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A LATENT-VARIABLE APPROACH TO MODELLING MULTIPLE AND 
RESURGENT MEAT SCARES IN ITALY 

 
Abstract 

 
This paper aims to measure the time pattern of multiple and resurgent food scares and their 

direct and cross-product impacts on consumer response. The Almost Ideal Demand System (AIDS) is 
augmented by a flexible stochastic framework which has no need for additional explanatory variables 
such as a media index.  Italian aggregate household data on meat demand is used to assess the time-
varying impact of a resurgent BSE crisis (1996 and 2000) and the 1999 Dioxin crisis. The impact of 
the first BSE crisis on preferences seems to be reabsorbed after a few months.   The second wave of 
the scare at the end of 2000 had a much stronger effect on preferences and the positive shift in chicken 
demand continued to persist after the onset of the crisis. Empirical results show little relevance of the 
Dioxin crisis in terms of preference shift, whilst not excluding the more relevant price effect. 

 
Keywords:  Meat Demand, BSE shock, Almost Ideal Demand System, Kalman filter 

 
JEL Classification: D12, I12 

 
Introduction 

 
Consumers’ response to food scares has been the subject of many empirical investigations. This 

paper aims to propose a flexible stochastic approach to measure the time pattern of multiple and 
resurgent food scares and their direct and cross-product impacts on consumer response. This can be 
accomplished by using an Almost Ideal Demand System (AIDS), with no need for additional 
explanatory variables such as a media index.   

Previous studies have followed different approaches to measuring the effects of food safety 
information on demand.  It is assumed that preferences for a commodity are influenced by consumer 
perception of its attributes such as quality and safety (Bausmann, 1956).  Application of this 
framework has been prevalent in food advertising and health and food scare studies (Chiang and 
Kinnucan, 1991; Brester and Schroeder, 1995; Swartz and Strand, 1981; van Ravenswaay and Hoehn, 
1991; Dahlgran and Fairchild, 1987). The standard approach to account for food scares requires the 
construction of a media coverage index, which is interpreted as a proxy of risk perception, as in Smith 
et al. (1988) and Liu et al. (2001). Recently, more emphasis has been placed on systemwise 
approaches, to account for cross-product effects. Burton and Young (1996), Verbeke and Ward (2001) 
and Piggot and Marsh (2004) extend the Almost Ideal Demand System (AIDS) (Deaton and 
Muellbauer, 1980) to account for the impact of news on the Bovine Spongiform Encelopathy (BSE) 
outbreak on consumption of different meat products. Similarly, Marsh et al. (2004) investigate the 
effects of meat product recalls on consumer demand in the US, using the Rotterdam model. 

However, little attention has been paid to the phenomenon of food crisis resurgence or multiple 
scares affecting the same group of products. The marginal effects of novel or confirmatory food safety 
news should be accounted for in these types of studies. Sociologists recognise that in the aftermath of 
a specific food scare, even following the demand recovery, a chronic level of anxiety persists. Any 
new or corroborating information may lead to a further and immediate consumer reaction to the same, 
or an amplified, level of the initial scare (Beardsworth and Keil, 1996). As a result, it is inappropriate 
to assume that the marginal impact of a single piece of news is constant over time, which is the case 
when a single media index is devised. Furthermore, consumer demand for a product may indeed be 
affected by new information, regardless of whether this information is product specific. An obvious 
example is the occurrence of multiple and resurgent meat scares in Europe, such as the two waves of 
the BSE crisis, the dioxin crisis and several other minor outbreaks, like E-coli or Salmonella. 

An alternative model which addresses this resurgence issue and overcomes the need for a media 
index also eliminates the time, cost and subjective assumptions (distinction between positive and 
negative information, discounting of information, memory effects) required to incorporate such media 
indices.  
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The application of Italian aggregate household demand data to two BSE scares (1996, 2000) and 
the Dioxin scare (1999) is particularly interesting as it allows an examination of both multiple food 
scares related to substitutable products (beef, chicken and other foods) as well as the resurgence of the 
BSE scare during the time frame. The approach proposed in this paper is based on the inclusion of a 
stochastic intervention variable within the AIDS framework. The model is expressed in the state-space 
form and estimated using Kalman filtering techniques, which allows for direct estimation of the time-
varying pattern of consumer response based on actual data.  

