
 

Two ways of estimating a transport model 
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Abstract 
In this article, it is shown how the parameters of a transport model can be 

estimated in a way that, in contrast to previously used methods, utilizes obser-
vations of regional prices as well as of trade costs. The proposed method uses 
bi-level programming to minimize a weighted least squares’ criterion under the 
restriction that the estimated parameters satisfy the Kuhn-Tucker conditions 
for an optimal solution of the transport model. We use Monte-Carlo simula-
tions to trace out some properties of the estimator and compare it with a tradi-
tional calibration method. The analysis shows that the proposed technique es-
timates prices as well as trade costs more efficiently. 
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1 Introduction 
The transport model treated in this article is a common component of spatial price 
equilibrium models. It has been analyzed in several central articles in linear pro-
gramming, for example in Koopman’s original article from 1947, Enke’s ingen-
ious “solution by electric analogue” (1951) and Samuelson’s formalized treatment 
(1952). In Dantzig’s work on linear programming (1966), the transport problem is 
referred to as “The classical transport problem.” This paper is not concerned with 
the solution of the transport model, which has been thoroughly treated for more 
than fifty years, but turns instead to the empirical specification of the model. In 
fact, during the long history of this established problem, little attention has been 
paid to the estimation of the input data for the problem. 

The transport cost minimization problem can be written as 
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where cij is the trade cost from region i to region j, xij is the traded quantity and 
ei is excess demand in i. Letters in square brackets after the restrictions symbolize 
the dual values of the constraints. 

In this article, we consider the trade of a single homogeneous good, and as-
sume that consistent data on regional excess demand is available. Furthermore, 
we assume that observations of trade costs between regions as well as regional 
prices are available, but associated with measurement errors. Observed prices are 
likely to be inconsistent with observed trade costs and excess demand under the 
assumption that they constitute an equilibrium solution to model 1. 

Spatial price equilibrium models frequently contain a similar transport cost 
minimization model as component. Examples range from the early publications of 
Judge and Wallace (1958) and Takayama and Judge (1964) to the more recent 
contributions of Litzenberg, McCarl and Polito (1982), Peeters (1990) and 
Guijardo and Elizondo (2003)—to name just a few. 

In the cases known to this author, including the publications just cited, there 
was either no calibration at all, or the models were calibrated by 

1. solving the trade cost minimization problem using the observed trade 
costs, 

2. taking the dual values of the market clearing restrictions pi as prices and 
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3. shifting the prices so that some important price is matched precisely. 

Step 3 is possible because the first order conditions only contain pair-wise 
price differences. Indeed, one of the market clearing restrictions is redundant, 
because we know that for a solution to the transportation problem to exist, the 
sum of all regional net demand must be zero (Dantzig 1966), implying that if 
there are k markets, then if k-1 of them clear, all of them must clear. Because only 
price differences are identified, one numerator price can be chosen arbitrarily and 
the remaining prices are determined by those price differences. 

Obviously, this method for determining regional prices for a transport model 
does not use any direct observations of regional prices except for the numerator 
price. The remaining regional price information is extracted from trade costs and 
excess demand. This procedure is henceforth referred to as “traditional” and ab-
breviated TRAD.  

In this paper we (1) demonstrate an alternative method, a bi-level estimation 
program (BLEP), for calibrating the input data for a transport model that uses 
observations of regional prices, and (2) show that BLEP estimates regional prices 
more efficiently than TRAD and that this increased efficiency in estimating prices 
does not come at the expense of a less efficient estimation of trade costs. 

The rest of this article is outlined as follows: In the next section, the BLEP is 
presented in some detail, and it is given a geometric interpretation. Then we use a 
three-region example model to deduct hypotheses about the behavior of the two 
estimators. The hypotheses are analyzed using Monte-Carlo simulations, where 
the performance of the two estimators is evaluated using generated data. The re-
sults of the simulations are analyzed and compared to the hypotheses formed. A 
final section summarizes and discusses the results. 

2 The bi-level estimation program  

2.1 The estimator 
Heckelei and Wolff (2003) propose estimating parameters of agricultural supply 
models by using optimality conditions as estimating equations. Jansson and 
Heckelei (2004) show how a similar technique can be applied to the estimation of 
a transport model, where a large number of inequalities renders the estimation 
numerically difficult. The current paper contributes to this strand of research by 
calibrating the parameters of a transport model by direct estimation of the opti-
mality conditions of problem 1, using a least squares objective, and analyzing the 
finite sample properties of the estimator. The resulting optimization problem, 
given by equations 2-7 belongs to the class bi-level programming problems 
(BLPP). The name is due to the fact that it is one programming problem, the esti-
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mation, that has another programming problem, in this case the transport problem 
represented by its optimality conditions, in the constraints. 
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  cij − pj + pi = vij (4) 

  xijvij = 0 (5) 

  cij = cji (6) 

  xij ≥ 0, vij ≥ 0 (7) 

The general BLPP is difficult to solve, so a few words about solution tech-
niques are appropriate, although a substantial treatment of that subject is beyond 
the scope of this article. Several different solution methods were tested, including 
approximation by smooth reformulations as suggested by Facchinei, Jiang and Qi 
(1999), a branch-and-reduce algorithm called BARON implemented as solver for 
the modelling language GAMS and the method proposed by Jansson and 
Heckelei. Those three methods all produced similar results and were therefore 
assumed capable of solving the problem satisfactorily. The latter method was 
finally chosen because it runs faster than the others, thus enabling a larger number 
of simulation experiments. 

