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Abstract 

We develop a stochastic-dynamic model of technology adoption that imposes fewer restrictions 

on behavior than do previous studies of similar decision problems.  Like these previous studies, 

our model is forward-looking and can be used to demonstrate the additional “hurdle rate” that 

must be met before adoption will take place when the future state of the world is uncertain.  

Unlike these previous studies, our approach does not impose the untenable assumptions that 

investment in a new technology is irreversible or that technologies have unlimited useful 

lifetimes.  Rather, we address the more reasonable situation of costly reversibility and limited 

lifetimes.  Our solution method utilizes Bellman’s equation and standard dynamic programming 

techniques.  Similar methods have been used previously to examine irreversible investment and 

adoption problems, but to our knowledge no application to costly reversible adoption has yet to 

appear in the literature.  Our behavioral simulations, calibrated for irrigated cotton farming in 

California’s San Joaquin Valley, demonstrate that the more restrictive approach can produce 

significant model prediction errors and can overlook important features of the adoption problem 

when decisions are reversible and technologies eventually become obsolete.  Policy implications 

are discussed.   
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1. Introduction 

The decision to adopt a new technology frequently requires substituting one durable good 

for another.  Therefore, adopting (or not adopting) the new technology has both current period 

and future period implications because the decision changes the “state of the world” both now 

and in the future.  For example, if an agricultural producer adopts a cheap but inefficient 

irrigation system when water prices are low, he may be very happy with this purchase in the 

short-run; but he could become quite unhappy if water prices rise in the long-run.  Whereas if he 

adopts an expensive but highly efficient irrigation system when water prices are low, he may 

regret this decision in the short-run; but he may be thankful for it if water prices rise in the long-

run.  A rational individual who recognizes that a current decision affects both current and future 

welfare is best modeled as a dynamic “forward looking” agent; that is, as someone who 

considers the future implications of current actions.  Of course, someone who can costlessly and 

instantaneously change the state of the world (i.e., switch irrigation systems) cares not about 

these future contingencies, but typically this is not the case for technology adoption problems. 

Previous authors have recognized the forward-looking nature of technology adoption 

decisions and have investigated whether dynamic elements could help to explain why rates of 

technology diffusion frequently seem to be slower than expected.  For example, Isik (2004) 

observes adoption of site-specific farming technologies lags despite evidence they produce 

economic benefits; Carey and Zilberman (2002) observe adoption of modern irrigation 

technologies in California’s San Joaquin Valley seems to take place only when water becomes 

very scarce; and Purvis et al. (1995) observe very few Texas dairies utilized free-stall housing at 

the time of their study, despite the advantage of increased milk production.   

A popular approach used by these and other authors is the Dixit-Pindyck option value  
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model of investment (Dixit and Pindyck, 1994).  The option value framework is mathematically  

convenient and can account for many determinants of the adoption decision, including various 

forms of uncertainty, future expectations, risk preferences, inter-temporal substitution, and fixed 

adoption costs.  But a potential drawback of most studies that utilize this framework is the 

common assumption that the decision to exercise the option (i.e., to adopt the new technology) is 

irreversible.  Although some options may be irreversible or effectively so (e.g., harvesting a 

resource stock such as timber), we believe most technology adoption decisions are not; rather, 

most adoption decisions are characterized by costly reversibility.  For example, agricultural 

producers can and do replace their existing irrigation and cropping systems in response to input 

and output price fluctuations, changing agricultural policies, and other factors.  Furthermore, we 

note most, if not all, technologies are not infinitely durable but rather must be replaced when 

their performance begins to deteriorate significantly.   

These observations draw into question the suitability of the typical option value approach 

for a whole class of technology adoption problems, including the types of technologies often 

advocated by environmental agencies tasked with reducing pollution from agricultural operations 

(i.e., conservation technologies, also known as “best management practices”).  Nonetheless, 

researchers continue to use this approach to analyze these types of adoption problems.  Generally 

these studies have concluded that the combined effects of uncertainty and the opportunity to 

delay adoption provide a good explanation for why agents often postpone adopting a technology 

that appears to be immediately profitable.  But we question the extent to which these results may 

be driven by the chosen analytical framework.  For example, results from the finance literature 

(e.g., Asano, 2002; Kandel and Pearson, 2002; Hartman and Hendrickson, 2000; Abel and 

Eberly, 1996) suggest costly reversibility produces noticeably different model results than 
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irreversibility.  However, these applications address the problem of optimal capital stock 

accumulation which is structurally different from the problem of technology adoption.   