 
The model 

 
As in Basmann  (1956) and Swartz and Strand ( 1981), it is assumed that the consumer 

maximizes an utility function, dependent on consumer preferences, U(x1,…,xg,θ(r)), where x1,…xg are 
the quantities of the g goods consumed in each period of time, given an income level Y and prices 
p1,…,pg. These preferences vary as a functionθ of a set of characteristics of the goods (the vector r), 
including physical attributes, but also any information or psychological variables altering the 
perception of such attributes (Nayga et al, 1999). As a result, food safety information enters the utility 
function through the vector r and utility maximization yields a Marshallian demand function where the 
news coverage index appears as a demand shifter (Piggott and Marsh, 2004).  

A flexible stochastic framework for modelling the time-varying impact of food scares is provided 
by a time-varying Almost Ideal Demand System. Some variations on this model have been recently 
employed to account for time-varying tastes and seasonality in food demand (Fraser and Moosa, 2002; 
Deschamps, 2003). The extension consists of allowing some or all of the model parameters to follow a 
pre-determined stochastic specification. In this paper we adopt a dynamic version of the complete 
linearly-approximated aggregate AIDS based on the partial-adjustment form suggested by Alessie and 
Kapteyn (1991): 
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where wit is the expenditure share for the i-th good at time t, pjt is the price of the j-th good, Yt is 

the total expenditure, Pt
* is the Stone index, kt is an aggregation index computed as in Deaton and 

Muellbauer (1980) to account for household heterogeneity and ut is a white-noise normally distributed 
error.  

The intercept in (1) is a function of the vector of lagged shares to account for habits, of a linear 
trend to account for gradually changing tastes and of (monthly) seasonal factors: 
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      ,ij ji i jγ γ= ∀   (3c) 
 
The above constraints ensure respectively adding-up (3a), homogeneity (3b) and symmetry (3c). 

An additional constraint is necessary to ensure identification of the dynamic system (Edgerton, 1996): 
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In order to measure the effect of one or more food scares occurring after time period t0, we 

augment the intercept of (1) with a dummy shift whose coefficient is allowed to vary according to a 
random walk. The intercept allowing for a response to the food scare(s) is augmented as follows: 
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where ht=1 for all time periods after the occurrence of the first food scare and is 0 elsewhere and 

the stochastic coefficient Ψt is assumed to follow a random walk with a normal white-noise error to 
capture the evolving pattern of the food scare: 

 
 , 1it i t iteψ ψ −= +   (5) 

 
Estimation 

 
The system of equations described by (1) , (4) and (5), subject to the constraints in (3), can be 

estimated by rewriting the model in the state-space form and applying a maximum-likelihood 
algorithm such as the expectation-maximisation (EM) algorithm by Dempster et al. (1977).  The state-
space form of the system is given by defining a measurement equation and a transition equation as 
follows: 

 
 M

tttt eaZw +=  (6a)  
 T

ttt eTaa += −1  (6b)  
 
where the n×1 vector wt contains the expenditure shares, the m×1 state vector at includes the m 

unknown parameters of system and the n×m matrix Zt contains the exogenous variables and other 
fixed values, so that (1) is equivalent to (6a), apart from the stochastic specification of the time-
varying shift. The stochastic transition pattern for the random-walk coefficient is defined in the 
transition equation (6b), which represents the relationship between the state vector at and its lagged 
values, through the m×m transition matrix T, whose values are known. The stochastic specification of 
the model is completed by the disturbance vectors M

ite  and T
ite , each with mean zero and with 

covariance matrices equal to H and Q respectively. H and Q are assumed to be time-independent and Q 
has a diagonal structure, which implies that the errors of the transition equation are independent.  

Once a model is expressed in the state-space form, the Kalman filter (KF) can be applied. The KF 
is a recursive procedure for computing the optimal estimates of the state vector at time t using all 
available information at time t, once some acceptable priors for the initial state vector and covariance 
matrix have been defined. The other procedure necessary for estimating (6) is the Kalman smoother 
(KS). The KS is a backward procedure, which starts from the state vectors computed through the KF 
and produces ‘smoothed’ estimates. Furthermore, the KF allows us to derive the log-likelihood 
function as a function of the unknown parameters in the system and the other parameters appearing in 
the state-space form, namely the error covariance matrices H and Q. The representations of the KF and 
KS, and the log-likelihood function are reported in the Appendix. 
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Maximum likelihood estimates can now be obtained using the EM algorithm. The application of 
this to the estimation of stochastic coefficient models is illustrated by Shumway and Stoffer (1982) 
and Watson and Engle (1983). The EM algorithm is an iterative maximisation procedure that starts 
with the definition of the initial values for the state vector, for its covariance matrix and for H and Q.  

