ 2/1 γγ −− , 

respectively.  This symmetric rescaling has no impact on the definiteness properties of this 
matrix, and hence, Hanoch’s arguments for quasi-concavity of the relationship between utility 
and consumption (over the region xi > γi) proceeds directly.   

Third, consider the monotonicity of demand for good i in its own price: 
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   (B2) 

As before, the first term on the right-hand side of this equation is negative given that Bi(u) > 0 
and γi(u) > 0 for all values of u > 0, γ'pc > , pi > 0 and either 0 < bi < 1, or bi < 0 for all i.  The 
second term is the negative of a square and thus non-positive, and the third term contains only 
non-negative terms except for bi, which either appears as an exponent or is squared.  Hence, this 
final term is negative as well.  Thus, demands are downward sloping in their own prices. 

 

 