2.2 A geometric interpretation 
It may be worthwhile to dwell a moment on the BLEP to obtain a better under-
standing of what the estimator does. It turns out that, in the case where the crite-
rion function to be minimized is the sum of squared deviations and the model to 
be estimated is a linear model, it has an intuitive geometric interpretation. To be 
specific, we consider the following simple BLEP, where we estimate a linear pro-
gramming problem in one variable y that depends on a parameter x, and restric-
tions as follows: 

 
yx,

min  (x − xo)2 + (y − yo)2  

 s.t. 
xy|

min  y  

  s.t. −y − x ≤ −3 (8) 

   −y + x ≤ 2  
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   y − x ≤ 2  

   y + x ≤ 8  

xo and yo are observations, and we want to pick x and y that minimize the upper 
level objective and where y solves the inner problem treating x as given. We note 
that (x,y) that minimize (x − xo)2 + (y − yo)2 also minimize √[(x − xo)2 + (y − yo)2], 
which is the Euclidean metric, i.e. the distance, between the estimated point (x,y) 
and the observation (xo,yo). 

In figure 1 the restrictions of problem (8) are drawn as lines, the observed 
point (xo,yo) as a plus sign, and level curves for the criterion function as concentric 
circles around the observation. All points on a circle have the same distance from 
the plus sign and hence the same objective values in the criterion function. Fol-
lowing Bard (1998), we call the area enclosed by the restrictions (where the cir-
cles are not dashed) the constraint region S of the bi-level programming problem. 

x

y

l
g

 
Figure 1. A simple BLEP with OLS criterion and linear inner problem. 

The projection of S onto the x-axis is denoted by S(X), and is a convex subset 
of X with the property that for each x ∈ X at least one, but possibly several, solu-
tions to the LP exists. If we form the set of all pairs (x,y) where x is in S(X) and y 
solves the LP, we have the so-called inducible region. It is marked with heavy 
lines in the figure. We seek the point in the inducible region that is closest to the 
observation. 

When the inner problem is an LP, the inducible region is a piecewise linear 
equality constraint derived from the faces of S (Bard 1998). In the general case, it 
is non-convex, so there may be several local optima. In figure 1, there is a local 
optimum at the point l and the global optimum is found at g. The non-convexity 
of the inducible region causes difficulties for the solution of the problem, and is 
one important reason that special solution methods frequently are needed for 
BLEPs. 
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3 Hypotheses about the estimators  
It is desirable that an estimator on average is close to the true parameter. We call 
this efficiency and measure it by the mean squared error (MSE) (Greene 2003). 
MSE is the mean squared deviation of an estimate from the true parameter value. 
Efficiency is a relative measure, so what we would like to know is if one of the 
estimators is more efficient than the other. To our aid, we use the fact that MSE 
can be split into a variance and a bias component using  

 22 ])|ˆ[(]ˆ[])ˆ[(]|ˆ[ θθθθθθθ BiasVarEMSE +=−=  (9) 

where θ  is the true parameter value and θ̂  the estimator. In this section, we 
formulate hypotheses about the efficiency of the estimators, to be tested later. We 
proceed by qualitative reasoning, based on the structure of the two methods, to 
deduct hypotheses about variances and biases. If one estimator turns out to be less 
biased as well as having less variance than the other, we conclude that it is more 
efficient. If on the other hand one estimator is less biased but has higher variance 
than the other, the qualitative reasoning in this section does not allow us to say 
that one estimator is more efficient than the other. To make the reasoning easier to 
follow, we first present the results of this qualitative section. The following two 
sections in this article report setup and results of simulation experiments designed 
to analyse each of the properties. 

1. BLEP is a more efficient estimator of regional prices than TRAD, be-
cause the BLEP estimates have both less variance and less bias than the 
TRAD estimates. 

2. We cannot a priori say that either estimator is a more efficient estimator 
of trade costs. On the one hand, BLEP estimates have a bias that TRAD 
estimates lack, but on the other hand the variances of the BLEP estimates 
are lower. The simulation experiments reported below suggest that this 
hypothesis can be strengthened. 

3. The variances of the price estimates are heterogeneous, in other words the 
variance is different in different regions. It is more heterogeneous if esti-
mated with TRAD than with BLEP. 