The following steps are then repeated iteratively: (1) get estimates of the state vector and its 
covariance matrix through the KF; (2) feed the filtered estimates into the KS to obtain smoothed 
estimates; (3) maximise the log-likelihood function conditional to the smoothed values to estimate the 
error covariance matrices H and Q; (4) use the smoothed estimates of H, Q and the initial state vector 
to restart the algorithm from step 1 and repeat steps 1-3 until convergence is achieved.  

The EM algorithm has the desirable property that each step always increases the likelihood and 
convergence is guaranteed (Wu, 1983). On the other hand, the limitation of the EM algorithm is that it 
may stop at some local maximum, so that the appropriate starting values are provided by the SUR 
estimates of the constant coefficient AIDS.  

 
Application 

 
An ideal setting for testing the performance of the AIDS model allowing for a time-varying shock 

is given by aggregate Italian meat demand. Over the last decade, the Italian meat market has been 
subject to several food scares where consumer response has been quite strong, with a sharp and sudden 
fall in consumption and a slow recovery pattern.   It is still debated whether these shocks have resulted 
in any permanent impacts. The first informational shock to Italian household was the news about a 
potential link between BSE and CJD in March 1996. Despite the insignificant number of BSE cases in 
Italy, all linked to imported cattle, the change in consumer perception of beef safety was made evident 
by the drop in both the quantity consumed and prices, while substitute meats showed a rather stable 
consumption despite a noticeable rise in prices. In April 1996, household real expenditure in beef fell 
by 18.0%, with respect to April 1995, and real beef prices went down by 2.8%, while real expenditure 
in chicken raised by 1.7% despite a 7.2% price increase. By the end of 1998, and accounting for the 
structural decline that characterised the market well before the BSE crisis, beef consumption had 
returned to the pre-BSE level, while prices were still clearly below their expected level. 

At the end of May 1999 the very short, but European-wide Dioxin crisis, also affected the meat 
sector, specificallly chicken. In June, Italian households’ real expenditure in chicken decreased by 
13.9% with respect to the same month in 1998 and real chicken prices fell by 1.8%. After the summer, 
consumption returned to previous levels and this crisis was not comparable to BSE in terms of 
economic impact, however it contributed to consumer anxiety and affected the slow process of trust 
restoration. In November 2000, a significant increase in the number of BSE cases was registered in 
France, after the adoption of sample tests on cattle. Several countries including Italy suspended French 
beef imports. This led to a sudden and huge shock on Italian household beef consumption (-32.2% in 
terms of beef real expenditure and –0.7% in terms of prices with respect to November 1999), which 
was exacerbated by the detection of the first BSE case in Italy in January 2001. Beef consumption was 
almost halved (-49.2% with respect to January 2000), while real beef price went down by 1.2%. A 
slow recovery began in late Spring 2000, but was still far from being completed at the end the year. 
Real expenditure in chicken showed a sharp growth in the first months after the crisis (up to +32.0% in 
January 2001) and prices again reacted significantly (still +18.0% in March 2001). It is clear that a 
constant-coefficient demand system would yield a poor performance due to the extent of these 
structural breaks in the data. Furthermore, the irregular patterns over a long period (1996-2001) would 
prevent a simple dummy variable specification to account for the different shocks. As suggested, 
constructing a media index able to account for multiple scares on different products would be 
problematic, expensive and involve subjective choices.  

Three versions of the homogeneity and symmetry-restricted dynamic Almost Ideal Demand 
System were estimated: (a) with no shift accounting for the food scares; (b) with a fixed dummy shift 
from March 1996; and (c) with a random walk shift from March 1996. The data series were obtained 
from the ISTAT Household Expenditure Survey. Monthly observations from January 1986 to 
December 2001 were used to estimate a 4-equations system for beef, chicken, other foods and a 
residual equation for all remaining goods. Systems (a) and (b) were estimated through an iterated 
Seemingly Unrelated Regression estimator, while system (c), augmented with the stochastic shift 
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defined in (4) and (5), was estimated through the EM algorithm as discussed in previous section. The 
residual equation was dropped from estimation in order to avoid singularity of the covariance matrix 
(see Barten, 1969 or Bewley, 1986). 