The purpose of this paper is to examine the determinants of technology adoption under 

uncertainty using a stochastic-dynamic model of behavior that is more flexible than the standard 

option value approach.  Our solution method utilizes Bellman’s equation and standard dynamic 

programming techniques.  Similar methods have been used by previous authors to examine 

irreversible investment and adoption problems (e.g., Bulte et al., 2002; Insley, 2002; Shively, 

2001; Farzin, 1998; Abel and Eberly, 1998 and 1996), but we are not aware of any applications 

to costly reversible adoption.  Our empirical results show the typical option value approach can 

produce significant model prediction errors and can overlook important features of the adoption 

problem when decisions actually are reversible and technologies eventually become obsolete.   

2.  Empirical Application 

The specific problem we examine is adoption of water efficient irrigation technologies by 

San Joaquin Valley cotton growers who face stochastic water prices.  Agricultural water use in 

California’s arid and semi-arid growing regions continues to be scrutinized as more water is 

demanded by urban populations and for habitat protection.  We focus on cotton producers for 

several reasons.  First, in terms of acreage cotton is the second largest field crop in California 

and the fourth largest nationally: approximately 13 million acres were harvested nationwide in 

2004, with 770,000 acres in California (California Agricultural Statistics Service, 2005).  

Second, cotton water requirements are relatively high: 2.4 to 4.2 feet per acre per year depending 

on the irrigation system (Caswell, Lichtenberg and Zilberman, 1990).  Third, despite evidence 

that modern irrigation technologies can increase producer profits, the vast majority of cotton 

acreage remains irrigated with inefficient older technologies: approximately 65-70% of 
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California’s cotton acreage used traditional furrow irrigation, while less than 5% uses modern 

drip systems (Burt, Howes and Mutziger, 2001; Horton, 2004).1  And fourth, excellent economic 

data exist for cotton: the University of California Committee of Consultants on Drainage Water 

Reduction (UCCC) estimated detailed cotton production costs for several different types of 

irrigation systems, as well as expected irrigation system lifetimes.  We adjust these costs to 2004 

values using agricultural producer price indices published by the California Agricultural 

Statistics Service (CASS, 2005) to construct an accurate representation of current economic 

conditions facing producers.  We present these data in more detail later.    

We model the relatively simple two-technology adoption problem with one source of 

uncertainty.  The old technology is ¼-mile surge-gated pipe furrow irrigation (furrow) and the 

new technology is subsurface drip irrigation (drip).  We choose this type of furrow irrigation 

because it represents one of the most efficient furrow irrigation techniques which, presumably, 

producers who choose not to adopt subsurface drip irrigation might implement when faced with 

increased water scarcity.  Our decision framework therefore characterizes the well-defined 

“jump” from furrow to drip that takes place after a producer has achieved maximum efficiency 

with a furrow system.2  We limit our attention to water price uncertainty because we are 

concerned primarily with the effects of decision model structure on prediction, and because 

prices received by San Joaquin Valley cotton producers are much less variable than the prices 

they must pay for inputs such as water (Carey and Zilberman, 2002).3   

                                                 
1  Carey and Zilberman (2002) provide a detailed discussion of the recent history of California drought cycles and 

adoption of modern irrigation technologies on various crops.   
2  A useful extension of our model would be to include sprinkler irrigation as a third possible technology choice.  

We choose not to do this here so we may focus our attention on decision model characteristics.  The qualitative 
nature of our results would not be affected by the inclusion of additional technologies.   

3  There may be other important stochastic components of the adoption problem, including: input constraints, policy 
variables, and/or subjective uncertainty about key parameter values (particularly those describing the performance 
of the new technology).  Other authors have examined these factors (e.g., Carey and Zilberman, 2002; Isik, 2004; 
Baerenklau, 2005) and have found they can have significant effects on behavior in certain situations.  We forego 
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Model Specification 

Specification of a decision framework for our empirical application first requires an 

assumption about agricultural production.  Following Carey and Zilberman (2002), we assume a 

von Liebig production function that establishes a piece-wise linear relationship between applied 

water and crop yield:  

 
*
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Here, i=1 represents furrow and i=2 represents drip; iy  is output per acre, ih  accounts for 

differences in irrigation efficiency; iw  is applied water; and 2 1h h> .  According to equation (1), 

output increases linearly with applied water at low application rates, up to an upper limit *y .4  

Because 2 1h h> , this upper limit is reached with less applied water when drip irrigation is used 

than when furrow is used.5  Because returns to scale are constant at low application rates, if a 

producer finds it profitable to apply even a small amount of water, he necessarily will find it 

profitable to apply the full amount of water, *
iw .  Therefore each producer will grow either a full 

crop or no crop with this production function.   

