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Effects of Private Insurance on Forest Landowners� Incentives to Sequester and Trade 

Carbon under Uncertainty: Impact of Hurricanes 

Mansi Grover, Darrell J. Bosch and Stephen P. Prisley 

Abstract 

 

We evaluate incentives of forest landowners for sequestering and trading carbon, given 

the risk of carbon loss from hurricanes, and an opportunity to insure their losses. Results of 

simulation model reveal that the effect of hurricane risk depends on the variability of returns 

from carbon and timber and landowners� ability to mitigate risk by diversifying forest holdings 

across regions or transferring risk by purchasing insurance. 
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INTRODUCTION 

The provision of trading emission rights under the Kyoto Protocol1 to the United Nations 

Framework Convention on Climate Change will provide greenhouse gas (GHG) emitters a way 

to reduce costs of meeting emissions targets and will provide landowners the opportunity to reap 

financial gains from sequestering carbon and selling the rights to emit carbon.  Non-permanence 

or reversibility of carbon sink projects is a major concern because between sequestering an actual 

ton of carbon in forests, and having that ton available to be used as an offset by a carbon emitter 

operating under a regulated carbon abatement program is the likelihood that the sequestered 

carbon may be emitted back into the atmosphere as a result of market (regulatory changes) as 

well as non- market (natural disasters like hurricanes or tornadoes) risks and uncertainties. 

Landowners may be liable for repaying all or some of the proceeds received in the past 

for sequestering carbon and generating carbon credits when forests are damaged by natural 

calamities like hurricanes or tornadoes, which cause extensive mortality and subsequent emission 

of carbon dioxide from decomposing biomass. Carbon loss could impose financial penalties in an 

accounting scenario that holds carbon-credit producers liable for non-delivery within the contract 

period. These costs would be in addition to salvage costs and damage to timber which are likely 

to reduce future returns from timber sales. If the costs and penalties are too high, landowners, 

especially small and risk averse landowners, will simply avoid the carbon market. 

These costs may become a serious deterrent to decision makers who are risk averse. 

Without some form of risk management or risk protection, landowners are not likely to be 

motivated to participate in carbon sequestration trading even though they recognize the potential 

of financial gains. There is a need, therefore, to document and analyze the impact of private 

insurance on a forest landowner�s portfolio of strategies, given the risk of carbon loss due to 
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hurricanes. Buying private insurance is gaining popularity as a tool (Cohen; de Figueiredo, 

Herzog and Reiner; Subak; Wong and Dutschke) to mitigate the financial consequences for 

participating landowners from carbon loss. An investment company or a large forest company 

may be able to tolerate the losses from a forest fire or hurricane, but for a small forest owner with 

a valuable 30-year old plantation the financial losses are enormous. 

Insuring against financial losses due to hurricanes will help persuade landowners to 

participate in land management practices to sequester carbon. There are very few studies (Subak; 

Wong and Dutschke) that evaluate the role of insurance in creating the incentives for non-capped 

sources especially forest landowners to sequester and trade carbon in the face of various market 

and non-market risks and uncertainties that can lead to non-permanence. This analysis will focus 

on answering the following questions: 

! Does purchasing private insurance impact the optimal portfolio strategies of a risk averse 

landowner? 

! Does purchasing private insurance encourage greater landowner participation, especially 

for risk averse landowners? 

! How do diversification of forestry investment locations and buying insurance compare in 

terms of reducing landowners� risk from forestry investments for sequestration and 

timber purposes? 

The research evaluates incentives of an individual forest landowner for sequestering and 

trading carbon, given the risk of carbon loss from hurricanes, and an opportunity to reduce risks 

through insurance and diversification. The risk-return trade-off for a landowner who has a choice 

of buying insurance for protection against carbon loss in a hurricane risk prone region is 

analyzed against the risk-return trade off for a landowner who has the choice of diversifying 
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landholdings into three regions of South Carolina. These regions are incongruent in terms of 

hurricane landfall probabilities and carbon sequestration rates. Optimal combinations of 

landholdings for carbon sequestration and trading and timber sale purposes are assessed for 

alternative levels of risk aversion. The potential trade-off is examined between planting in 

locations with higher exposure to hurricanes but higher rates of sequestration or in locations with 

lower exposure to hurricanes and lower rates of sequestration. Our framework is a step towards 

analyzing how risk management strategies can increase landowners� incentives to participate in 

carbon markets. The analysis will be limited to new forest plantation projects. 