Stability tests on system (a) show the relevance of the multiple structural breaks implied by the 
food scares, while tests on system (b) are aimed to assess whether a simple dummy shift from the 
initial outbreak period might be able to accommodate subsequent shocks. For both models, Table 1 
reports the Chow test (Fisher, 1970) and the Nyblom test of the null of constant coefficients against 
the alternative of at least one coefficient following a random walk (Nyblom, 1989; Leybourne, 1993). 
This latter test does not require any assumption on the break date.  

 
Table 1. Stability tests on the dynamic AIDS model without intervention (a) and with dummy 
intervention (b) 
 
 March 1996 (bse)  May 1999 (dioxin)  October 2000 (bse2)    
 Model (a) - No shift 

 Chow Breakpoint test Chow Forecast test(a)  
Nyblom 
test(b)  

Beef  1.72 * 1.73 * 5.95 ** 5.30 ** 

Chicken 2.42 ** 3.07 ** 3.20 ** 4.05  

Other foods 2.43 ** 1.15  0.53  5.83 ** 

 Model (b) - Dummy shift on March 1996 
Beef    1.76 * 6.66 ** 4.72 * 

Chicken   3.40 ** 4.00 ** 3.96  

Other foods   1.10  0.51  5.55 ** 

Notes: 
(a) Chow Breakpoint test not applicable due to the lack of degrees of freedom 
(b) Critical values at 95% (99%) confidence level are 4.43 (4.88) for the model without shift and 4.62 

(5.09) for the model with a dummy shift 
 

 
The stability tests show the inadequacy of model (a) which does not account for the structural 

breaks.  Diagnostics worsen as the Dioxin crisis and the latest BSE crisis are included in the estimation 
sample. If no break date is assumed (as in the Nyblom test), evidence for at least one random walk 
coefficient emerges for beef and other foods, while there is no clear sign of structural shock for 
chicken. If a single and constant shift on the intercept accounting for the first BSE scare is included, as 
in model (b), there is no sign of improvement in the Chow test and the Nyblom test still captures the 
instability of at least one parameter. 

Focusing on model (c), a latent random walk intervention is considered after March 1996. 
Estimates from the dynamic AIDS with a constant shift variable were used as starting values for the 
EM algorithm. Parameters estimates and some model diagnostics are reported in Table 2, while short-
run and long-run Marshallian own-price elasticities and total expenditure elasticities at the sample 
mean are shown in Table 3. 

The beef and chicken equations show high 2R  statistics. However, the 2R statistic is not suitable 
for time-series models, as any model able to pick up a time trend will return a value close to unity 
(Harvey, 1989). The goodness-of-fit can be assessed with respect to the performance of a simple 
random-walk-plus-drift model ( 2

DR ) statistic or against first differences around the seasonal mean 

( 2
SR ) (Harvey, 1989: 268-269). Positive values for these indicators suggest a better fit than the simpler 

models. While the stochastic shift in model (c) seems to improve the specification of the beef and 
chicken equations, diagnostics for the other food equations are quite poor. Finally, the Ljung-Box 
statistics Q, computed with five lags1. Only in the beef equation is the specification able to eliminate 
all serial correlation. 

                                                      
1 We adopted the conventional approach of setting the number of lags equal to ln T. The statistic is distributed as 

a χ2(5). 
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A significant negative trend is observed for beef and chicken indicating a sign of changing 
preferences over the sample period, independent from the food scares. The own-lagged shares are 
significant for all equations suggesting that habit persistence is a major factor in explaining consumer 
choice.  

