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GENERALIZED HEDGE RATIO ESTIMATION WITH AN UNKNOWN MODEL

Abstract

Myers and Thompson (1989) pioneered the concept of a generalized approach to esti-
mating hedge ratios, pointing out that the model specification could have a large impact
on the hedge ratio estimated. While a huge empirical literature exists on estimating hedge
ratios, the literature is lacking a formal treatment of model specification uncertainty. This
research accomplishes that task by taking a Bayesian approach to hedge ratio estimation,
where specification uncertainty is explicitly modeled. Specifically, we present a Bayesian
approach to hedge ratio estimation that integrates over model specification uncertainty,
yielding an optimal hedge ratio estimator that is robust to possible model specification
because it is an average across a set of hedge ratios conditional on different models. Model
specifications vary by exogenous variables (such as exports, stocks, and interest rates) and
lag lengths included. The methodology is applied to data on hedging of corn and soybeans
and on cross-hedging of corn oil using soybean oil futures. Results show the potential
benefits and insights gained from such an approach.

JEL Categories: C11, C51, Q14

Key Words: Bayesian Econometrics, Corn, Futures Markets, Hedge Ratios, Model Speci-
fication, Soybeans.



1. Introduction

Myers and Thompson (1989) pioneered the concept of a generalized approach to esti-

mating hedge ratios. They pointed out that the form of the equation to use in estimation

is dependent upon assumptions concerning the stochastic prices whose risks are being

managed. A huge literature exists on estimating hedge ratios under different model as-

sumptions, adding generalizations to ARCH or GARCH errors (Baillie and Myers, 1991),

parameter estimation uncertainty (Lence and Hayes, 1994), and many other features of

model specification (Witt, Schroeder, and Hayenga, 1987; Vukina, 1992).

However, the literature is lacking a formal treatment of model specification uncertainty

as the central issue in hedge ratio estimation. In Myers and Thompson’s original work,

they suggest that the optimal hedge ratio, β, should be estimated with an OLS regression:

pt = βft + αXt−1, where pt is the cash price level, ft is the futures price level, and Xt−1

is a vector of variables known at time t− 1 that help predict pt and ft. While Myers and

Thompson (1989) suggest that Xt−1 include lagged values of pt and ft, production, storage,

exports, and consumer income, they likewise admit that “model specification is somewhat

ad hoc with economic theory, hypothesis testing, and common sense used as guidelines” (p.

864). Furthermore, the authors readily acknowledge that model specification is perhaps

the most difficult aspect of estimating generalized hedge ratios.

This research seeks to formally address the specification problem by taking a Bayesian

approach to hedge ratio estimation, where model uncertainty is a given. Specifically,

we present a Bayesian approach to hedge ratio estimation that integrates over model

specification uncertainty. This yields an optimal hedge ratio estimator that is robust to

possible model specification because it is an average across a set of hedge ratios conditional

on different models.
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Formally, we consider a set of 64 possible model specifications and estimate the poste-

rior distribution of the optimal hedge ratio and the posterior odds in favor of the model for

each model in that set. The distributions and model odds are then used to construct the

marginal distribution of the optimal hedge ratio, integrating out the model uncertainty.

The integration with respect to the model uncertainty, which yields the marginal posterior

distribution, is accomplished by computing a weighted average of the 64 conditional (on

model specification) distributions where the weights are equal to the model odds. A single

optimal hedge ratio can then be chosen using any desired loss function; for example, a

quadratic loss function will produce a posterior point estimator for the hedge ratio equal

to the mean of the marginal posterior distribution.

The methodology is applied to hedging for corn and soybeans and to cross-hedging

for corn oil using soybean oil futures. Model specifications vary by exogenous variables

(exports, stocks, and interest rates) and lag lengths included. Importantly, the research

presents a different approach to estimating hedge ratios, which may protect practitioners

against model specification errors. In simulations using our application, risk management

performance of the optimal hedge ratio appears to be as good as alternatives, although

significant improvement is not found in the regular hedging examples. However, in the

cross-hedging example significant improvement in risk management is demonstrated. This

highlights an important aspect of model specification uncertainty: one is never sure when

the model being used is wrong.

2. Literature Review and Problem Overview

Myers and Thompson (1989) generalized the estimation of optimal hedge ratios to

account for conditioning information that is available at the time a hedging decision is

made. The authors demonstrate that the traditional approach of using a simple regression
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of cash price levels on futures price levels or cash price changes on futures price changes

are correct only under a very restrictive set of assumptions. A regression approach is

suggested where the cash price level is regressed against the futures price level plus a

set of conditioning variables. Myers and Thompson suggest the conditioning variables

include lags of futures and cash prices, plus any variables thought to influence prices

such as stocks, exports, and storage costs. In an example using corn and soybeans, the

authors show that the generalized optimal hedge ratio can vary substantially from the

unconditional ratio estimated with price levels; but, they argue that the unconditional ratio

estimated with price changes may provide a reasonable estimate of the generalized hedge

ratio. The authors urge researchers to extend the methodology to allow for conditional

heteroscedastic shocks, and to use out-of-sample data to compare performance among the

different approaches to estimating hedge ratios.