Assuming producers are risk neutral and the price of cotton remains high enough to 

satisfy the total profit condition, our problem can be expressed using a cost-minimization 

framework in which, during each decision period, a producer must decide whether to retain his 

                                                                                                                                                             
detailed investigations of these factors here in order to examine a model that we believe produces more general 
insights.  However, all of these represent useful extensions of this work.     

4  Some studies (e.g., Hanson, Fipps and Martin, 2005) have found “yield enhancing” effects associated with using 
more efficient irrigation systems.  This would imply * *

2 1y y> .  As in Carey and Zilberman (2002), we assume 
any such effects are negligible.   

5  We make the common simplifying assumption that each ih  is independent of technology age.  That is, the 
irrigation efficiency of an installed technology does not gradually decline through time.   
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existing irrigation system or to replace it with either a new furrow or a new drip system.6  

Formally, a producer’s objective at each time (t) is to make the irrigation technology decision 

that minimizes the expected present value of current and future production costs: 

 ( ) ( )t
t

t

E C p , ,s
∞

τ−
τ τ τ

τ=

 β  
∑ Γ , (2) 

subject to a constraint set we present below.  Here, the subscript τ  tracks the time period; the 

expectation at time (t) is taken over all future water prices, pτ ; τΓ  is a (2x1) vector that tracks 

the type of irrigation system installed ( techΓ ) and its age ( ageΓ ) at time τ ; sτ  is a scalar that 

represents the adoption decision made at time τ ; β  is the discount factor; and ( )C ⋅  is the cost 

incurred at time τ .  We suppress the additional cost function parameters for the sake of 

notational simplicity.   

The constraint set for equation (2) includes restrictions on the decision variable sτ  as well 

as equations of motion specifying how pτ  and τΓ  evolve through time.  Because we have a two-

technology problem, each sτ  can take one of at most three values at time τ : s 0τ =  corresponds 

to the decision to keep the existing irrigation system; s 1τ =  corresponds to the decision to adopt 

a new furrow system; s 2τ =  corresponds to the decision to adopt a new drip system.  Because 

we assume each technology has a finite useful lifetime and because we plan to examine both 

costly reversibility and irreversibility, each producer’s choice set is constrained further according 

to Table 1.  For notation convenience, we denote the constraints defined in Table 1 as: sτ ∈Ψ .   

                                                 
6  Berck and Helfand (1990) have shown that a continuously differentiable and concave technology may be more 

appropriate than equation (1) at the field level when production is characterized by significantly heterogeneous 
inputs.  Adopting this functional specification necessitates the use of a profit-maximization framework, in which 
case we would need to model output as well as input prices.  We believe this would complicate our model 
unnecessarily and detract from our main focus.  However, this would be a useful extension of our framework.   
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The water price ( pτ ) is assumed to follow an exogenous random process that cannot be 

predicted with certainty.  This process can be expressed by a stochastic state equation that relates 

the future water price to the current water price.  For our empirical application, we use a first-

order auto-regressive process with constant θ  and correlation ρ : 

 1 1p pτ+ τ τ+= θ+ρ⋅ + ε ,   (3) 

where the τε  are assumed to be independently and identically distributed ( )2N 0,σ  random 

variables.7  Another assumption we make regarding the price process is the only relevant price 

for irrigation technology decisions is a seasonal average price expectation that is realized 

between growing seasons.  Actual water prices fluctuate significantly during the growing season 

and previous authors have modeled these fluctuations.  If water prices became high enough 

during a growing season, a producer might choose to stop irrigating and produce a limited crop; 

but the possibility that a producer would change his irrigation system in mid-season due to water 

price fluctuations is unrealistic because doing so would destroy his crop entirely.  Therefore, we 

measure time in years and implicitly model a series of price expectations with equation (3) rather 

than a series of price realizations. 

Unlike the water price, the state variables in Γ  are deterministic.  Assuming “1” 

represents furrow irrigation and “2” represents drip, the evolution of the installed technology 

( techΓ ) can be expressed as: 

                                                 
7  Many previous studies that utilize the option value framework assume prices can be represented by geometric 

Brownian motion with positive drift.  It is straightforward to incorporate price drift into our model by specifying 
an additional state variable (time) and appending a linear time trend to equation (3), but doing so is not necessary 
to establish our main results.  Furthermore, it is not obvious that positive price drift is necessarily justified in this 
case or in similar earlier studies which have lacked supporting data (e.g., Carey and Zilberman, 2002).  Positive 
input price drift seems intuitively appealing but also would seem to depend on a number of assumptions about 
market imperfections, output demand and input supply.  Given the complexity of agricultural markets and the 
myriad of policies that affect them, we choose to use a simpler price process that allows us to focus our attention 
specifically on the role of uncertainty, rather than on the combined effects of uncertainty and temporal trends.   
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The evolution of the technology age ( ageΓ ) can be expressed as: 

 
age

age
1

1 if s 0
1 if s 0

τ τ
τ+

τ

Γ + =Γ = 
≠

. (5) 