4. The variance of the cost estimates is heterogeneous when estimated with 
BLEP but not when estimated with TRAD. 

The reasoning is illustrated in a three-region, single good model. We assume 
that there exist true parameter values that represent an equilibrium solution to this 
model. We can think of TRAD and BLEP in a mechanical way as two devices 
that accept observations of regional prices and costs as inputs and produce esti-
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mates of prices and costs as outputs, or rather, as a one-one relation from the 
price-cost space into itself (onto the inducible region). The principle procedure 
followed here is (i) to note that if regional prices and trade costs are observed 
without errors, then both BLEP and TRAD return the same equilibrium solution, 
i.e. the true parameter values, and (ii) to introduce “known measurement errors” 
systematically for certain price and trade cost positions in order to see how the 
equilibrium solutions returned by TRAD and BLEP change in response. Or, if the 
estimator is thought of as a mapping, (i) to note that the true parameter values is a 
point in the inducible region that maps to itself and (ii) to see how images of 
points symmetrically dispersed around the true values are dispersed around the 
image of the true values. 

The Kuhn-Tucker conditions for an optimal solution of (1) imply that if a trade 
flow is connecting two regions, the price difference must be precisely the trade 
cost. Increasing the trade cost between the regions will firmly push the equilib-
rium prices apart, and decreasing it will pull them together. However, the com-
plementarity restrictions will truncate the response of prices to changed observed 
trade costs, because trade always flows along the cheapest path. If the trade cost 
between two regions that trade with one another is continuously increased, then at 
some point the trade route will not longer be the cheapest one, so trade will take 
another path. Further increases of that trade cost will have no effect on prices. 
This fact is the cause of the biases of the estimators, and it is exemplified below. 

Figure 2 shows three regions A, B and C, with B being a net importing region 
and A and C net exporters. The left and right panels of the figure show two of the 
three possible trade flows that would clear all markets. To be specific, let us as-
sume that the true regional prices are pA = 100, pB = 109 and pC, = 104 and the 
trade costs cAB = 9, cAC = 5 and cCB = 5 and symmetric as in equation (6). In this 
case, trade will flow as in the left hand panel. 

A C

B

A C

B
 

Figure 2. Three region model with A and C net exporters and B a net importer. 
Two possible market clearing solutions. 

To start with, we feed the true parameter values into TRAD and BLEP, and as 
this observation is consistent with equilibrium, both methods map this observation 
to itself, i.e. both methods return precisely the observation. Now, what happens to 
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the estimates if upon observation a random variable from a symmetric distribution 
with mean of zero is added to the trade cost cAB and all other observations remain 
undisturbed? The symmetric errors will have a biasing effect on prices, regardless 
if they are estimated with TRAD or BLEP, as illustrated by the following numeri-
cal example: 

Example: We measure prices and costs of the model in figure 2 twice, and after 
each measurement we use the observation to estimate the true parameters with 
TRAD and BLEP. Only cAC is measured with errors, all other trade costs and 
prices are observed with their true values. The observations of cAC are  
 (i)  cAC = 10  
 (ii)  cAC = 0 

TRAD. (i) The trade cost minimizing solution is the same as that without the 
error, so trade will still flow as in the left panel of the figure. The dual values of 
the markets with the numerator price pA added will equal the true prices, because 
the flow AC is still not used. The costs will, as always with TRAD, be the ob-
served ones: cAB = 9, cAC = 10 and cCB = 5. (ii) It is cheaper to transport via ACB 
than via AB, so trade will divert from AB to ACB as in the right panel of figure 2, 
the prices will be pA = 100, pB = 105 and pC = 100, and costs cAB = 9, cAC = 0 and 
cCB = 5. Conclusion: In this case, only negative errors that are larger than 1.0 in-
fluence the price estimates, because the second cheapest trade route is 1.0 unit 
more expensive than the cheapest one. The price estimates for B should system-
atically turn out lower than the true prices in this setup, as would the price in C. 

BLEP. (i) The observation is a point in the inducible region, so the estimator 
will accept the observation unaltered and will measure a deviation of zero. In the 
estimated model, trade will flow as in the left panel of the figure. Nothing will 
happen to the prices because the flow AC is still not used, and the estimated costs 
will be cAB = 9, cAC = 10 and cCB = 5 as with TRAD. (ii) The observation is not in 
the inducible region, so the estimator will look for the closest point of the induc-
ible region using the least squares criterion. The best solution means using the 
trade flow ACB and not AB, choosing the prices pA = 101.9, pB = 108.2 and 
pC = 102.9, and the trade costs cAB = 9, cAC = 0.952 and cCB = 5.381. Again, only 
the negative error with absolute amount greater than 1.0 influences the estimation. 
As with TRAD, a symmetric measurement error with a mean of zero causes the 
estimated prices to deviate from the true values in only one direction (positive for 
pA and negative for pB and pC), i.e. being estimated with bias, but less biased than 
with TRAD. 