 
FOREST CARBON INSURANCE UNDER CATASTROPHIC RISK 

Carbon insurance against catastrophic risks offers a cost-efficient tool for spreading risks 

across large groups of people and recovering damage costs (Wong and Dutschke). Like hail and 

fire insurance the traditional problems of moral hazard and adverse selection, which are a result 

of asymmetric information, have limited applicability to hurricane insurance. The occurrence of 

specific hazards is easily identified by the insurer as by the insured landowner, and the potential 

losses are easier to assess on a region-by-region basis (Goodwin and Smith, p. 34). Traditionally 

catastrophic risk insurance/aid in the US has been offered as part of the multiple peril crop 

insurance program (Hueth and Furtan; Goodwin and Smith). In the US, catastrophic risk 

insurance involves government subsidization because catastrophic events like hurricanes or 

floods are correlated across regions (Duncan and Myers; Wong and Dutschke). This might lead 

to very large losses which a private insurer might not be able to recover through pooling risks 

faced by all landowners (Skees and Barnett; Duncan and Myers). Rainfall and hail crop 

insurance is offered by private insurance companies (Hueth and Furtan; Goodwin and Smith) 

because these risks are not correlated across regions. Specialized forestry insurance against 
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losses from natural hazards is offered in a few countries such as, New Zealand, Australia, 

Norway and Japan (Subak; Wong and Dutschke). Carbon insurance has not developed as a 

specialized risk management tool; however, the possibility of including land-based carbon offset 

credit trading under the Kyoto Protocol and the concerns over non-permanence of these credits 

might lead insurance companies to offer competitive carbon insurance. 

The availability of reinsurance or the opportunity of spreading risk across uncorrelated 

risks might affect the supply of insurance, but would not affect insurance demand. We focus on 

the demand for insurance by landowners and assume that insurers are willing to offer actuarially 

fair insurance against loss of carbon credits due to hurricanes. For this paper it is assumed that 

insurers are able to use the law of large numbers for eliminating the aggregate risk by insuring 

different types of catastrophic risks across different geographic regions or by reinsuring with 

diversified reinsurance firms (Duncan and Myers). 

 
BASIC OPTIMIZATION MODEL 

 Based on the model by Grover, Bosch and Prisley, the focus is on the state of South 

Carolina which is divided into three major sub-regions � coastal, piedmont and upland (Figure 

1). The accounting and liability mechanism or carbon payment scheme considered is a Rental 

Approach of accounting with Full Landowner Liability (RAFL) which prescribes that carbon 

credits are rented on an annual basis instead of being sold. This system provides full credit at the 

time of sequestration in return for full liability if the sequestered carbon is later released. Under 

this system the liability resides with the activity host or the landowner so long as a rental contract 

is in place but reverts to the buyer/renter of credits when the rental contract expires (in one year). 

At the end of the rental agreement the buyer/renter incurs an emissions debit and is liable to 

either renew the carbon rental contract for another year or to find another way of meeting her 
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emissions reduction obligations, and the host is released from further liability. If the carbon 

remains sequestered, the host/landowner could (a) renew the lease (b) lease the credit to another 

buyer/renter, (c) retain the credit for his/her own use, or (d) harvest the forest plantation for 

timber sale. 

The problem of the landowner under the RAFL approach is to choose the optimal amount 

of land acquired in region(s), Ai at the beginning of the project period, i.e., at t =1, for the 

purpose of creating carbon credits and selling timber so as to maximize the certainty equivalent2 

(CE) of expected net present value of returns, x: 