Cost Data 

Our cost and technology data is drawn primarily from the University of California 

Committee of Consultants report on irrigation drainage water reduction (1988).   As in the 

UCCC report, we assume a standard field size of 129.5 hectares (ha) with 125.5 ha of cropped 

area.  We assume the field is in continuous cotton production and the cost to produce winter 

cover crops is negligible.  Table 2 summarizes the key data we use to calibrate our model. 

We assume 20% of the Capital Cost in Table 2 is labor cost and we depreciate the 

remaining 80% linearly over the irrigation System Life to obtain salvage values.  The Variable 

Energy Cost for pumping and pressurization is estimated to be $0.000907/(ha-cm2), assuming a 

60% pumping efficiency (Knapp et al., 1990) and an agricultural energy price of $0.20/kWh in 

the San Joaquin Valley (California Energy Commission, 2004).  The Fixed Energy Cost depends 

on pump size and irrigation system type but not on water volume or energy prices.  Amounts of 

Applied Water are assumed to be at the lower ends of the ranges estimated by Caswell, 

Lichtenberg and Zilberman (1990) to reflect irrigation efficiency improvements achieved since 

that study was conducted.  Given these data, the cost function ( )C ⋅  in equation (2) is determined 

by summing the Capital Cost (if any), O&M Cost, Fixed Energy Cost, Non-Water Production 

Cost, Variable Energy Cost, water cost (water price multiplied by the amount of Applied Water), 

and subtracting any salvage value.  All other production costs are assumed to be invariant across 
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irrigation technologies and, as stated previously, output prices are assumed to remain high 

enough to satisfy the total profit condition.   

3.  Solution Method 

Unlike the water price, equations (4) and (5) show the evolution of Γ  is endogenous.  

That is, selection of sτ  at time τ  changes the state of the world at time ( 1τ + ).  Therefore, the 

pay-off at time τ  is a function of decisions made prior to time τ .  Recognition of these linkages 

across time periods would lead a rational agent to perform forward-looking calculations when 

determining the optimal decision in any period.  Therefore our constrained cost-minimization 

problem, defined by equations (2) – (5) and the constraints represented by sτ ∈Ψ , should be cast 

as a discrete stochastic-dynamic optimization problem and solved accordingly.   

Inspection if equations (2) – (5) reveals our decision problem is stationary because we 

assume an infinite time horizon and because all temporal aspects are accounted for by the water 

price and technology state variables.8  That is, the problem faced by a producer in time period (t) 

is identical to the problem faced in any other time period.  The solution therefore can be 

expressed as a time-autonomous rule or function of the state variables: ( )*s p,Γ .  Substituting 

this rule into equation (2) defines the optimized objective function, or value function: 

 ( ) ( ) ( )t* *
t t t

t

V p , E C p ,
∞

τ−
τ τ

τ=

 ≡ β  
∑Γ Γ , (6) 

where ( )*C ⋅  represents the cost incurred during period τ  conditional on the optimal decision 

rule ( )*s p,Γ  being applied in each period.  Because the decision problem is stationary, it  

                                                 
8 Incorporating a finite terminal time (or any other feature that makes the problem non-stationary) is straightforward 

but requires additional assumptions about boundary conditions and also requires economic justification.  On the 
contrary, we believe the agricultural producers in our empirical example face planning horizons of sufficient 
length to make the actual problem indistinguishable from the infinite horizon problem (a common assumption in 
dynamic optimization).  However, producers who plan to exit farming in the near future (perhaps those planning 
to sell their land to suburban developers) should, of course, be modeled in a finite time horizon framework.   



 12 

follows that the value function defined by equation (6) also is time-autonomous. 