Baillie and Myers (1991) apply bivariate GARCH models to estimated time-varying

optimal hedge ratios. That is, the hedge ratio is defined as the conditional covariance

between cash and futures prices divided by the conditional variance of futures prices,

where the time variation in the conditional covariance matrix is modeled using a GARCH

specification. The authors find that hedge ratios are time-varying and nonstationary.

Furthermore, the GARCH hedge ratios outperform constant (unconditional) hedge ratios

in out-of-sample tests. Despite this advance in estimation techniques, the authors do

not generalize the hedging regression in the sense of Myers and Thompson to include

conditioning variables.

Researchers have extended the procedure of Baillie and Myers to areas such as simul-

taneously determined hedge ratios (Garcia, Roh, and Leuthold, 1995). While, others have

delved into whether hedge ratios should be estimated with price levels, price changes, or
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returns (Witt, Schroeder, and Hayenga, 1987) or whether or not the use of hedge ratios

out-perform naive unit-for-unit hedging (Jong, De Roon, Veld, 1997; Collins, 2000). Still,

the use of the simple (unconditional) hedge ratio (usually estimated in price changes) is

pervasive in the literature (e.g., Ferguson and Leistikow, 1998). This may stem from the

inherent problems in specifying the generalized model of Myers and Thompson, and the

potential sensitivity of hedge ratios to model specification. Here, we pose one potential

solution to this dilemma.

By taking a Bayesian approach to hedge ratio estimation, model uncertainty is treated

similarly to a parameter to be estimated and one can integrate over model specification

uncertainty. This yields an optimal hedge ratio estimator that is robust to possible model

specification because it is an average across a set of hedge ratios conditional on different

models. Such an approach was first undertaken empirically in economics by Poirier (1991),

who considerd 147 different macroeconomic models. Poirier tested important macroeco-

nomic hypotheses such as money neutrality while removing the potential influence of model

specification by deriving results that were averaged across a large set of possible models

differing in both included variables and identifying restrictions. Considering that Alston

and Chalfant (1993) showed how important model specification can be to the results of

applied econometrics in agricultural economics, it is surprising that more work on model

specification uncertainty has not appeared in the agricultural economics literature. A rare

example is found in Dorfman and Lastrapes (1996) who use an approach similar to Poirier’s

to estimate agricultural price responses to monetary policy.

3. Modeling and Estimation Issues

In this section we will show the model specifications used, the methodology for han-

dling model specification uncertainty, and the process used to accomplish the Bayesian
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estimation of the optimal hedge ratio. The important parts of the robust estimation

approach are the set of models considered and the assumptions made for the likelihood

functions and prior distributions of the unknown parameters. Given those details and the

data, Bayes’ Theorem leads us through a straightforward process which optimally com-

bines this (researcher-specified) information with the information in the data to yield the

posterior distributions of model odds, regression parameters, and any other features of

interest in our models. Further details for handling model choice and comparison in a

Bayesian framework using the approach here can be found in Koop (2003, pp38-43) which

contains an easy to follow exposition of the process.

3.1. Assumptions and Statistical Mechanics

First, we need to describe the process by which Bayesian statistics handles model

specification uncertainty. To begin the estimation process, define the set of models to be

considered, M = {Mj , j = 1, . . . ,M}, here all assumed to be linear regression models:

y = Xjβj + εj , j = 1, . . . ,M, (3.1)

where y is the vector of observations on the dependent variable assumed for simplicity

here not to vary across models, Xj is the matrix of regressors for the jth model considered,

εj is the random error term vector for the jth model, and j indexes the models in the

set of M models considered. Given that the dependent variable is here assumed identical

in all models, the differences in models are all confined to the regressor matrix X which

is allowed to vary both in the number of regressors, kj , and in the particular regressors

included (which could include variation in variables included and/or transformations of

variables such as logs versus levels).
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The prior distributions on the regression parameters βj are specified as

p(βj) ∼ N(b0j , σ
2
j V0j), j = 1, . . . ,M, (3.2)

where N stands for the (multivariate) normal distribution, b0j is the prior mean of the jth

model’s regression parameters and σ2
j V0j is the prior covariance matrix. The term σ2

j also

needs a prior distribution which is specified more easily for its inverse as

p(σ−2
j ) ∼ G(s−2

0j , d0j), j = 1, . . . ,M, (3.3)

where G stands for the gamma distribution, s−2
0j is the prior mean for the inverse error

variance, and d0j is the prior degrees of freedom parameter which controls the tightness (or

informativeness) of the prior distribution–higher values of d0j imply a more informative

prior (Koop, 2003).