(1) 
iA

Max  CE = Expected profits � Risk Premium 

(2) 
iA
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x refers to the expected net present value of returns from carbon credits and timber over 

the entire planning horizon, iQ  is the expected net present value of returns from carbon and 

timber from the first rotation, i is the number of regions under consideration, T is the terminal 

time period, r is the risk-free rate of time preference (assumed to be 5%), λ refers to Arrow-Pratt 

coefficient of absolute risk aversion; ( )x2σ  is the variance of returns, and ( )x2
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expression for risk premium derived by Pratt (Pratt; Robison and Barry). 
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itB  represents the volume of carbon credits per acre created in past periods plus the new credits 

created in the current period available for renting over the remainder of the project period for a 

constant (real) price p, itM is the volume of credits lost per acre due to hurricanes in all past 

periods plus the credits lost in the current period. ity  is a binary random variable which takes on 

value 1 when there are one or more hurricanes in a given period and value 0 in years with no 

hurricanes, JiTi is the volume of timber available for sale per acre after Ti (which is the rotation 

age in region i) years have elapsed from the year in which the forest was planted. Planting occurs 

at the beginning of the project or following a hurricane. Additional timber might be available for 

sale in years in which a hurricane strikes, represented by the estimated volume 
m

itK per acre. The 

timber is assumed to be sold at a price q, which is also assumed to be constant during the 

planning horizon. Ci represents the stand establishment cost per acre incurred at the initial time. 

iH  is the base monitoring and verification cost per year per acre and is incurred in both 

hurricane and non-hurricane years.  iN  is the cost of monitoring and verification per acre in 

hurricane years, which is in addition to base monitoring cost. iF  is the site preparation cost per 

acre and is incurred in years following hurricanes which might result in the stand being harvested 

or destroyed at younger ages when the biomass in not merchantable. iS is the cost of pre-

commercial thinning per acre of land and is incurred when a hurricane(s) leads to partial 

destruction (between 20%-40%) of the forest stand. Ai represents the amount of land investment 

in the three regions. The rotation age Ti and Ai are choice variables for the landowner. 

Hurricane Damage 

Total carbon credits available for renting under the RAFL are defined as follows: 

(5) 1−+= ititit BRB , 00 =iB  
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itR  is the estimated quantity of incremental carbon credits per acre in a given year t. 

itM  under the RAFL is defined as follows: 

(6) 1−+= it

m
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m

itD is the cumulative quantity of carbon credits lost per acre from m hurricanes in a given year t, 
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The proportion of additional damage to accumulated carbon due to mth hurricane in the current 

period is represented by the term 
m

itd and is same as the proportion of downed biomass. The term 

e represents the proportion of the carbon content that was prevented from being emitted due to 

timber that was converted into wood products after salvage of part of the downed wood 

following a hurricane. The proportion of carbon that remains sequestered over time in wood 

products and landfills over a period of 100 years were obtained from Birdsey (1996), who 

estimated the percentage of carbon remaining in harvested wood. k represents the proportion of 

downed forest biomass (timber) that is salvaged and converted into wood products.  

For this research it is assumed that hurricane strike in a region in a given year t will lead 

to a random damage to the forest stand. Table 1 presents the average damages in the coast, 

piedmont and upland from hurricane HUGO, which was used to estimate the random damage 

proportions for the regions. Damage proportions for each of the regions were randomly 

generated from hurricane HUGO data (Table 1) in South Carolina using the software �Best Fit� 

(Palisade Corporation, http://www.palisade.com/html/bestfit.asp). Damage proportions were 

assumed to be independent between regions and years. 
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Timber Harvest, Salvage and Rotation Age 

JiTi , the volume of timber available for sale per acre after Ti (which is the rotation age in 

region i) years have elapsed since the forest was planted initially or replanted following a 

hurricane is defined as follows: 

(8) ∑−=
t

itititiTi EyGJ , ∑
=

=
m

m
it

m

itit GdE
1

 

itE  is the cumulative timber loss due to hurricanes up till period t. 
m

itK represents the quantity of 

sale of salvaged timber3 from m hurricanes in each region per acre of land in years of hurricane 

strike and is defined as follows: 
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It is assumed that any hurricanes that strike prior to age 15 in coastal region, age 18 in piedmont 

region and age 21 in upland region do not leave any merchantable salvaged timber. The 

landowner is assumed to undertake carbon sequestration projects in the i regions under RAFL up 

to a maximum time of T ≥ max [Ti]. Ti is the rotation age in region i and T, the planning horizon 

is assumed to be 100 years. The optimal rotation age in each region is that which maximizes the 

expected net present value of returns over a 100 year planning horizon (Grover, Bosch and 

Prisley). The model is designed to take account of the damage-salvage scenarios presented in 

Table 2 (Grover, Bosch and Prisley). 