 
Table 2. Estimates from the dynamic AIDS model with a random walk shift from March 1996 

 
 Beef  Chicken  Other foods  

α -0.0525  0.0671 ** -0.0823  

λ -0.0001 ** -0.0001 ** -0.0001 * 

ρ1 0.5170 ** -0.0872 ** -0.3671 * 

ρ2 -0.6544 ** 0.2143 ** -0.3877  

ρ3 0.0526  -0.0709 ** 0.5296 ** 

ρ4 0.0847  -0.0560  0.2241  

γ1 0.0097  0.0002  -0.0168  

γ2 0.0002  0.0070 ** -0.0076 * 

γ3 -0.0168 * -0.0076 * -0.0004  

β -0.0107 ** -0.0002 ** -0.0478 ** 

φ1 -0.0005  -0.0003  0.0036  

φ2 0.0001  -0.0001  -0.0005  

φ3 -0.0007  -0.0001 ** 0.0061 ** 

φ4 0.0004 * 0.0000  0.0002  

φ5 0.0001  0.0001 ** 0.0028  

φ6 -0.0002  0.0000 ** -0.0011  

φ7 0.0001  0.0001  -0.0051  

φ8 0.0001  0.0003  -0.0014 ** 

φ9 0.0000  0.0003  0.0005  

φ10 0.0004 * 0.0000  0.0023  

φ11 0.0001  0.0002  0.0016  

φ12 0.0002  -0.0007  0.0050 ** 

      

Min ψt -0.0014 ** -0.0001  0.0006  

Max ψ t 0.0019 ** 0.0001  0.0042 ** 

Avg ψ t 0.0003  0.0000  0.0032  

      

Adj. R2 0.96  0.82  0.51  

Q(5) 12.33 * 3.83  25.59 ** 

R2
S 0.252  0.004  -0.391  

R2
D 0.335  0.138  -0.114  

      

 
Three indicators are shown for the stochastic intervention variables: a minimum and a maximum 

value and the average across the shock period. On average, the meat scares have no significant 
influence on preferences, which implies that demand response and adjustment to the food safety 
information is mainly explained by the change in relative prices. However, when single time periods 
are considered, there is clearly a significant effect on beef demand. The peak in the BSE effect on beef 
consumption is observed in January 2001, i.e. with the discovery of the first BSE case in cattle bred in 
Italy. The maximum positive value is observed at the very end of the sample, December 2001, and is 
probably linked to both a real recovery in response to reassuring information (in one year only 48 
cases were detected in Italy, 0.1% of tested cattle). The reprieve may also be emphasised by the 
Christmas effect. 

No significant impact was observed on chicken consumption, regardless of the trough 
corresponding to May-June 1999, i.e. an exact correspondence to the Dioxin crisis without the need of 
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any prior information on the onset date. Again, a non-structural shift in preferences means that the 
market has mainly adjusted through price reaction. Finally, the aggregate group of “other foods” looks 
to gain the most from the meat scares, with a positive intervention value throughout the sample and a 
significant peak. However, due to poor diagnostics for this equation, these results should be taken with 
caution. 

A plot of the time-varying interventions for chicken and poultry is shown in Figure 1. The first 
observation in the graph corresponds to the March 1996 BSE scare and highlights the expected 
negative effect for beef and a positive one for chicken. Such an impact is reabsorbed over the next few 
months and the model captures a positive trend for beef and a negative one for chicken. The Dioxin 
crisis itself has little relevance, even if the chicken shift registers a trough. The impact of the 2000 
crisis is by far the largest. The negative shift in beef reaches its peak in January 2001, then there is a 
recovery pattern which is completed by mid-2001. Similarly, there is a very strong positive effect on 
chicken demand, which is still present by the end of 2001. 

 
Table 3. Short and long-run elasticities 
 

 Price  
  Beef Poultry Other foods All other goods Total expenditure 
 Short-run 

Beef -0.64 0.01 -0.60 0.25 0.62 
Poultry 0.02 -0.24 -0.82 0.04 0.98 
Other foods -0.05 -0.05 -1.00 0.15 0.72 
All other goods -0.05 0.00 0.03 -1.04 1.07 
 Long-run 
Beef -0.25 0.02 -1.25 0.51 0.20 
Poultry 0.03 -0.04 -1.05 0.05 0.97 
Other foods -0.11 -0.10 -1.01 0.31 0.40 
All other goods -0.04 0.00 -0.98 -1.03 1.06 
 
Figure 1. Time-varying shifts (dotted lines plot standard errors).  
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The interventions plotted in Figure 1 are meant to capture the shifts in preference due to the food 

scares, i.e. excluding any effect due to changes in prices. For all considered crises, there is clear 
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evidence of a social amplification process in the first month, then the negative psychological effect is 
recovered relatively quickly. This does not necessarily imply that beef demand has fully absorbed the 
effects of the scare, as consumption is increased due to lower prices and vice versa for chicken.   