The likelihood function for each model is assumed to follow a standard form based on

identically and normally distributed random error terms εj . While there is some evidence

of commodity prices following non-normal distributions and having nonconstant variances

(cf. Baillie and Myers, 1991), this assumption allows analytical derivation of the form

of each model’s posterior distribution and of the model’s marginal posterior odds. The

likelihood function is therefore specified in the form

Lj(y|βj , σ
2
j , Xj) = (2πσ2

j )−n/2exp{−0.5(y −Xjβj)′σ−2(y −Xjβj)}, j = 1, . . . ,M. (3.4)

Given the prior distributions and likelihood functions above, the joint posterior dis-

tribution for βj and σ2
j is given by

p(βj , σ
2
j |y, Xj) ∼ NG(bpj , Vpj , s

2
pj , dpj), j = 1, . . . ,M, (3.5)
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where

Vpj = (V −1
0j + X ′

jXj)−1, (3.6)

bpj = Vpj(V −1
0j b0j + (X ′

jXj)β̂j), (3.7)

dpj = d0j + nj , (3.8)

and

s2
pj = d−1

pj [d0js
2
0j + (nj − kj)s2

j + (β̂j − b0j)′(V0j + (X ′
jXj)−1)−1(β̂j − b0j)], (3.9)

where NG stands for the joint normal-gamma distribution, β̂j and s2
j are the standard

OLS quantities and nj and kj are the rows and columns of Xj , respectively.

Most research interest focuses on the posterior estimate of βj or a subset of those

regression parameters (like the optimal hedge ratio). Because of this focus, it makes sense

to derive the marginal posterior distribution of βj by integrating out the variance parameter

σ2
j to yield

p(βj |y, Xj) ∼ t(bpj , s
2
pjVpj , dpj), j = 1, . . . ,M, (3.10)

where t stands for the multivariate Student’s t-distribution. The marginal posterior distri-

bution of a particular element of βj also follows a t-distribution with posterior mean and

variance as in the multivariate distribution above.

Now, introduce the apparatus for handling model specification uncertainty. Begin

with a discrete prior weight on each model,

p(Mj) = µj ,
M∑

j=1

µj = 1. (3.11)

These weights may be uninformative in the sense of treating all models equally or may

be weighted to display a preference for certain models. In the uninformative case, µj =
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1/M,∀j. Next, using the above results on the posterior distributions shown in (3.5), derive

the marginal likelihood functions by integrating out the parameter uncertainty to leave a

conditional likelihood for each model,

p(yj |Mj) = cj [|Vpj |/|V0j |]1/2(dpjs
2
pj)

−dpj/2, (3.12)

where

cj =
Γ(dpj/2)(d0js

2
0j)

d0j/2

Γ(d0j/2)πn/2
, (3.13)

and Γ(·) is the Gamma function. Combining these two equations, (3.11) and (3.12), one

can derive the posterior probability of each model

p(Mj |yj) ∝ µj [|Vpj |/|V0j |]1/2(dpjs
2
pj)

−dpj/2 = µjp(yj |Mj), j = 1, . . . ,M. (3.14)

Normalizing the values in (3.14) by dividing each value by the sum across all M

models will ensure that the posterior model probabilities will sum to unity. Denote these

normalized posterior probabilities by

ωj =
µjp(yj |Mj)∑M

j=1 µjp(yj |Mj)
, j = 1, . . . ,M. (3.15)

These posterior model probabilities are the key to the handling of model uncertainty.

3.2. Robust Bayesian Parameter Estimation: Accounting for Model Uncertainty

Given the normalized posterior model probabilities, the next step is to derive the

marginal posterior distribution, removing the conditioning on the model specification.

This is done by integrating over the models in the set M, essentially creating a single

posterior distribution for β that is a weighted average of the posteriors for each model

specification. Thus, the full marginal posterior distribution of the regression parameters,
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β, accounting for all the possible models, is a mixture distribution, in this case, a mixture

of t-distributions:

p(β|y, X) ∼
M∑

j=1

ωjt(bpj , s
2
pjVpj , dpj). (3.16)

Note that the subscript has been dropped from the parameter vector β since we are no

longer conditioning on the model specification.

If a point estimate of β is desired as opposed to the entire posterior distribution, a

Bayesian uses a loss function to derive the optimal point estimator given the distribution

of the parameters of interest (cf. Zellner, 1971). If one uses a quadratic loss function,

L(β̄) = (β̄ − β)′(β̄ − β), (3.17)

where β̄ is the chosen point estimator and β is the unknown vector being estimated, then

the optimal point estimator is the vector that minimizes the expected value of the loss

function in (3.17) where the expectation is taken with respect to the posterior distribution

shown in (3.16). Thus, the optimal estimator β̄ is the solution to

argminβ̄ E[L(β̄)] =
∫

(β̄ − β)′(β̄ − β)p(β|y, X)dβ. (3.18)

The optimal estimator with respect to the quadratic expected loss shown above is the

mean of the posterior distribution given in (3.16). Given the symmetry of the t-distribution,

the mean of this mixture distribution is the weighted average of the individual means

where the weights are the {ωj} that represent the posterior model probabilities. Thus, the

optimal estimator accounting for the model specification uncertainty under the expected

loss described in (3.18) is given by

β̄ =
M∑

j=1

ωjbpj , (3.19)
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recalling that bpj is the mean of each model’s posterior distribution as given in (3.10) which

is the optimal estimator β̄j for the quadratic loss function. This is the estimator used in

this paper; researchers can easily employ different loss functions better suited to particular

applications to derive alternative estimators which are optimal for the loss functions so

employed. For example, an absolute loss function results in the posterior median being

the optimal point estimator. In applications such as hedging, the loss function could also

be designed to provide an estimator with optimal characteristics relative to the potential

costs from hedging with an incorrect hedge ratio.