The example can be modified to consider measurement errors on other trade 
costs than cAC. For example, a reasoning similar to that above suggests that sym-
metric measurement errors on cCB would cause the price in C to be overestimated 
on average and that of B to be underestimated. So, errors on cAC leads to the price 



 

8 

in C being underestimated and errors on cCB work in the opposite direction. 
Which effect will be stronger? Perhaps there is a way to compensate for those 
biases in the estimator to obtain unbiased estimates? The biases seem to depend 
on excess demand, which is known, but also on true prices and costs, which are 
assumed to be unknown. At this point, therefore, we are satisfied with concluding 
that the estimates will be biased, that they are more biased for TRAD than BLEP, 
but that we cannot formulate a general rule for the size and direction of the bias. 

From this simple example we learn that symmetrically distributed errors on 
trade cost observations have a biasing effect on price estimates because positive 
and negative errors influence the estimator differently. The cause of this effect is 
of course the Kuhn-Tucker conditions, allowing the price difference between two 
regions to be smaller than but never larger than the trade cost⎯the inequalities 
built into the Kuhn-Tucker conditions truncate certain errors away. 

Prices only occur in equation 4, and there always pair-wise. Hence, it is not 
primarily the estimated prices that are biased, but the price differences—which 
equal the trade costs for the used trade flows. So, in the example we see that 
BLEP also tends to bias the trade cost estimates: from two observations symmet-
rically distributed around the true value (5.0) the estimator delivers the two esti-
mates 10.0 and 0.952. The average estimate is then 5.476, so there is a bias of 
5.476 − 5.0 = 0.476. The bias resulting from this source would always be positive, 
i.e. towards an overestimation of the cost. However, the estimator will consider 
the errors on all other measured parameters of the model, which may influence the 
bias in positive or negative direction. As there are not infinitely many prices and 
trade costs in the model, the biases will most probably not cancel each other out, 
but it is difficult to determine the direction of the bias a priori. 

Above, we let the observations deviate from the true values for one trade cost 
at the time and observed how the estimated point deviated from the true values. A 
similar reasoning can be applied to measurement errors on prices. Assuming that 
all parameters happen to be observed at their true values except for one price that 
is observed with error yields the following conclusions for the two estimators: 
TRAD will not contend with such price errors at all unless it is the numerator 
price that is subject to the error, because all other price observations are dis-
carded. However, a measurement error on the numerator price will be added to all 
other prices as well. BLEP will distribute the price error over several regions, and 
also over the estimated trade costs. It is difficult to predict the signs and sizes of 
the estimated errors on costs and prices resulting from a measurement error for 
one price item, as it depends on the interconnections via trade flows of the region 
with other regions. Other prices are obviously influenced with the same sign as 
the error. For trade cost estimates it can have positive, negative or zero biasing 
effect depending on trade relations. 
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Clearly, the variance of each trade cost estimated with TRAD will be pre-
cisely the same as that of the measurement error of that trade cost. But what hap-
pens with BLEP? Here there seem to be two mechanisms working in opposite 
directions: On the one hand, the measurement errors of prices will influence the 
trade cost estimates, tending to increase the variances. On the other hand, the least 
squares estimator will attempt to distribute deviations over as many parameters as 
possible thus decreasing the variance. An educated guess worth testing is that the 
second effect dominates, i.e. the variances of the trade cost estimates with BLEP 
are generally lower than those of TRAD. 

The variance of each price estimated with TRAD will generally be higher than 
that of prices estimated with BLEP. The “estimated” numerator price will be pre-
cisely the observed numerator price, so for that price, the variance of the estimator 
will be that of the observations. Because all other prices are tied to the numerator 
price by trade costs, the estimates of those other prices will receive the error from 
the enumerator price but also from each used trade link (each with a trade cost 
measured with error!) that separates them from the region with the numerator 
price. As a contrast, BLEP does not maintain any numerator price, but distributes 
errors over all prices and trade costs. Thus, the variances of the prices estimated 
with BLEP should be lower than those estimated with TRAD. Furthermore, this 
mechanism will cause the variance of the price estimates to be different in differ-
ent regions if estimated with TRAD, following the general rule that the further 
away a region is from the numerator region in terms of used trade links, the higher 
the variance of the price estimate will be. 

The variance of regional price estimates should be different in different re-
gions, heterogeneous, if estimated with either method. In any region that is a net 
importer, say B, the equilibrium price is precisely equal to that of at least one 
neighboring region, say C, from which B imports the good, plus the trade cost. 
We call this the supply price of C in B. Note that some authors, e.g. Anderson and 
Wincoop (2004) use the term supply price differently. The Kuhn-Tucker condi-
tions imply that the supply price in B of any regions not delivering to B is higher 
than pB. This is the case for A in the right panel of figure 2. If we measure the 
trade cost from C to B too high, i.e. with a positive error, the estimated price in B 
will be higher than the true price, but not higher than the supply price of A in B. 
Now, if the supply price of A in B is, by chance, close to the supply price of C in 
B, and trade can divert into the situation of the left panel of figure 2, not much 
will happen to the price in B if cCB is measured higher than the true value. A part 
of the error is “truncated away.” If, conversely, the supply prices are far apart, 
regional prices are more strongly linked to the trade costs, and a measurement 
error of the trade cost from C to B will have greater influence on prices. 