Insurance Model 

Our insurance model is based on design of the existing crop insurance program in the U.S 

(Barnett and Coble; Goodwin and Smith; Hueth and Furtan). It is assumed that only losses of 

yield of carbon credits are insured. Also, only losses in yield resulting from hurricane events are 

insured. The level of yield coverage and the level of price coverage are chosen by the landowner. 



 11

It is assumed that insurance yield is based on an estimate of the potential yield of carbon credits 

per acre. We assume that dϕ  is the coverage level chosen by the landowner and 0≤ dϕ ≤1. The 

carbon credits are insured at the market price for these credits. 

The yield guarantee per acre is equal to the estimated yield multiplied by the level of 

coverage chosen by the landowner. If landowner�s actual yield is equal to or greater than the 

yield guarantee, no indemnity is paid. If the yield per acre is less than yield guarantee, the 

indemnity paid is equal to the yield difference times the indemnity price, which is market price 

of carbon credits. Indemnity is defined as follows: 

(10) [ ])( ititititdi MyBBpI −−= ϕ  

It is assumed that the insurance company is able to offer actuarially fair insurance such 

that the insurance premium that a landowner pays in a given period t is equal to the expected 

indemnity payment: 

(11) ∑
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where, idπ  is the insurance premium per unit of coverage level in region i, subscript d indicates 

demand, it

m
µ  is the probability of m hurricanes in region i in year t. The expected net present 

value of income for a landowner who buys insurance in region i is given by: 
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For our model it is assume that the landowner chooses 100% insurance coverage level, or dϕ =1. 
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Hurricane Landfall Probability 

Hurricane landfall occurrence is assumed to follow a Poisson distribution in all three 

regions (Parisi and Lund; Haight, Smith and Straka; Jagger, Niu and Elsner; Grover, Bosch and 

Prisley): 

(13) ( )
!m

e
mP

m
it

it ππ−

= ; E (m) = πit; Var (m) = πit 

where, πit is the average rate of hurricane arrival and 0 ≤ m < + ∞. πit is estimated from historical 

North Atlantic Tropical Cyclone Tracks, 1851-2003, created by National Oceanic and 

Atmospheric Administration, Tropical Prediction Center/National Hurricane Center 

(http://hurricane.csc.noaa.gov/hurricanes/download.html). Historically the coast in the state of 

South Carolina has a 16% probability of getting hit by a hurricane in a given year, the piedmont 

has a 7% probability and the upland has a 3% likelihood of hurricane strike in a year. The 

historical hurricane landfall probabilities are input into @Risk for simulating random hurricane 

strikes in region(s) under consideration. Storms are assumed to occur independently of each 

other per time period but not spatially. Using the historical data on hurricane landfall in the state 

of South Carolina from 1889 � 1989 the historical correlation between probability of hurricane 

landfall in the coast and piedmont regions was estimated to be 0.629, between the piedmont and 

upland regions to be 0.641 and between the coast and upland regions to be 0.403. 

Forest Biomass Yield and Carbon Conversion 

This paper focuses on one predominant species of trees in the region of study, loblolly 

pine. The following timber yield function, which gives total volume per acre at a given period of 

time, was used (Chang; Amacher, Brazee, and Thomson): 

(14) 
22
66.152782.74010.341801.34
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),,( SItSItwt

it ewSItG
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t refers to stand age and w refers to planting density which is assumed to be 750 trees per acre in 

all three regions and SI refers to the site index. The site indices for the three regions obtained 

from the FIA data on loblolly pine in South Carolina for base age 25 were 68, 62 and 58 for the 

coast, piedmont and upland regions, respectively. It is assumed that the marginal increase in 

volume per acre becomes zero at age 35 for the coast, at age 38 for the piedmont and 41 for the 

upland (Personal Communication with Greg Amacher and Stephen Prisley, Department of 

Forestry, Virginia Tech). 