 
Conclusion 

 
We suggest that a stochastic approach to model the impact of a food scare over time should be 

preferred to the methods based on simple dummy shifts or media coverage indices, especially in cases 
where the same scare or different scares involving the same product reoccur over time. This method, 
based on a random walk specification of the intervention variable, avoids the need for subjective 
assumptions on the cumulated impact of information and the difficult distinction between positive and 
negative information. A dynamic Almost Ideal Demand System with a stochastic shift on the intercept 
after the onset of the first scare is expected to model the evolving pattern of consumer anxiety, 
maintaining the capability to capture subsequent events affecting the consumption of the same foods. 
This model allows the isolation of the effect on consumer preferences other than the impact on 
demand due to the change in prices. Estimation is achieved through the Kalman-filter based EM 
algorithm. 

The application of the dynamic AIDS model with stochastic shift is shown on Italian data, to 
assess the time-varying impact of two waves of the BSE crisis (1996 and 2000) and the 1999 Dioxin 
crisis. Empirical results show limited relevance of the Dioxin crisis in terms of preference shift, whilst 
not excluding the more relevant price effects. The impact of the first BSE crisis on preferences seems 
to be reabsorbed over the next few months, but the second wave of the scare at the end of 2000 had a 
much stronger effect on preferences than the first BSE scare and the positive shift in chicken demand 
continued to persist 14 months after the onset of the crisis. 

The model could be further improved to overcome some of its limitations. Firstly, different 
stochastic structures such as an AR(1) shift could be tested and compared to the random walk 
assumption. A second issue for future reference is the stability of the price and expenditure 
coefficients, as consumer response to food safety information is likely to affect the behavioural 
response of the consumer. 
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Appendix: Kalman filter, smoother and the log-likelihood function 
 
The Kalman filter is a recursive procedure producing the optimal estimates of the state vector at 

time t conditional upon the available information in the same time period. The optimal filtered 
estimator at time t is defined as  

 
 11 −− = ttt Taa   (A1) 

 
and its covariance matrix is 
 
 QTTPP ttt +′= −− 11  (A2) 

  
where tt PaVar =)(  is the covariance matrix for the state vector. Equations (A1) and (A2) are 

the prediction equations of the Kalman filter. Once the actual observation wt becomes available, the 
optimal estimator is updated according to the previous prediction error. This happens through the 
following updating equations: 

 
 ( )1

1
11 −

−
−− ′−′+= ttttttttttt aZyFZPaa  (A3)  

 1
1

11 −
−

−− ′−= tttttttttt PZFZPPP   where HZPZF ttttt +′= −1  (A4) 

 
The equations described in (A1 – A4) constitute the Kalman filter. 
Once the full set of filtered estimates 1t ta −  and ta are computed through the Kalman filter, it 

becomes possible to smooth the estimates of the state vector by exploiting all the information available 
in the data set. In other words, the Kalman smoother allows the computation of the least square 
estimates of the state vector at time t, conditional to the whole set of τ observations, i.e. 

( )tta E ττ α= ℑ . The fixed interval smoothing algorithm (alternative algorithms are discussed in 

Harvey, 1989, p.150) is a backward recursive procedure, described by the following equations: 
 
 ( )ttttt TaaPaa −+= + ττ 1

*   (A5) 

 ( ) '*
11

*
tttttt PPPPPP τττ ++ −+=  (A6) 

where  1
1

* −
+′= tttt PTPP  (A7) 

 
The smoother runs from t=τ-1 to t=1, with τττ aa =  and τττ PP =  as starting values. Estimates 

obtained through the Kalman smoother show mean square error inferior or equal to those obtained 
through the Kalman filter, as they are based on a larger set of observations. 

Given the assumption of a normal distribution for the disturbances in the model and the initial 
state vector, the distribution of the vector of observation wt conditional on the set of observation up to 
time t-1 is itself normal, where the mean and covariance for such distribution can be derived through 
the Kalman filter. Hence, it becomes possible to write explicitly the log-likelihood function for a 
multivariate normal model: 

 

 )()(
2
1log
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12log

2
),(log 1

1

1
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1
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−
−
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ttttt
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ττ

πτ
 (A8) 

 
where Ψ  represents all unknown parameters of the model. 
 
 