The heterogeneity of the variance of estimated prices also spills over into the 
variance of trade costs estimated with BLEP, as this method distributes errors 
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between prices and trade costs. To conclude, both methods are biased estimators 
of the variances of prices, and BLEP is also a biased estimator the variances of 
trade costs. 

4 Simulation experiments  
The small sample properties of the estimation are analyzed using simulation tech-
niques. The basic idea is to generate m randomly chosen “true models,” and then 
estimate each model n times (the simulation size is n), each time adding errors to 
the true prices and costs. We thus obtain m samples of n observations of estimated 
trade cost matrices and price vectors. Throughout this paper we use m = 100 and 
n = 500. 

The m models, each with ten regions, are generated by drawing regional ex-
cess demand from the uniform distribution [−10,10] and trade costs from the uni-
form distribution [20,100]. The excess demand of one region is set to the negative 
of the sum of excess demand in all other regions to make the problem feasible. 
The transport model (1) is solved, and the dual values of the market balances plus 
a constant of are 120 taken as true regional prices. In the following, the index 
denoting the model to which a certain price or trade cost belongs is omitted.  

Each of the m models is estimated n times with TRAD and BLEP, each time 
with errors added to all true prices and trade costs. The errors are sampled from 
the normal distribution with mean of zero and standard deviation 6. With this 
standard deviation, the rule of thumb “plus or minus three standard deviations” 
lets us expect that the major part of the errors are in the interval [−18,18]. By con-
struction, true trade costs are in [20,100], so with a numerator price of 120 the 
smallest possible true trade cost as well as price is 20. Hence, adding an error of 
standard deviation 6 and mean zero will rarely result in negative observed values. 
Still, they may occur, and to prevent that, the sampled errors are truncated to lie 
within the interval [−19,19]. The errors are truncated upwards as well as down-
wards to avoid truncation being a source of biases. 

In the next section, we address the hypotheses put forward in the previous sec-
tion by analysing MSE, variances and biases of prices and trade costs estimated 
with TRAD and BLEP. Since equation (9) holds for each parameter in each 
model, we can compute the mean of each term over all prices or costs in each 
model, obtaining mean MSE (MMSE), mean squared bias (MSBIAS) and mean 
variance (MVAR), for which it holds that MMSE = MSBIAS + MVAR. The 
means are computed in order to obtain an overview over the large number of pa-
rameters estimated in the simulation exercise. 

5 Results  
This section presents the results of the simulation experiments in relation to the 
hypotheses previously formed. It is subdivided into three parts: (i) efficiency of 
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price estimates, (ii) efficiency of trade cost estimates and (iii) heterogeneity of 
variances. 

5.3 Efficiency of price estimates 

Result 1 BLEP is a more efficient estimator of regional prices than TRAD.  

The simulation experiments confirm the hypothesis that BLEP is a more effi-
cient estimator of regional prices than TRAD. Figure 3 shows MMSE for price 
estimates in all models. Each point is the average MSE for all regional prices in 
one model. 
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Figure 3. Mean MSE for price estimates for each model. 

The results show that BLEP not only delivers more efficient estimates of 
prices, but also that the efficiency is stable across different models. In other 
words, it does not depend upon the true data constellation. In contrast, TRAD is 
less efficient in all cases, and additionally, the efficiency seems to depend on the 
data constellation. As we will see, the greater efficiency of BLEP regarding price 
estimates is attributable to less bias as well as less variance, as the qualitative 
reasoning above suggests. 

Result 2 Both BLEP and TRAD estimate prices with bias, but the bias is smaller 
for BLEP.  

Figure 4 shows the mean squared bias of price estimates in all models. 
MSBIAS of prices estimated with TRAD fluctuate strongly between models, 
whereas the biases of prices estimated with BLEP are much more stable and also 
smaller. Most of the large biases come from the TRAD estimator. 
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Figure 4. Mean squared bias of price estimates of all models. 

It may also be of interest to analyse the biases of the individual regional price 
estimates (not the mean squared bias). Table 1 shows descriptive statistics of the 
sample of estimation biases of regional prices. Neither the average nor the median 
of the biases is far from zero, indicating that there are about as many positive 
biases as there are negative ones. The larger variance of the biases of TRAD sup-
ports the hypothesis that TRAD generally produces price estimates with larger 
biases. The larger biases also appears in the line “SABIAS”, which is the sum of 
absolute biases. SABIAS of TRAD is more than three times that of BLEP. 