The biomass is converted into carbon dioxide equivalents in a four-stage process. First, 

growing-stock volume is converted to total forest tree volume by multiplying by a biomass 

expansion factor of 1.408 (Birdsey, 1992) to account for the additional tree volume excluded 

from estimates of growing-stock volume: tops and branches, foliage, rough and rotten trees, 

small trees, standing dead trees, stump sections, roots, and bark.  Second total tree volume in 

cubic feet is converted to carbon in pounds. One cubic foot of wood is assumed to be equal to 

16.9 pounds of carbon (Birdsey, 1992). Third the carbon volume in pounds is converted into 

carbon volume in metric tons. Fourth, carbon volume is converted into carbon dioxide 

equivalents by multiplying carbon equivalents by 44/12 (the ratio of the molecular weight of 

carbon dioxide to carbon). These conversions are represented by a carbon conversion constant c, 

and the carbon conversion equations is as follows: 

(15) )( 1−−= ititit GGcR  

Carbon Credit and Timber Price 

It is assumed that price for temporary carbon credits has been market determined and 

given to the landowner. Price of temporary credits is likely to be much lower than GHG permits 

generated by permanent emissions reduction (e.g., reduction in fossil fuel usage). In order to 
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analyze the sensitivity of landowner�s decisions to different carbon credit (CO2 equivalent) 

prices we consider carbon prices of $0.10 and $1 per sequestered ton of CO2 equivalents per 

year.  

Stumpage prices are reported net of logging and transportation costs. Based on prices 

available from Timber Mart South (http://www.tmart-south.com/tmart/) the average pulp wood 

(2004) prices are $6.53 per ton ($17.5/cord) and average timber price for the same period is 

$38.0 per ton ($285.9/ thousand board feet). We divided biomass into average proportions of 

timber and pulpwood by age for the three site indices 68, 62 and 58 at base age 25 (Grover, 

Bosch and Prisley). Timber prices may be affected following a hurricane (Prestemon and 

Holmes). Based on estimates presented by Prestemon and Holmes, we assume that hurricanes 

lead to a 30% decline in timber and pulpwood prices in hurricane years in all three regions and 

come back up to the level prior to the hurricane in the following year. 

Site Preparation and Planting Cost 

Site preparation cost on conventional sites or following a normal harvest is assumed to be 

$109.0 per hectare ($ 63.0 per acre) and site preparation cost following hurricanes is $189.0 per 

hectare ($ 76.0 per acre). The tree planting cost is assumed to be $114.0 per hectare ($ 46.0 per 

acre) on both conventional and hurricane affected sites. These costs are based on estimates 

provided by Straka et al. and are 2004 prices, obtained by using an average inflation rate of 

2.68% for U.S. for the years 1990 � 2004. 

Monitoring and Verification Cost 

Monitoring and verification costs are lumped together and are assumed to be incurred 

every year on a per acre basis. Table 3 presents the cost of monitoring above ground carbon 
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(Grover, Bosch and Prisley) for a single measuring event for two different project types: 

contiguous and non-contiguous parcels (Mooney, Brown and Shoch). 

Initial and Terminal Land Value 

Li represents per unit cost of acquiring land in each of the regions.  The amount of land 

acquired in each of the regions is decided at the beginning of the project period. It is assumed 

that land prices remain constant during the investment period and that land is not bought or sold 

after the initial investment decision has been made. W0 refers to the risk free initial wealth that 

the landowner has to purchase land in each region and is thus a constraint. 

(16) ∑
=

n

i
ii AL

1
 ≤ W0 

Li, which is the per unit price of land at the time of stand establishment, is estimated by the 

expected net present value of returns at the end of the 100-year planning horizon assuming the 

stand is planted in year 1 and replanted after harvest or hurricanes. It is assumed that the 

landowner has an initial risk free wealth of $500,000 and has the option of buying land in all 

three regions of the study area. 

 
SIMULATION AND OPTIMIZATION MODEL 

@Risk software offered by Palisade Corporation is used to generate simulation data on 

expected returns from forestry and carbon credit sales under different accounting and liability 

scenarios with and without insurance coverage using Monte Carlo simulations. The simulation 

data are used to estimate the variance-covariance matrix of returns between the three regions, the 

expected net present value of returns, the optimal rotation ages in three regions and land prices. 

These data are input into a Quadratic Programming model, which is solved using General 

Algebraic Modeling System (GAMS), to determine the optimal amount of land that the 

landowner will invest in the three regions under various scenarios. Equation (1), the objective 
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function is maximized to determine the optimal amount of land Ai that the landowner invests in 

at the beginning of the planning horizon subject to the land constraint equation (16). The optimal 

amount of land is estimated for different levels of risk aversion for the forest landowner by 

parametrically changing the risk aversion coefficient λ. A range of risk aversion parameters is 

considered between zero for a risk neutral landowner to 80 for a highly risk averse landowner 

(McCarl and Spreen). These data are then used to develop the mean-variance efficient frontier 

for the landowner. 