The optimal decision rule ( )*s p,Γ  can be found using standard methods of dynamic 

programming.  To do so it is convenient to rewrite equation (6) in Bellman’s form, using the 

time-autonomy of the value function: 

 ( ) ( ) ( ) ( )t 1* * *
t t t t t

t 1

V p , E C p , C p ,
∞

τ− +
τ τ

τ= +

 ≡ +β β  
∑Γ Γ Γ , or: (7) 

 ( ) ( ) ( )* * *
t t t t t t 1 t 1V p , C p , E V p ,+ +≡ +βΓ Γ Γ . (8) 

Rather than attempting to find an analytical solution for ( )*s p,Γ , we solve our problem 

numerically.  We first discretize the state space into a finite set of possible state variable 

combinations (we use $1 increments for the water price; Γ  is discrete by definition) and then use 

value function iteration – a standard dynamic programming technique – implemented with 

original computer code to find the solution.  To accomplish this we first initialize ( )V p,Γ .  

Then, for each possible combination of state and decision variables ( )t t tp , ,sΓ , we use equations 

(3) – (5) and the constraints in Table 1 to determine ( )t t 1 t 1E V p ,+ +Γ .  We then find the unique 

ts ∈Ψ  that minimizes ( ) ( )( )t t t t t 1 t 1C p , ,s E V p ,+ ++βΓ Γ , we set ( )t t ts p , s=Γ , and we update 

( )t tV p ,Γ  according to equation (8).  We continue iteratively updating ( )V p,Γ  and ( )s p,Γ  

until we satisfy a convergence tolerance for both functions.  By the contraction mapping property 

of Bellman’s form, ( ) ( )*V p, V p,→Γ Γ  and ( ) ( )*s p, s p,→Γ Γ  both asymptotically.   

4.  Results and Discussion 

Baseline cases 

 In addition to the cost data in Table 2, we must specify some additional values before  
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conducting our simulations: the price process parameters ( )2, ,θ ρ σ , the initial price ( )0p , the 

discount factor ( )β , and an indicator for reversible investment: { }R 0,1∈ .  Our first simulation 

establishes the deterministic decision rule, therefore 2 0σ = .  For the remaining parameters:  

• We set R 1=  (i.e., investment in the new technology is reversible).9 

• We set 7.5θ =  and 0.9ρ = , implying a corresponding long-run expected water price 

of ( )1 $75θ −ρ =  per acre-foot (af).10 

• We set 0p $75= , the long-run expected water price.   

• We set 1 1.08 0.926β = = , implying a discount rate of 8%.  We use a relatively high 

discount rate because in subsequent simulations the value function is stochastic and 

therefore should be discounted at a rate higher than the risk-free rate.   

Figure 1 presents two separate optimal investment rules – one for furrow system users 

and one for drip system users – for the deterministic case.  According to the figure, a furrow 

system user will chose to adopt a new drip system only if the (age, price) state variable pair falls 

in the upper shaded regions;11 otherwise, she will retain her existing furrow system (or replace it 

with a new one if it has reached its replacement age of 12 years).  A drip system user will chose 

to adopt a new furrow system only if the (age, price) pair falls in the lower cross-hatched regions 

of Figure 1; otherwise, he will retain his existing drip system (or replace it with a new one if it 

has reached its replacement age of 8 years).  Note that the control rule is the same for both 

technologies at their respective replacement ages of 8 and 12 years: invest in a new drip system 

                                                 
9  We are not aware of any empirical data suggesting producers are switching from drip systems to furrow systems 

in significant numbers.  However, this does not imply adoption is irreversible and our results demonstrate the 
importance of accounting for the possibility that adoption may be reversed even if producers choose not to do so.   

10  There exists very limited data on water prices, but Carey and Zilberman (2002) report water sales by the San 
Joaquin Valley Districts in the range of $70 - $80/af from 1993 - 1994.  Our long-run 95% confidence interval 
includes all but the single highest water price reported by Carey and Zilberman from 1988 - 1995.   

11  Note that the upper shaded regions continue above $150, but have been truncated for presentation.     
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if the water price is at least $85; otherwise invest in a new furrow system.   

Figure 1 provides some initial insights into the adoption problem.  First, the figure shows 

reverting from a drip to a furrow system is optimal for a non-trivial set of (age, price) pairs.  This 

suggests prohibiting divestiture of the new technology – as do many previous applications of the 

option value model – may have a substantial impact on behavioral predictions.  Second, system 

age appears to significantly affect the technology switching price.  For a furrow user with a 

relatively new system, the water price must be at least in the range of $94 - $104 to trigger 

investment in a drip system; but for a furrow (or drip) user with an old system that has reached 

its replacement age, the water price can be as low as $85.   