Table 1: Descriptive Statistics of Biases of Price Estimates  

 TRAD BLEP 
mean -0.320 0.006 
variance 7.500 0.544 
median -0.118 -0.004 
SABIAS 1929.660 567.130 

 

According to the reasoning in the previous section, we would expect TRAD to 
systematically estimate biased prices in some regions in some models. One way 
of testing this is to perform two-sided t-tests of the hypothesis “the average price 
estimated for an arbitrary region in an arbitrary model does not equal the true 
price,” with the null hypothesis that they are equal. The test statistic is computed 
as  
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where l
ip̂  is the estimated price in region i for estimation l with l∈{1,…,n}, ip  

the average of the n estimations of the price in region i, and si the sample standard 
error of the price estimates in region i and in each model (model index still omit-
ted!). We compare this with the upper critical values of Student’s t-distribution.  

The result is that for TRAD, the null hypothesis is rejected in 567 cases (of 
1000 possible, 100 models with 10 prices per model) at the 95 percent level and 
in 504 cases at the 99 percent level. For BLEP, the null hypothesis is rejected in 
569 cases at 95 percent level and 475 cases at 99 percent level. The test seems to 
support the hypothesis that both estimators are biased, but does not make any 
clear distinction between them. 

The power of the t-test is probably low, as the price estimates are likely to vio-
late normality, because of the “truncating mechanism” making the distributions 
asymmetric. Still, there is an indication that price estimates are systematically 
biased, and that they are more biased when estimated with TRAD than BLEP. So, 
TRAD is likely to deliver price estimates that on average lie further away from 
the true prices than does BLEP. 

Result 3 The variance of prices estimated with TRAD is greater than that of 
prices estimated with BLEP. 
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Figure 5. Sample variances of price estimates, pooled together for each model. 

Figure 5 shows the pooled sample variance of price estimates in each model 
estimated with TRAD and BLEP. If r = {1,…,m} indexes the models, the pooled 
sample variance1 2

rs  of the prices of model r is computed as ( )∑ =
=

k

i rikr ss
1

212 , 

                                                      
1Because each price is estimated the same number of times, the pooled variance turns out 
to be the plain average MVAR.  
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with 2
ris  indicating the squared sample standard deviation of price i in model r as 

defined above, and k indicating the number of regions. As can be seen in the fig-
ure, TRAD estimates generally have a much higher variance. The variances of 
prices estimated with TRAD seem to depend more strongly upon the underlying 
true model than is the case for BLEP. The highest pooled sample variance of the 
TRAD estimates is about twice the lowest one, whereas the variances of the 
BLEP estimates are closer together. 

It is noteworthy that in all models, the pooled variance for BLEP is clearly 
smaller than the variance used in the sampling process (36), whereas it is much 
bigger for TRAD. The pooled sample variances reflect the behavior of the under-
lying non-pooled variances, described in more detail below under the hypothesis 
about heterogeneity. Obviously, no statistical test is necessary to see that the vari-
ance of the TRAD price estimates is greater than that of the BLEP. 

5.4 Efficiency of trade cost estimates 

Result 4 BLEP is a more efficient estimator of trade costs than TRAD. 
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Figure 6. Mean MSE for trade cost estimates for each model. 

Figure 6 shows the mean MSE for all trade cost estimates in each model. 
MMSE for BLEP is lower than for TRAD in all models, but the differences are 
not as obvious as for the price estimates (figure 3). It also looks as if the effi-
ciency of BLEP is somewhat more sensitive to different data constellations than 
TRAD, because the BLEP points appear to be vertically more dispersed. Below, 
MMSE of trade cost estimates is split up into bias and variance components. 
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Result 5 BLEP but not TRAD produces biased trade cost estimates.  

The TRAD trade cost estimates cannot, by construction, be systematically bi-
ased. They are simply the unaltered observations, so their being biased would 
mean that there is something wrong with our data generating process. However, 
we have only a finite sample, so the sample mean (the mean of any estimated cost 
item taken over the n repetitions) may very well deviate from the true trade cost. 

For BLEP, the qualitative discussion above suggests that the inequalities could 
cause the trade costs to be systematically biased for some region pairs, but in an 
unpredictable direction. In figure 7, the MSBIAS of the trade cost estimates in all 
models are shown. All values are small, and it is not immediately clear whether 
BLEP is more biased than TRAD, but the tendency is certainly visible, because 
points further away from zero generally belong to BLEP. 
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Figure 7. Mean squared bias of trade cost estimates in each model. 