 
RESULTS AND DISCUSSION 

Expected Net Present Value 

Table 4 presents the expected net present value (NPV) of returns over a 100 year 

planning horizon for RAFL under two different simulation scenarios for individual study 

regions. Under $0.10 and $1/ton CO2 equivalents/ year, the expected NPV is highest in the coast 

followed by upland and then piedmont under all scenarios except under insurance with a carbon 

price of $1/ton CO2 equivalents/ year, where it is highest in the coast, followed by piedmont and 

then upland. The expected net present value of returns should remain the same with and without 

insurance because actuarially fair insurance is assumed and the insurance premium paid by the 

landowner is equal to the expected value of indemnity.  The expected net present values that we 

are observing are either remaining the same or increasing, though not very significantly, in all 

the regions because of some randomness in our simulation model. The expected NPV also 

reflects the land value or the value at which the landowner can purchase land at the beginning of 

the planning horizon. 
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Variance of Expected Net Present Value 

Table 5 presents the variance-covariance of expected net present value of returns in all 

three regions. For the scenario with $1/ton CO2 equivalents/year the variance in the coastal 

region is decreasing by more than 50% when the landowner buys insurance from $637,744/acre 

to $293,697/ acre. A similar trend can be seen in the variance of expected net present value in the 

piedmont and the upland. Under the scenario with $0.10/ton CO2 equivalents/year the variance in 

all three regions a declining but the decline is not as significant as the decline under $1/ton CO2 

equivalents/year. With insurance the variance should decline almost to zero, however we do not 

seeing this under either of the scenarios because timber losses are not insured. Moreover, the 

decline in variance under $0.10/ton CO2 equivalents/year is less significant than the decline in 

variance under $1/ton CO2 equivalents/year because timber returns are outweighing carbon 

returns for lower carbon price and are thus the major source of variance in returns. 

Optimal Land Investment 

In terms of land investment the simulation results for RAFL at a carbon price of $1/ton 

CO2 equivalents and no insurance reveal that a risk neutral landowner invests in land only in the 

coast (165 acres, Table 6) and a risk averse landowner diversifies into all three regions, coast, 

piedmont and upland, with the highest level of investment in the coast. Hurricane risk is 

correlated across the three regions, with the correlation being the highest between piedmont and 

upland and with upland having the lowest hurricane strike probability. Since the expected NPV 

in upland is higher than expected NPV in piedmont (Table 4), and the hurricane risk is highest in 

the coast, as the level of risk aversion increases the landowner is motivated to shift a major 

portion of his/her investment to the upland followed by piedmont and then the coast. When the 

landowner has the option of buying insurance in all three regions the risk neutral investor still 
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invests only in the coast and the risk averse buyer diversifies into all three regions. The risk 

averse landowner is still diversifying into all three regions because not all risk has been insured, 

timber losses which are not insured are still a source of risk for investment and a cause for large 

variance in returns. The overall amount of land investment for the risk averse landowner 

increased because with the availability of insurance the variance of expected net present value of 

returns declines thereby providing an incentive for the landowner to increase land investment. 

Specifically, the total land investment for the most risk averse landowner with a risk aversion 

coefficient of 0.0025 increased from 85 acres to 167 acres. The land investment for the risk 

neutral landowner declined marginally because of the marginal increase in expected net present 

value of returns, which also represent the value at which the landowner can purchase the land at 

the beginning of the planning horizon given the fixed initial investment budget. 

The overall results in land investment are similar for a carbon price of $0.10/ton CO2 

equivalents (Table 7); although the overall amount of land investment for the risk averse 

landowner is much lower as compared to the scenario with carbon price of $1/ton CO2 

equivalents. Timber returns outweigh carbon returns at low carbon price and timber losses from 

hurricanes are not insured and are thus major source of variance in returns, providing a 

disincentive for high land investment for carbon and timber purposes in hurricane prone regions. 