To establish a more realistic baseline case, we retain the previous parameter values but 

we introduce uncertainty into the price path by setting 2 100σ = .  Figure 2 shows a possible 

realization of our water price process, as well as the 95% confidence bounds an agent would 

place on the process during the initial period.  Figure 3 shows the optimal investment rule for this 

baseline case.  Incorporating uncertainty not only makes the simulations more realistic, but also 

has a noticeable effect on the optimal investment rules.  The replacement age switching price is 

now $89, approximately 4.7% higher than in the deterministic case ($85).  The furrow-to-drip 

switching prices for newer furrow systems also are noticeably higher than in the deterministic 

case (by about 10%, on average), and the drip-to-furrow switching prices are significantly lower 

(by about 20%, on average).  These observations confirm the results of many previous studies as 

well as economic intuition, namely the combined effects of uncertainty and the opportunity to 

postpone investment introduces an additional “hurdle rate” that must be met before investment 

will take place.  That is, relative to the deterministic case, prices must be even higher to 

encourage adoption of the new technology and they must be even lower to encourage adoption of  
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the old technology, even when adoption is reversible.   

Figure 3 also reveals that system age still has a noticeable effect on the technology 

switching prices for the case of a stochastic water price.  This suggests if the water price 

fluctuates such that it happens to be relatively low when the replacement age of a furrow system 

is reached, adoption of a drip system would not occur even if water prices tend to be relatively 

high – high enough to justify adoption in a model that neglects system age – at most other times.  

Even if water prices are relatively constant, the figure also suggests a group of otherwise 

identical farms with differing technology ages will chose to adopt at different times.  These 

observations present a new candidate explanation for delayed adoption of modern technologies 

with limited useful lifetimes that previous studies have not been able to address.  Our results 

demonstrate adoption of a finitely durable technology depends not only on the realization of a 

high input price, but also on the timing of that realization in relation to the age of the installed 

technology.  If these cycles are not, in a sense, “synchronized,” adoption can be postponed.  We 

examine the effects of system age and expected system life in more detail later.   

To assess the impact on the optimal investment rule of assuming adoption is irreversible, 

we re-run our baseline simulation with R 0= .  Figure 4 shows these results.12  Imposing this 

constraint on the model has the anticipated effect on predicted switching prices.  The 

replacement age switching price is now $101, approximately 13.5% higher than for the 

reversible baseline case ($89).  The furrow-to-drip switching prices for newer furrow systems 

also are significantly higher than before: approximately 7.2%, on average.  In other words, an 

even larger hurdle rate must be met before adoption of the new technology will occur.   The 

implications of our results for empirical modeling are straightforward: if, rather than simulating 

behavior, we were attempting to describe observed behavior with a model that assumes adoption 
                                                 
12  The drip-to-furrow switching prices are not applicable because adoption of a drip system is irreversible. 
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is irreversible when it truly is reversible, we would produce biased parameter estimates and 

consequently poor out-of-sample predictions and policy recommendations.13   

Sensitivity Analysis  

 To better understand the relationships between model output and the irreversibility 

assumption, we conduct a sensitivity analysis for three key parameters: the discount rate, the 

expected drip system life and the long-run expected water price.  In each case we derive both the 

reversible and irreversible decision rules to help illuminate the types of bias we might incur 

when assuming adoption is irreversible.  The first parameter we examine is the discount rate, an 

important component of any multi-period optimization model.14  Intuitively, decreasing the 

discount rate would tend to decrease the furrow-to-drip switching price.  This is because future 

costs have a higher present value with a lower discount rate (a higher value of β ).  And because 

the furrow technology incurs relatively larger future costs (for water inputs) than does the drip 

technology, the total cost to install and operate a furrow irrigation system increases faster than 

the total cost for a drip system when the discount rate declines.  A low discount rate effectively 

“penalizes” a furrow system more than it does a drip system; therefore, the furrow-to-drip 

switching price should move in the same direction as the discount rate.   

Figure 5 shows this intuition holds.  Furthermore, the figure demonstrates a model with 

irreversible adoption can approximately replicate the decision rule for a model with reversible 

adoption if the discount rate is reduced by about 2%.  These results imply estimates of discount 

rates derived from models of irreversible investment will be biased downward when adoption is 

                                                 
13  An analytical expression for the bias would be difficult to derive given the recursive definition of the value 

function.  However, it would be possible to generate choice data from a known model of reversible adoption and 
then to estimate the parameter values with a model that assumes irreversibility.  We leave this for future work.   

14  One reason for the growth in popularity of the option value model is related to discounting: models that fail to 
incorporate the opportunity to postpone the investment decision often cannot replicate observed behavior unless 
unrealistically high discount rates are used.   
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reversible.  This observation also suggests a related problem for the more typical case of a 

modeling exercise with a pre-specified discount rate: because one of the common motivations for 

using an option value model is to avoid the need to use an unreasonably high discount rate with a 

non-forward-looking model to mimic observed behavior (see footnote 14), this downward bias 

would have the unfortunate effect of promoting the selection of an option value model with a 

“more reasonable” discount rate when the use of such a model is not entirely warranted. 