4. The Data

We use data on three commodities in our examples: corn, soybeans, and corn oil.

Corn oil does not have a futures contract, so we estimate a cross-hedge using the soybean

oil contract. In all three applications we assume that hedges are held for one month in

the nearby contract. For corn and soybean the cash prices are those reported for Central

Illinois by the Illinois Agricultural Statistics Service. For corn oil, the cash price is a wet

mill crude corn oil price. Cash and futures prices are collected on the last business day of

each month.

For corn, possible variables to include in the model are corn exports, interest rates,

and lags of the cash and futures prices. For soybeans, the possible variables are soybean

stocks (at mills), soybean crushings, and lags of the cash and futures prices. For corn oil,

the possible variables are soybean oil stocks, interest rates, and lags of the cash and futures

prices. Note the lagged futures prices are carefully constructed for each expiring contract

such that for any given observation at time t, the lags at time t− n represent the expiring

contract. That is, the data is constructed such that at time t, the nearby futures price and
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lagged futures price represent the same contract. The data in all cases spans from January

1975 through April 2003, resulting in 340 observations.

5. Empirical Results

5.1. The Models and Priors

Given the data described above, we considered 64 distinct models for each commodity.

All models have the cash price as the dependent variable. The contemporaneous futures

price and twelve monthly dummy variables to model seasonality are included in all models

as regressors. Two exogenous variables were considered for inclusion in each model (listed

above in the data section). The inclusion of none, one, or both exogenous variables gives

four possible specifications with respect to exogenous variables.

To account for possible dynamic effects in the stochastics of the cash and future prices,

including possible nonstationarity, up to three lagged values of both prices were considered

for inclusion. The lags were only included in complete ordered sets; for example, for the

cash price the options were: no lags, [pt−1], [[pt−1, pt−2], and [pt−1, pt−2, pt−3]. That is, no

“holes” were allowed in the lag structure. This uncertainty over lagged prices in the model

adds four possible lag specifications for the cash price and four possible lag specifications

for the futures price.

Allowing all possible combinations of these three dimensions of model specification

yields the (4×4×4 =) 64 total model specifications for each commodity studied here. Since

all models contain twelve monthly dummies and the current futures price, the smallest

model has 13 regressors and the largest has 21 (the 13 always included plus two exogenous

variables, 3 lagged cash prices, and 3 lagged futures prices). Some of the models are nested
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within others, some are not. Thus, classical statistics does not have an exact or Fisher-

type test for deciding among or ranking these models, making this set of models a good

application for the Bayesian approach.

Given these 64 models for each commodity, and the data described in section 4 above,

only the prior distributions still need specification to allow completion of the estimation

process. The models each receive equal prior weights; that is, µj = 1/64 ∀j. The priors

on the regression parameters follow distributions as described in equations (3.2) and (3.3).

The dimension of the priors depends on the exact model specification, but priors on param-

eters associated with specific regressors do not change with model specification (i.e., if the

variable is in the model, its prior is the same every time). The largest model, with all possi-

ble regressors included, is used to detail the prior. The order of regressors for the purposes

of displaying these priors is [ft, X1,t−1, X2,t−1, pt−1, pt−2, pt−3, ft−1, ft−2, ft−3, D], where

D is the matrix holding the 12 monthly dummies.

For the corn model, the prior means are set to

b0 = [0.95, 0.3,−0.025, 0.9, 0, 0,−1.0, 0 . . . , 0]′, (5.1)

where nonzero prior means are employed only for (in order) the hedge ratio, the two

exogenous variables (corn exports, then interest rate), and the first lags of both cash and

future prices. Thus, the prior hedge ratio is 0.95, corn exports are assumed, a priori, to

increase the cash price while higher interest rates lower it, and the price dynamics of the

prior are for high, positive autocorrelation in cash prices and a unit root in the futures

prices. The prior variance matrix V0j is a k-dimensional diagonal matrix with ones on the

diagonal except for the five elements with nonzero prior means. The diagonal elements for

those five parameters are set to 0.01, 0.25, 4.0, 0.25, and 0.25, respectively.
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For the soybean model, the prior means are set to

b0 = [0.95,−0.2,−0.2, 0.9, 0, 0,−1.0, 0 . . . , 0]′, (5.2)

where nonzero prior means are employed only for the same five regressors. The prior hedge

ratio is again set equal to 0.95 and identical price dynamics are assumed. The priors on the

exogenous variables assume higher stocks and crush both lower the cash price. The prior

variance matrix V0j is again a k-dimensional diagonal matrix with ones on the diagonal

except for the five elements with nonzero prior means. The diagonal elements for those

five parameters are set to 0.01, 0.25, 0.25, 0.25, and 0.25, respectively.