Mean-Variance Frontier 

Figure 2 presents the mean variance (EV) frontier for the different levels of risk aversion 

with and without carbon insurance for the RAFL accounting approach with both carbon price 

scenarios. Availability of higher carbon price from $0.10 to $1/ton CO2 equivalents shifts the EV 

frontier upward and to the left. The returns to the risky asset (land) have become more favorable, 

meaning that at any given level of risk (variance) the expected returns have increased. 
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Availability of carbon insurance also shifts the EV frontier further to the left. The returns to risk 

asset (land) have become less variable, meaning at any given level of expected returns the 

variance of returns has decreased. 

 
CONCLUSION 

Our results imply that landowners would receive high benefits from carbon sequestration 

contracts under positive carbon prices and availability of carbon insurance encourage higher ladn 

investment. From Table 6 and Table 7 it can be seen that a risk averse investor�s land investment 

is higher with insurance under both $0.10 and $1/ton CO2 equivalents/year. The investor�s land 

investment is higher under $0.10 and $1/ton CO2 equivalents/year without insurance due the 

lower value at which the land can be purchased under that scenario given the fixed investment 

budget. However with availability of insurance, the landowner is compensated for all carbon 

losses and the value of carbon credits is much higher with $1/ton CO2 equivalents/year, thus 

providing incentive for higher land investment at high carbon price with insurance.  

Our simulations reveal that the effect of hurricane risk on landowners� behavior depends 

on the variability of returns from carbon and timber and the ability of landowners to mitigate the 

losses from risk by diversifying the portfolio of land (region) investment or their ability to 

transfer the risk to an insurance company. A risk averse landowner has the choice of choosing a 

level of �acceptable risk� corresponding to a given level of expected return and variance by 

diversifying holdings over more regions or by purchasing insurance for carbon losses. 

Availability of carbon insurance has the potential for providing incentive for higher land 

investment; this will especially be beneficial in bringing marginal or waste land into forest 

plantation use for the purpose of carbon sequestration. Availability of government subsidization 

or cost-share for carbon sequestration projects in forestry might increase landowner participation 
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in such projects, especially for risk averse landowners who might not be able to spread or 

diversify risk of natural disaster, especially hurricanes or small landowners who might not have a 

very high initial risk-free wealth for investing in land for carbon sequestration purposes.  

Our analysis here could be extended in several directions. Firstly, we assume damage to 

forests does not depend on forest age. Younger trees might have more strength to withstand 

damage from hurricanes and older trees might be more prone to breakage and damage. Secondly, 

we assume that the damage to forests is independent of the hurricane intensity, although the 

hurricane strike probabilities and damage proportions are generated randomly based on historical 

data. Further analysis could examine the effects of correlating hurricane damages across different 

regions. Finally, it would be interesting to see the behavior of landowners with the availability of 

timber insurance along with carbon insurance. Insuring timber losses from hurricanes in addition 

to insuring carbon losses will provide an incentive to invest in land only in the coastal region 

which has the highest sequestration rate which results in higher carbon and timber returns.  
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Table 1: Hurricane Damage Proportions 

Region Distribution Mean Damage 

Coast  Log Logistic 24.5% 

Piedmont Uniform 24% 

Upland Inverse Gaussian 12% 

 

Table 2: Hurricane Damage � Tree Salvage Scenarios 

DAMAGE 

0-20% 20-40% 40% +  

0-8 
Do Nothing Do Nothing Re � Site Prep & 

Re � Planting 

8-Merchantable Age Do Nothing Pre-commercial Thin Re � Site Prep & 

Re � Planting 

 

     

AGE 

Merchantable Age +  Do Nothing Salvage Harvest, Site � Prep 

& Replanting 

 

Table 3: Measurement and Verification Costs 

 Mean Cost ($/ha) Mean Cost ($/acre) 

Contiguous Parcels � Above Ground Carbon 

No Risk Assumption 5.54 2.25 

Risk Assumption 6.09 2.47 

Non-contiguous Parcels � Above Ground Carbon 

No Risk Assumption 9.83 3.98 

Risk Assumption 11.30 4.57 

Source: Mooney et al., 2004 
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Table 4: RAFL: Expected Net Present Value of Returns (Per Acre) 