To further investigate the question whether the BLEP cost estimates actually 
are more biased than the TRAD estimates, we perform a t-test similar to the one 
performed for price biases above. As we do not know if a given trade cost will be 
over- or underestimated, we make the test two-sided. For TRAD, the number of 
rejections of the null hypothesis is close to the number that would be expected, 
namely 5.42 percent of the cases (244/4500) at the 95 percent level and 1.36 per-
cent of the cases (61/4500) at the 99 percent level. For BLEP, the number of re-
jections is higher, with 721 rejections at the 95 percent and 403 at the 99 percent 
level, thus supporting the hypothesis. 

As for price biases, the nature of the bias (truncation by the inequality) may 
tend to make the distribution of the estimates with BLEP (but not with TRAD!) 
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asymmetric, so the sample will probably not be normally distributed, weakening 
the power of the t-test. 

If all the computed trade cost biases are considered a sample, we get the sam-
ple statistics shown in table 2. The average bias is close to zero for both methods, 
and so are the variances and the medians of the biases. The sum of absolute biases 
of all trade costs in all models, SABIAS, is higher for BLEP than for TRAD, also 
supporting the result. 

Table 2. Descriptive Statistics of Biases of Trade Cost Estimates  

 TRAD BLEP 
mean -0.007 0.041 
variance 0.073 0.136 
median -0.007 0.013 
SABIAS 964.690 1260.942 

 

Result 6 The variance of trade costs estimated with TRAD is greater than that of 
those estimated with BLEP.  

We expect the pooled sample variance of the estimated trade costs for TRAD 
to be precisely 36, which is the variance used in the data generation process. Fur-
thermore, the hypothesis states that the pooled sample variance per model (see 
above) of the estimates performed with BLEP should be lower. Figure 8 shows 
the pooled sample variances of both methods for each of the 100 models. The data 
seems to support the hypothesis, because the TRAD data points are nicely dis-
persed around 36 and all BLEP data points lie below the lowest TRAD data point. 
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Figure 8. Mean variance of estimated trade costs, pooled together for each model. 
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If we look at the underlying data in the form of the non-pooled sample vari-
ances, the view is more differentiated. It seems that the sample variances of the 
cost estimates are more dispersed across trade links within each model with BLEP 
than with TRAD. This observation is further discussed in connection with the 
hypothesis regarding homogeneity of variances below (figure 10).  

The conclusion is that the variances of trade cost estimates in general are 
lower with BLEP than TRAD, but that this conclusion must not hold for an arbi-
trarily selected trade cost estimate. 

5.5 Heterogeneity of variances 

Result 7 The variance of the price estimates is heterogeneous, i.e. the variance is 
different in different regions. It is more heterogeneous if estimated with TRAD 
than with BLEP.  

A quick look at the data supports this result. Figure 9 shows the sample vari-
ance (not pooled) of the first 200 prices estimated, i.e. of all prices in the first 20 
models. Each model has ten regions, so there is a total of two hundred points for 
each of TRAD and BLEP shown in the figure. It can be seen that the variances of 
the different regional price estimates fluctuate strongly between the TRAD esti-
mates, whereas the variances seem much more homogeneous for BLEP. All 
BLEP points are in the thick band at the bottom of the plot. Above that band 
comes a row of plus signs, which is the TRAD estimates of the numerator prices, 
all of which have the variance 36 (the sampling variance). Above that row lie all 
the other TRAD estimates. The higher the variance of a price estimate, the more 
trade links are probably separating it from the numerator price. 
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Figure 9. Sample variance of estimates of individual prices 



 

18 

The variances of the TRAD estimates are clearly heterogeneous. However, it is 
difficult to tell whether the variances of the BLEP estimates are homogeneous or 
not, that is if the fluctuations observed are random outcomes of the same distribu-
tion. If we would estimate the same price item another n times, would we then get 
a similar or different sample variance? We want to test the hypothesis “the vari-
ances of prices differ between at least two regions in the estimated model” with 
the null hypothesis “the variances are equal in all regions of the model.” To do 
this, a Bartlett’s test (see NIST/SEMATECH) is performed for each model m. 
The results indicate that in 100 models out of 100, TRAD has produced heteroge-
neous estimates at the 95 percent significance level, whereas BLEP seem to have 
done so in 99 cases. At the 99 percent level there is no change, i.e. the null hy-
pothesis is still rejected in 100 out of 100 cases for TRAD, and in 99 of 100 cases 
for BLEP. 

However, the Bartlett’s test is sensitive to deviations from normality, and we 
know that the price estimates are biased. Hence, the results may be due to a ske-
wed distribution, not to heterogeneity. To double-check, we perform also a 
Levene’s test (ibid.) for heterogeneity, a test that is less sensitive to deviations 
from normality. The test can be performed using deviations from mean or from 
the median. Both were tried, with similar results. The following results are for 
tests with the mean. The test statistics indicate that price estimates are biased (at 
the 95 percent level) in all 100 models with both TRAD and BLEP. At the 99 
percent level the results are similar, with 99 rejections for BLEP and 100 for 
TRAD. So, it seems like the price estimates are likely to be heterogeneous with 
both methods, albeit the visual impression from figure 9 clearly is that the prob-
lem is smaller for BLEP than for TRAD. 