For the corn oil model, the prior means are set to

b0 = [0.95,−0.5,−0.5, 0.9, 0, 0,−1.0, 0 . . . , 0]′, (5.3)

where nonzero prior means are employed only for the same five regressors. The prior hedge

ratio is again set equal to 0.95 and identical price dynamics are assumed. The priors on

the exogenous variables assume higher soybean oil stocks and interest rates both lower the

cash price. The prior variance matrix V0j is again a k-dimensional diagonal matrix with

ones on the diagonal except for the five elements with nonzero prior means. The diagonal

elements for those five parameters are set to 0.01, 0.25, 4.0, 0.25, and 0.25, respectively.

For all models, the remaining prior parameters are set to

s2
0j = 1, d0j = 15, j = 1, . . . ,M. (5.4)

This completes the specification of all features of the estimation process. To derive the

results, the marginal posterior distribution of the regression parameters βj is computed

using the above prior values for each model according to equation (3.10), yielding a poste-

rior mean conditional on each model specification. The posterior model weights for all the
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models are then calculated using equations (3.12) and (3.15). These two sets of results are

combined according to (3.19) to arrive at the marginal posterior point estimator β̄. The

optimal hedge ratio, accounting for all the model specification uncertainty, is simply the

coefficient from β̄ on ft.

Because of the prior distributions chosen and the specification of the likelihood func-

tion, all the results in this application can be derived analytically. Thus, numerical methods

were not necessary to approximate the posterior distribution of the regression parameters

or to compute the model odds. However, if other likelihood functions (with assumptions of

non-normal residuals) or priors were used, numerical methods would allow approximation

of the analogs to all the expressions here and the same general process to be followed.

5.2. Posterior Model Probabilities for Corn and Soybeans

The first results worth investigating are the posterior model probabilities. If the ωj

are concentrated tightly over one (or similar) models, then model specification uncertainty

is not a significant problem in estimating hedge ratios. However, if the model probabilities

are spread over many models, model specification for hedge ratio estimation needs more

attention. Obviously, after examining the model odds, we also need to determine if hedge

ratios vary across model specifications because if estimated hedge ratios are (relatively)

constant across specifications, then model specification does not matter.

For corn, 19 models receive at least 1% of the posterior model probabilities, indicating

significant model specification uncertainty. In fact, six models have posterior probabilities

of over 5% and the most likely model has only a 16.6% posterior probability in its favor.

This most likely model has no exogenous variables, one lag of cash price and one lag of

the future price.
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For soybeans, only five models have at least 1% of the posterior model probabilities and

two models combine for 80% of the probability, suggesting much less model specification

uncertainty than for corn. The most likely model has 49.4% of the posterior probability

and contains soybean stocks and no lagged prices at all.

The 64 models are too many to display the individual model weights in a meaningful

table, so instead we present in table 1 the marginal probabilities of each model specifica-

tion feature (such as probability of one lag of cash price, etc.). Each of these marginal

model feature posterior probabilities is the sum of the individual model posterior prob-

abilities that share the named model specification feature (such as all models with both

exogenous variables included). Given our set of models considered, each of these marginal

probabilities contains 16 separate models, but the results reported include overlap; that

is, the probability of models with corn exports but not interest rates includes some of the

same models as the probability of models with a single lag of futures price. The results

in table 1, columns 2 and 4 contain these marginal probabilities for each model feature.

The values are to be interpreted as the posterior support in favor of the models containing

that feature. For example using the first row of column 2, we would say that 56.6% of the

posterior support is placed on corn models with no exogenous variables implying that such

models are slightly favored relative to all the possible models with one or two exogenous

variables.

The results for the corn model (table 1, column 2) clearly show posterior support in

favor of either no exogenous variables or the inclusion of the interest rate. Models with one

lag of cash price are most favored, with considerable support for two lags as an alternative.

The same is true for lags of the futures price. The results for the soybean model (table

1, column 4) show strong posterior support for the inclusion of soybean stocks, with no
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exogenous variables as a strong second option. The soybean results show overwhelming

posterior support for the exclusion of all cash and futures price lags with approximately

92% support in favor of leaving out all lagged prices. Overall, the model probability results

show more uncertainty over the corn model features than the soybean model.

5.3. Optimal Hedge Ratios

Moving on to the estimated hedge ratios, the results in table 1 make clear that the

optimal hedge ratio does vary with model specification. Table 2 displays the marginal

posterior results for both commodities. For corn, we see the optimal hedge ratio after

accounting for model specification uncertainty is 0.941 with a range over the 64 models

from 0.900 to 0.990. Checking table 1 shows that the most important aspect of model

specification with respect to the corn hedge ratio is due to the presence or absence of

lagged prices. Columns 3 and 5 in table 1 display the optimal hedge ratios conditional on

a particular model specification feature. If no price lags are present, the conditional hedge

ratio goes up over 0.98. As long as at least one lagged price (cash or futures) is present, the

conditional hedge ratio falls back into the neighborhood of 0.94, right where the optimal

hedge ratio lies. With a range from 0.900 to 0.990, clearly these conditional hedge ratios

hide much of the variation across individual models, but they are useful for identifying the

features of model specification that have the most influence on the estimated hedge ratios.