 To further investigate the role of system age, our second sensitivity analysis addresses the 

System Life parameters in Table 2.  An important improvement that tends to happen to most 

technologies with the passage of time is an increase in the technology’s useful lifetime.  Some 

automobile manufacturers currently advertise their engines do not require mechanical service 

until they reach 100,000 miles.  This is a remarkable improvement over first-generation 

automobiles and even over automobiles manufactured only a few decades ago.  A similar trend 

may be happening with drip irrigation systems.  Rain and Foley (2001) report the life expectancy 

of a subsurface drip system is approximately 10 years.  Neufeld, Davison and Stevenson (1997) 

state the “expected system life is highly dependent upon the operation, design and ongoing 

maintenance of the system” but “industry representatives indicate properly designed and 

maintained systems should last up to 15 years.” (pp. 2-3)  Zimet and Smith (2000) claim that 

some components of a drip system can last up to 20 years.  As the expected useful life of a drip 

system increases, the furrow-to-drip switching price for all furrow system ages should decrease 

because the expected cost of drip irrigation will be lower when its expected lifetime is greater.   

 Figure 6 shows the switching price behaves as expected and suggests it is more sensitive 

to changes in the expected system life than to changes in the discount rate.  Furthermore, the 

figure demonstrates the discrepancy between the reversible and irreversible decision rules varies 
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noticeably with the expected system life parameter.  For a 7-year system life, the switching 

prices under irreversibility are 16 – 25% higher than those under reversibility; but the 

discrepancy is quite small for a 9-year system life.  Because system life, like the discount rate, 

also would be a parameter that is assumed for a modeling exercise rather than estimated from 

data, Figure 6 suggests it is important for the analyst to make a good assumption about this 

parameter; otherwise, significant amounts of bias could be introduced into the estimated 

parameters as the model attempts to compensate for this error.  Unfortunately, making a good 

assumption about system lifetimes may not be straightforward because it is not the true system 

life that affects the adoption decision but rather an agent’s belief about the system life.  The same 

is true for other model parameters, such as those specifying the price process.  Therefore, if the 

analyst is attempting to derive parameter estimates from observed adoption data, accounting for 

subjective beliefs appears to be rather important.15   

 Our third sensitivity analysis addresses the possibility that agents may hold subjective 

beliefs about the constant term (θ ) in our price process, and thus about the long-run water price 

expectation.  Because higher water prices favor drip systems, we should see the furrow-to-drip 

switching price decrease as θ  increases.  Figure 7 shows this appears to be true and, according to 

the same reasoning we used for our sensitivity analysis of the discount rate, implies the 

irreversibility assumption introduces an upward bias on empirical estimates of price 

expectations.  The discrepancy between the reversible and irreversible decision rules also 

exhibits significant variability depending on the long-run price expectation.  For the case of 

5θ =  (i.e., a long-run price expectation of $50), the switching prices under irreversibility are  

23 – 32% higher than those under reversibility; but there is virtually no discrepancy for the case 

of 10θ =  (i.e., a long-run price expectation of $100).   
                                                 
15  See Baerenklau (2005) for an example.   
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5.  Conclusions 

 Our flexible decision framework sheds light on the implications of using more restrictive 

models of behavior, including many previous applications of the option value model.  Like these 

applications, our model is forward-looking and can be used to demonstrate the additional “hurdle 

rate” that must be met before investment will take place when the future state of the world is 

uncertain.  However, our approach does not impose the untenable assumptions that investment in 

a new technology is irreversible or that technologies have unlimited useful lifetimes.   

In cases where the decision to adopt a new technology is most appropriately modeled as 

reversible, we show the irreversibility assumption can lead to significant model prediction errors: 

measured in terms of switching prices, the discrepancies can be up to 32% of the true values, 

depending on model parameters.  By extension, this assumption would produce biased parameter 

estimates derived from observed behavior.  Furthermore, because our approach accounts for the 

fact that most technologies eventually must be replaced, we also are able to examine the 

relevance of technology age to the adoption problem.  We find this variable has a conspicuous 

effect on the switching price which we illustrate graphically.     