 $1/ton CO2e/year $0.10/ton CO2e/year 

 Coast Piedmont Upland Coast Piedmont Upland 

No 

Insurance 

3,030 2,725 2,900     1,919       1,470       1,627  

100% 

Insurance 

3,333 3,027 2,947     1,949       1,497       1,630  

 

Table 5: RAFL: Variance-Covariance of expected Net Present Value of Returns ($/Acre) 

$1/ton CO2e/year $0.10/ton CO2e/year Scenario 

No Insurance No Insurance 

Region Coast Piedmont Upland Coast Piedmont Upland 

Coast 637,744 9,343 5,855   432,386      4,641      11,982  

Piedmont 9,343 441,403 17,331      4,641    207,127       2,591  

Upland 5,855 17,331 84,623     11,982      2,591      45,558  

 100% Insurance 100% Insurance 

 Coast Piedmont Upland Coast Piedmont Upland 

Coast 293,697 -3,151 891   398,735      4,033      11,005  

Piedmont -3,151 133,706 5,118      4,033    180,954       2,731  

Upland 891 5,118 27,678     11,005      2,731      41,075  
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Table 6: RAFL - Optimal Land Investment for $1/ton CO2e/year (Acres) 

 No Insurance 100% Insurance Coverage 

Risk 
Aversion 

Coefficient 

Coast Piedmont Upland Coast Piedmont Upland 

0.0000 165 0 0 150 0 0 

0.00025 9 10 66 14 24 129 

0.00050 4 5 33 11 19 103 

0.00075 3 3 22 7 13 68 

0.00100 2 2 16 6 9 51 

0.00150 1 2 11 4 6 34 

0.00200 1 1 8 3 5 26 

0.00300 1 1 5 2 3 17 

0.00500 < 1 acre < 1 acre 3 1 2 10 

0.01000 < 1 acre < 1 acre 2 1 1 5 

0.01100 < 1 acre < 1 acre 1 1 1 5 

0.01250 < 1 acre < 1 acre 1 < 1 acre 1 4 

0.01500 < 1 acre < 1 acre 1 < 1 acre 1 3 

0.02500 < 1 acre < 1 acre 1 < 1 acre < 1 acre 2 

0.05000 < 1 acre < 1 acre < 1 acre < 1 acre < 1 acre 1 

0.10000 < 1 acre < 1 acre < 1 acre < 1 acre < 1 acre 1 
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Table 7: RAFL - Optimal Land Investment for $0.1/ton CO2e/year (Acres) 

 No Insurance 100% Insurance Coverage 

Risk 
Aversion 

Coefficient 

Coast Piedmont Upland Coast Piedmont Upland 

0.0000 261 0 0 257 0 0 

0.00025 7 13 69 8 15 76 

0.00050 3 7 34 4 8 38 

0.00075 2 4 23 3 5 25 

0.00100 2 3 17 2 4 19 

0.00150 1 2 11 1 3 13 

0.00200 1 2 9 1 2 10 

0.00300 < 1 acre 1 6 1 1 6 

0.00500 < 1 acre 1 3 < 1 acre 1 4 

0.01000 < 1 acre < 1 acre 2 < 1 acre < 1 acre 2 

0.01100 < 1 acre < 1 acre 2 < 1 acre < 1 acre 2 

0.01250 < 1 acre < 1 acre 1 < 1 acre < 1 acre 2 

0.01500 < 1 acre < 1 acre 1 < 1 acre < 1 acre 1 

0.02500 < 1 acre < 1 acre 1 < 1 acre < 1 acre 1 
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Figure 1: Historical Hurricane Tracks S.C: 1850-2003 
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Figure 2: Mean-Variance (E-V) Frontier 
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Footnotes 

                                                
1 The Kyoto Protocol, agreed upon by 159 nations that attended the 3rd COP to the United 

Nations Convention on Climate Change in Kyoto, Japan in December of 1997, specifies the 

deadlines and specific levels of greenhouse gas reductions that signatory countries are to achieve. 

Overall, developed countries are to reduce greenhouse gas emissions by 5.2% between 2008 and 

2012 as measured against their 1990 emission levels 

(http://www.emissionstrading.com/glossary.htm#K).   

2 Certainty equivalent of a risky investment is the certain or risk free return which yields the 

same utility as the risky investment. 

3 For the present research it is assumed that 15 % of the damaged timber is salvaged.  

 
 