For the soybean model, the results in table 2 show an optimal hedge ratio equal

to 0.985 with a range from 0.918 to 0.991. The results in table 1 show the conditional

soybean hedge ratio moves much more with conditioning on different model specification

features than in the case of corn. The presence or absence of exogenous variables matters

as does the presence/absence of both lagged cash and futures prices. Once lagged prices

are included, the number of lags does not impact the conditional hedge ratios. Again,
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the conditional hedge ratios hide the full variation in hedge ratios estimated across all 64

models. Here, with soybeans, we find that the estimated hedge ratio is sensitive to a wider

range of model specification issues. Interestingly, while the soybean hedge ratio is more

sensitive to model specification, the results reveal less uncertainty about the correct model

for soybeans with two models dominating the posterior model probabilities.

Examining the posterior standard deviation of the optimal hedge ratios in table 2

reveals them to be very small relative to the hedge ratios (0.006 and 0.005, respectively,

for corn and soybeans). This implies statistical precision on the order of ±0.01 suggesting

we have successfully identified the central tendency of the hedge ratio relative to the

variation in both the model specification and the data.

5.4. Risk Reduction Performance for Corn and Soybeans

Following the suggestion of Myers and Thompson and the methodology of Baillie

and Myers, the Bayesian hedge ratios are compared with traditional hedge ratios from

various models in an out-of-sample simulation. The hedge ratios are estimated first with

monthly data from 1975 through December of 1999, then the effectiveness of monthly

hedges are simulated using data for 2000. The models are then re-estimated adding twelve

more months of data (through December of 2000), and the resulting hedge ratios used for

simulated hedging in 2001, and so forth. The result is 40 simulated monthly hedges from

January 2000 through April 2003.

A total of seven hedge ratios are compared in the simulations. Standards for compar-

ison are provided by the traditional constant hedge ratio (estimated with price levels) and

a näıve one-to-one hedge. Along with the optimal Bayesian hedge ratio presented in this

paper, four other hedge ratios are considered from the 64 models estimated. These four

are the largest and smallest hedge ratios estimated from an individual model among the
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set considered and the hedge ratios from the models that receive the largest and smallest

posterior probability weight in the model specification part of our process.

In the spirit of a risk minimizing hedge, the simulation procedure calculates the vari-

ability in the portfolio consisting of a cash position and the optimal futures hedge. For

corn and soybeans, variability is measured in cents per bushel as the change in cash price

minus the change in the optimal hedge value. This approach closely reflects the change in

economic value of the hedgers overall position. The standard deviation and risk reduction

relative to an unhedged position are presented in table 3.

For corn the monthly standard deviation falls from 13.00 cents per bushel to 4.00

cents per bushel for the Bayesian optimal hedge, a 90.5% reduction in risk (variance) from

the unhedged position (results are shown in table 3). All of the corn hedge ratios reduce

risk by similar amounts, ranging from 89.7% for the Bayesian least likely model to a high

of 91.1% for the unitary hedge ratio. In fact, there is no statistical difference in the risk

reduction performance across the seven hedge ratios(tested using F-tests).

Soybean hedges reduced risk from 26.08 cents per bushel for an unhedged position to

8.87 cents for the Bayesian optimal hedge ratio. Again, given the similarity of the hedge

ratios, it is not surprising that the performance across hedge ratios is very similar. The

monthly standard deviation of the hedged positions is very close to 9 cents per bushel for

all seven hedge ratios (table 3). The Bayesian minimum hedge ratio actually provides the

greatest risk reduction at 89.2% while the unitary hedge ratio is the least effective with

an 88.1% reduction in risk from an unhedged position. The optimal hedge ratio has a risk

reduction performance in the middle of the seven hedge ratios tested. Again, the different

hedge ratios do not produce statistically different risk reduction levels using F-tests for

equality of variance.
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The presented results are consistent with those of Baillie and Myers in that for some

commodities, such as corn and soybeans, more advanced hedge ratio estimation techniques

may not significantly increase hedge effectiveness. This may or may not be the case with

less standardized commodities (such as slaughter cattle) or when estimating cross-hedge

ratios (such as hedging cottonseed meal with soybean meal futures).

In the presented results, it is noteworthy that the one-for-one textbook hedge is the

most effective out-of-sample for corn and does not produce statistically different results for

soybeans. The results are particularly interesting in corn, where the Bayesian minimum

hedge ratio averaged 0.900 over the simulation period. In this case, over a three year

period, using a hedge ratio of 0.90 and 1.00 did not produce statistically different results.

This is consistent with Jong, Roon, and Veld, who find that näıve one-for-one hedging may

perform equally well to estimated ratios in practice.