 If not readily apparent, the policy-relevance of these results can be demonstrated by 

considering the process by which a regulator might determine the proper incentive to encourage 

adoption of an environmentally friendly production technology.  The regulator’s problem can be 

cast as a stochastic-dynamic optimal control problem: maximize an inter-temporal social welfare 

function subject to equations of motion for the relevant state variables (including indicators of 

market value and environmental quality) by manipulating one or more control variables (i.e., the 

incentive).  Buried in the mathematics of this problem is an adoption rule characterizing the 

decisions made by the agents who face the incentive.  If the adoption rule is incorrectly specified, 
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the regulator’s derived control rule will be incorrect and the outcome will be inefficient.  

Therefore, our results raise questions not only about the validity of a large number of previous 

technology adoption studies, but also about the suitability of these models for guiding 

development of agri-environmental policies.   

 Our model advances the literature on technology adoption but also highlights a number of 

issues that remain to be investigated.  We show the assumption of irreversibility, often readily 

employed by analysts for convenience, can have a significant impact on model output.  But we 

do not delve into the details of exactly what determines the extent of reversibility or the cost of 

reversing a previous investment.  For example, we account for capital (installation) costs, but we 

do not address learning costs or other sources of aversion to change.  To the extent adopting a 

different technology has other inherent switching costs, these should be incorporated into the 

analysis.  We briefly examine the importance of assessing subjective beliefs about key model 

parameters, but we do not explore this topic in detail.  Agents may have subjective beliefs about 

input and output prices, production efficiencies, probability distributions, and other important 

parameters which analysts typically assume are known with certainty but which in reality are 

not.  We believe our model presents a realistic characterization of the technology adoption 

problem, but it does not explore the effects of inter-temporal substitution, risk preferences, or 

credit constraints on adoption behavior.  Of course, given the diversity of technology adoption 

scenarios that can arise in practice, a general model of technology adoption that incorporates all 

of these features and can be applied to any situation should not be the goal of future research.  

But to the extent researchers can better incorporate the vital characteristics of the specific 

scenarios they examine into their models, improved behavioral predictions and policy 

recommendations will result.   
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Table 1: Choice Set Constraints (Ψ ) 
 

Is adoption 
of the new 
technology 
reversible? 

Has the new 
technology 

been adopted 
previously? 

Has the installed 
technology 
reached its 

replacement age? 

Applicable 
Choice Set: 

Yes Yes Yes {1,2} 
Yes Yes No {0,1,2} 
Yes No Yes {1,2} 
Yes No No {0,1,2} 
No Yes Yes {2} 
No Yes No {0,2} 
No No Yes {1,2} 
No No No {0,1,2} 
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Table 2: Cost Data used to Calibrate the Adoption Model 
 

Variable 
1/4-mile 

Surge-Gated 
Furrow 

Subsurface 
Drip 

Capital Cost ($)a $131,100 $450,965 
O&M Cost ($/year)a $3,943 $23,164 
Fixed Energy Cost ($/year)a $360 $360 
Non-Water Production Cost ($/year)a $183,303 $132,641 
Pressure Head (cm)b 305 1,524 
System Life (years)b 12 8 
Applied Water (ft/acre/year)c 3.7 2.4 

 

a  University of California Committee of Consultants on Drainage Water Reduction (1988),  
inflated to 2004 values using agricultural producer price indices published by the California 
Agricultural Statistics Service (2005).  

b  University of California Committee of Consultants on Drainage Water Reduction (1988).  
c  Caswell, Lichtenberg and Zilberman (1990).   
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Figure 1: Optimal Decision Rules for the Deterministic Case 

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10 11 12

System age (years)

W
at

er
 p

ric
e 

($
/a

f)

If using furrow , sw itch to drip

Retain existing system 

If using drip, sw itch to furrow

 

 



 26 

Figure 2: Price Process Confidence Bounds and 
a Possible Price Series for the Baseline Case 
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Figure 3: Optimal Decision Rules for the Baseline Case 
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Figure 4: Optimal Decision Rule for the Baseline Case with Irreversibility 
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Figure 5: Comparison of Furrow-to-Drip Switching Prices for the  
Reversible and Irreversible Cases with Varying Discount Rates 
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Figure 6: Comparison of Furrow-to-Drip Switching Prices for the 
Reversible and Irreversible Cases with Varying Drip System Lifetimes 

 

50

75

100

125

150

1 2 3 4 5 6 7 8 9 10 11 12

System age (years)

W
at

er
 p

ric
e 

($
/a

f)

Irreversible, 7 yrs

Reversible, 7 yrs

Irreversible, 8 yrs

Baseline

Irreversible, 9 yrs

Reversible, 9 yrs

 



 31 

Figure 7: Comparison of Furrow-to-Drip Switching Prices for the 
Reversible and Irreversible Cases with Varying Long-Run Price Levels 
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