Result 8 The variance of the cost estimates is heterogeneous when estimated with 
BLEP but not when estimated with TRAD.  

Figure 10 shows the sample variance of the first 200 trade cost estimates with 
TRAD and BLEP. The first impression is that there is less difference between the 
methods than was the case for the price estimates. The variances of the TRAD 
estimates are, as expected due to the data generation method, dispersed around 36. 
The variances of the BLEP estimates seem to be generally smaller, as previously 
discussed, and more dispersed, supporting the hypothesis. A lot of the points in 
the figure coincide. These are trade costs for trade links that are not used regard-
less of cost, so the value need not be modified in order to reach consistency. 
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Figure 10. Variance of estimates of individual trade costs. 

The tests for heterogeneity detect clear differences between the TRAD and the 
BLEP estimates: The Bartlett’s statistic for the hypothesis “the variances of all 
cost estimates in each model are not equal,” with the null hypothesis “all vari-
ances in each model are equal” fully supports the hypothesis. The null hypothesis 
is rejected at the 95 percent significance level in only four models of 100 with 
TRAD, and in no model at the 99 percent level. For BLEP, the null hypothesis is 
rejected in all 100 models on both the 95 percent and the 99 percent level. 

To double check, the Levene’s test was performed also for trade cost estimates 
with results similar to those of the Bartlett’s test. The null hypothesis is rejected in 
six of 100 models for TRAD at the 95 percent level and in three cases at the 99 
percent level. For BLEP, the Levene’s test rejects the hypothesis in all models at 
both levels of significance. The hypothesis thus seems to be firmly corroborated. 

6 Discussion 
We conclude that BLEP is a more efficient estimator than TRAD of prices as well 
as trade costs. For prices, BLEP estimates have smaller biases as well as smaller 
variances than TRAD. For trade costs, the BLEP estimates are biased whereas the 
TRAD estimates are not. However, the biases of the BLEP estimates are more 
than compensated for by lower average variances. Variances of trade cost esti-
mates are heterogeneous if estimated with BLEP but not with TRAD. In other 
words, the variances of prices are estimated with bias in both methods. 

The BLEP performs better than TRAD in almost all disciplines. Are there no 
drawbacks? Clearly, one drawback is that BLPPs in general are difficult to solve. 
However, with increasing computing capacity and the development of new solver 
software, that argument is rapidly losing its strength. And for the incumbent prob-
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lem—the transport model—existing techniques seem to be able to handle the 
difficulties. 

References 
Anderson, J. E. and E. van Wincoop (2004). Trade costs. Journal of Economic 

Literature 42, 691–751. 
Bard, J. (1998). Practical bilevel optimization. Kluwer academic publishers. 
Dantzig, G. (1966). Lineare Programmierung und Erweiterungen. Springer-

Verlag Berlin. 
Enke, S. (1951). Equilibrium among spatially separated markets: Solution by 

electric analogue. Econometrica 19, 40–47. 
Facchinei, F., H. Jiang, and L. Qi (1999). A smoothing method for mathematical 

programs with equilibrium constraints. Mathematical Programming 85, 107–
134. 

Greene, W. H. (2003). Econometric analysis (Fifth ed.). Prentice Hall. 
Guajardo, R. G. and H. A. Elizondo (2003). North american tomato market: a 

spatial equilibrium perspective. Applied Economics 35, 315–322. 
Heckelei, T. and H. Wolff (2003). Estimation of constrained optimisation models 

for agricultural supply analysis based on generalised maximim entropy. 
European Review of Agricultural Economics 30, 27–50. 

Jansson, T. and T. Heckelei (2004). Estimation of a transport model using a 
mathematical equilibrium constraints. Technical Report 1501, Global Trade 
Analysis Project. 

Judge, G. G. and T. D. Wallace (1958). Estimation of spatial price equilibrium 
models. Journal of Farm Economics 15, 801–820. 

Koopmans, T. C. (1947). Optimum utilization of the transportation system. 
Econometrica 17, Supplement. 

Litzenberg, K., B. A. McCarl, and J. Polito (1982). A decomposition solution for 
spatial equilibrium problems. American Journal of Agricultural Economics 64, 
590–594. 

NIST/SEMATECH (2004, Dec). NIST/SEMATECH e-handbook of statistical 
methods. http://www.itl.nist.gov/div898/handbook/, National Institute of 
Standards and Technology. 

Peeters, L. (1990). A spatial equilibrium model of the EU feed grain sector. 
European Review of Agricultural Economics 17, 801–820. 

Samuelson, P. A. (1952). Spatial price equilibrium and linear programming. 
American Economic Review 42, 283–303. 

Takayama, T. and G. G. Judge (1964). Spatial equilibrium and quadratic 
programming. Journal of Farm Economics 46, 67–93. 