5.5. The Impact of the Priors

Many researchers criticize Bayesian approaches due to the influence of subjective prior

information on the posterior distribution (and through that, the ”estimators”). The prior

distribution effects the posterior distribution in two ways: through the prior mean and the

prior variances. Obviously, changing the prior mean will change the posterior mean since

the posterior mean is a weighted average of the prior mean and the standard, likelihood

based estimator as shown in equation (3.7). Sensitivity analysis not reported in detail here

showed that changes in the prior means did indeed result in changes in the point estimator

for the optimal hedge ratio, with the estimated soybean hedge ratio varying from about

0.95 to 0.99 as the prior means for all parameters were varied over a fairly wide range of

values (such as from 0.50 to 1.00).
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The impact of the prior means is reasonable and easy to evaluate since their effects

are fairly transparent and the prior means should always be clearly stated by Bayesian

researchers. Evaluation of the role of prior variances is somewhat harder to determine

from simple inspection. In particular, the prior mean matters less if the prior variances

are large enough to allow the data to contribute the majority of the information in the

posterior distribution. If changes in the prior variances do not result in disproportionate

changes in the posterior distribution, than one might reasonably conclude that the prior’s

influence on the posterior distribution is reasonable. To evaluate our prior, we repeated

the analysis for corn and soybeans with four different prior variance matrices, all scalar

mulitples of the base prior distribution. The results of this sensitivity analysis for soybeans

are presented in table 4 with similar results obtained for corn. From the small changes in

the results that occurs with fairly large changes in the prior variances, we conclude that

the prior distribution used here is performing satisfactorily.

5.6. Cross-Hedging Results

The results for corn and soybeans provide evidence of the ability of the Bayesian robust

hedge ratio estimation to identify model specification features and to estimate reasonable

hedge ratios, but did not provide gains in risk reduction. To examine if such evidence

could be provided in a case with greater model specification uncertainty, we also modeled

a cross-hedge for corn oil using soybean oil futures.

The corn oil cross-hedge model identified four models with greater than 1% posterior

support with 89% of the weight on the simplest model– no lags and no exogenous variables.

Table 5 displays the results of the posterior probabilities by model feature. These proba-

bilities, and the cross-hedge ratios associated with the different model specifications show

that while the Bayesian procedure easily identifies the model with support from the data,
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an incorrect model can have severe consequences. While the specification with respect to

the soybean oil stocks and interest rates does not have an significant impact on the cross-

hedge ratio, the presence of lagged cash or soybean oil futures prices has an enormous

impact. With lagged futures prices included the estimated hedge ratio drops from 0.95 to

0.52; with lagged cash prices included the estimated hedge ratio drops from 0.95 to 0.26.

These are obviously economically significant changes in risk management programs. Table

6 displays the optimal Bayesian cross-hedge ratio and the range of estimates found over

the 64 models.

When the optimal cross-hedge is compared to other possible choices in terms of risk

reduction performance, we find better results than were found for corn and soybean hedg-

ing. Table 7 reports these results, showing the optimal Bayesian hedge to have the best

risk reduction results, with a 20.7% reduction. This compares to a 16.7% reduction for the

unitary hedge, and a 14.4% reduction if we had chosen the minimum cross-hedge ratio from

among the 64 models. This minimum estimated hedge ratio is not an odd model either;

any model with neither interest rates or soybean oil stocks, no lagged futures prices, and

any set of lagged cash prices produces a small hedge ratio of around 0.25.

While the Bayesian approach would guide a researcher away from these models, with-

out it a model with lagged prices is quite likely to be specified. This will result in either

a cross-hedge ratio of 0.25 if only lagged cash prices are included or a cross-hedge ratio

around 0.44 if both cash and futures lags are included. Such departures from the optimal

cross-hedge ratio of 0.928 will cause the risk management to differ by economic significant

amounts.
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6. Conclusions

Since Myers and Thompson (1989) raised the important question of model specifica-

tion’s influence on estimated hedge ratios, much work has been done on estimating hedge

ratios while little has been done on solving the issue of model specification uncertainty in

hedging models. We have returned to this important topic and introduced a systematic

approach to model specification uncertainty using Bayesian inference to treat the uncer-

tainty like other uncertain parameters. This allows the model specification uncertainty

to be integrated out of the estimation and inference problems and marginal statistical

inferences to be made that optimally account for the relative probabilities of the differ-

ent models considered. The approach also allows for inference concerning the uncertain

model specification itself, providing probability measures of support for various models,

variables, and dynamic specifications. These empirical results can guide future researchers

in the direction of the models which enjoyed the most support from previous research.

The Bayesian robust estimation approach was applied to data for corn, soybeans, and

corn oil. Optimal hedge ratios were computed, along with the posterior probabilities of

individual models and model specification features. The individual models produced hedge

ratios which varied relatively widely, while the optimal hedge ratios integrating over model

uncertainty were quite statistically precise. The model specification results also identified

which features of the model specification had significant impacts on the estimated hedge

ratio. We found that for corn, the specification of exogenous variables was crucial to the

posterior support of the model, but it was the presence or absence of lagged prices that had

the biggest impact on the level of the estimated hedge ratio. For soybeans, we found that

all aspects of model specification had the potential to significantly impact the estimated

hedge ratio. For the corn oil cross-hedge, lagged prices caused large drops in the estimated
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cross-hedge ratio. The process identified few credible models for soybeans, with two out of

the 64 models gathering 80% of the posterior probability. Similarly, for corn oil only four

models contained over 98% of the posterior probability. For corn, many models enjoyed

relatively comparable posterior support.

The wide range of the estimated hedge ratios makes clear that model specification is

an important issue in hedging models and that Myers and Thompson were right to raise the

issue. The approach taken here allows a researcher to avoid choosing a single, potentially

incorrect, model specification (or to scientifically identify supported model specifications

without incurring pre-test bias). This is an important ability given that the empirical

results show the estimated hedge ratio can change by a magnitude of three in the corn

oil cross-hedge model depending on which model is selected. By incorporating 64 possible

models and integrating across that model specification uncertainty, the resulting optimal

hedge ratios are not only robust but quite stable.

We believe that the approach demonstrated here has great potential to provide better

(more robust) estimators of hedge ratios and other important economic parameters. Given

that hedge ratios are designed to reduce risk, the ability to reduce the risk of estimation

biases due to model specification seems attractive. While the risk reduction performance

of the optimal hedge ratios for corn and soybeans was not significantly better than that

of other hedge ratios, it was not worse either. For the corn oil cross-hedging model, the

Bayesian optimal hedge ratio did have the best risk reduction performance, showing that in

a commodity where the estimated hedge ratios vary more across models, using the Bayesian

approach can make an important difference in risk reduction. Since one can rarely be sure,

a priori, which case one has, the robust estimation procedure presented here seems to have

a useful advantage. We also think the information contained in the posterior probabilities
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of the individual models and the model specification features can help guide researchers

for future investigations concerning hedging models and what factors influence price levels

in commodity markets.
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Table 1: Model Feature Posterior Probabilities

Corn Model Corn Model Soybean Model Soybean Model
Feature Post. Prob. Hedge Ratio Post. Prob. Hedge Ratio

no x 0.566 0.941 0.369 0.977
X1 0.005 0.940 0.504 0.990
X2 0.424 0.941 0.079 0.981

both X 0.004 0.940 0.048 0.990
no p lags 0.027 0.984 0.918 0.987

pt−1 0.574 0.940 0.009 0.957
pt−2 0.288 0.940 0.062 0.956
pt−3 0.111 0.940 0.011 0.956

no f lags 0.027 0.984 0.918 0.987
ft−1 0.502 0.939 0.011 0.957
ft−2 0.357 0.941 0.061 0.956
ft−3 0.114 0.941 0.011 0.956

Note: For corn X1 = corn exports, X2 = interest rate. For soybeans, X1

= soybean stocks, X2 = soybean crush.
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Table 2: Optimal Hedge Ratios

Corn Soybean

Optimal Hedge Ratio 0.941 0.985
Standard deviation 0.006 0.005

Minimum Hedge Ratio 0.900 0.918
Maximum Hedge Ratio 0.990 0.991
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Table 3: Risk Reduction Performance of Alternative Hedge Ratios

Corn Model Corn Model Soybean Model Soybean Model
Standard Percent Standard Percent

Hedge Ratio Deviation Reduction Deviation Reduction

No Hedge 13.00 0.0 26.08 0.0
Optimal 4.00 90.5 8.87 88.4

Maximum 3.90 91.0 8.94 88.3
Minimum 4.18 89.7 8.58 89.2

Most Likely 3.97 90.7 8.87 88.4
Constant 3.91 90.9 8.85 88.5
Unitary 3.88 91.1 9.01 88.1

Note: Standard deviation is measured with price changes over monthly
horizons in cents per bushel.
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Table 4: Sensitivity Analysis of the Prior Variances

Posterior Weight Posterior Weight
Multiple of Optimal on Most Likely on Models with No

Base Variance Hedge Ratio Model Exogenous Variables

0.5 0.979 0.595 0.626
1.0 0.983 0.429 0.464
2.0 0.984 0.334 0.420
5.0 0.979 0.482 0.540
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Table 5: Cross-Hedge Model Feature Posterior Probabilities

Feature Post. Prob. Hedge Ratio

no x 0.974 0.928
X1 0.016 0.935
X2 0.010 0.898

both X 0.000 0.912
no p lags 0.975 0.945

pt−1 0.024 0.260
pt−2 0.001 0.260
pt−3 0.000 0.265

no f lags 0.941 0.954
ft−1 0.057 0.526
ft−2 0.002 0.522
ft−3 0.000 0.522

Note: Corn oil cross-hedge using soybean oil futures. X1 = soybean oil
stocks, X2 = interest rate.
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Table 6: Optimal Corn Oil Cross-Hedge Ratios

Corn Oil vs. Soybean Oil

Optimal Hedge Ratio 0.928
Standard deviation 0.033

Minimum Hedge Ratio 0.245
Maximum Hedge Ratio 0.979
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Table 7: Risk Reduction Performance of Alternative Cross-Hedge Ratios

Standard Percent
Hedge Ratio Deviation

No Hedge 1.648 0.0
Optimal 1.467 20.7

Maximum 1.484 18.9
Minimum 1.525 14.4

Most Likely 1.478 19.5
Constant 1.478 19.5
Unitary 1.504 16.7

Note: Corn oil cross-hedge using soybean oil futures. Standard deviation
is measured with price changes over monthly horizons in cents per pound.
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