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Abstract 
The food processing industry in Western countries operates in markets that usually are 

highly concentrated, concisting of a few cooperatives and investor-owned firms. However, in 
the literature some studies questioned whether the mixed market structure is a stable 
equilibrium, and suggestions are made that the cooperatives eventually will crowd out all 
investor-owned firms. To analyse the problem, the family of models of mixed markets is 
generalized and analysed. It is shown that a mixed market equilibrium may occure under quite 
general conditions. Also, it is shown that the investor-owned firm may serve as a yardstick of 
production to the cooperative, helping farmers achieve an increased payoff relative to a situation 
with a single coop in the market.  
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Introduction 
The agricultural food processing industry is highly concentrated in most western countries. 

Structural oligopsonies and/or oligopolies have been, and still are the industry norm (Rogers and 
Sexton). Some of the processing agents are organized as regular investor-owned firms while others are 
organized as various types of cooperatives. Frequently the two types of firms coexist in so-called 
mixed markets (Cotterill; Fulton; Sexton; Bergman). The extensive literature on this subject does not 
provide us with unambiguous predictions about the market outcome. While some studies suggest that 
the cooperatives eventually will crowd out the investor-owned firms (Rhodes; Albæk and Schultz); 
others argue that a stable mixed market equilibrium exists (Sexton; Tennbakk; Karantininis and Zago; 
Hendrikse). The diverging predictions may be explained by the highly specific assumptions the 
authors lay down for the cooperatives regarding both their objectives and bylaws and the competitive 
environment they face. This diversity limits the applicability of the predictions put forward.  

The main purpose of this article is to generalize the family of models of mixed markets and to use 
the generalized model to demonstrate that the mixed market structure we observe is indeed a market 
equilibrium. The general conditions for this equilibrium to evolve are identified.  The analysis shows 
that in the case of an open membership coop, the iof may serve as a “yardstick of production” for the 
coop. It helps the member farmers to achieve an increased payoff relative to a situation with a single 
coop by offering an outside option. In the case of diseconomies of scale it will help reduce the 
problem of excess production. 

The results are important for proper understanding of the role cooperatives play in the food 
processing industry. They are especially relevant for the anti-trust authorities and for our 
understanding of the impact of e.g. the Capper-Vostead Act.  

The article is structured as follows: first a general model is developed. The alternative objectives 
for the cooperative are then discussed and the maximization problems solved. The payoff functions for 
the investor-owned firm and the open membership cooperative are derived, and the equilibrium market 
structure is derived and analyzed. The results are then discussed before some concluding remarks are 
presented in the final section. 

The Model 
Consider a market where N  identical farmers are producing a homogenous raw commodity 

(intermediary input) that has to be further processed before being sold to consumers. The commodity 
is assumed to be bulky and/or perishable causing economies of scope and scale in transport and 
processing. Hence, there will only be a few processors available for the individual farmer, a so-called 
spatial oligopsony (Rogers and Sexton). In the subsequent analysis, the number of processors is 
restricted to two; one marketing cooperative (coop) and one conventional investor-owned firm (iof).  

The farmers are assumed to be rational. Each farmer can sell his output to the iof at a uniform 
commodity price, or join and supply the coop being paid according to the coop’s payment scheme. 
Hence, of the N  farmers, a subset [ ]0,cn N∈  chooses membership in the coop, whereas the other 
subset, [ ]0,fn N∈ , chooses to supply the iof. All farmers are assumed to be active, so that 

c fN n n= + .a   
The set up constitutes a two-stage game. In stage one, each farmer chooses the processor to 

supply: in stage two, each processor pursues his objective given the number of suppliers he attracts in 
stage one of the game. The output is then determined and the payoff offered to the supplier is derived. 
The two-stage game is solved the standard way by backward induction.  

 
The total production cost for a farmer i  who supplies a quantity iq  of the raw commodity is 

defined as 

( 1) ( ) ( ) ( ) ( ) ( ), 0 0 , 0 , 0 , 0 , 1, ...,i i i i iTC g q g g q g q g q i N′ ′′ ′′′= = > ≥ ≥ =  
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This is an ordinary increasing and convex cost function.b The fixed costs in the primary 
production are assumed to be zero (sunk costs). This is a strict simplification, but does not 
qualitatively alter the analysis.  

Both processors are assumed to have identical cost structures consisting of a production scale-
independent part jb , and a scale-dependent part ( )jc ⋅ . Subscript ,j c f=  denotes the type of 

processor where c  indicates the coop, and f  the iof. Without loss of generality, the processors are 
assumed not to use any other input than the fixed capital equipment and the intermediary input 
supplied by the farmers. The units are normalized so that one unit of input is transformed into one unit 
of the final product. Firm 'sj  total processing costs can then be expressed as 

( 2) ( ) ( ) ( ) ( ), 0 0 , 0 , 0 , ,j j j j j j j j jTPC b c Q c c Q c Q j c f′ ′′= + = > ≥ =  

The marginal cost is assumed positive and increasing in quantity due to limited processing 
capacity in each period.  

The scale elasticity, denoted by jε , plays a sentral part in the subsequent analysis. As long as the 
use of input is efficient, it is defined as the long-run average cost divided by the long-run marginal 
cost, /j j jAC MCε ≡ . There is economies of scale if 1jε > , and diseconomies of scale if 1jε < . To 
simplify the analysis an indicator for the degree of (dis-)economies of scale in processing, jα , is used, 
defined by  

( 3) ( ) ( ) ( )1 , ,j j j
j j j j j j j

j

b c Q
c Q MC AC MC j c f

Q
α ε

⎛ ⎞+
′⎜ ⎟≡ − = − = − =

⎜ ⎟
⎝ ⎠

 

It follows that jα  will be negative in situations where there are economies of scale in processing, 
positive under diseconomies of scale, and zero under constant returns to scale.  

The processed good is assumed to be less perishable and easier to handle and to transport than 
the raw commodity. This is reflected in the model by assuming perfect competition in the market for 
the final good. The demand is completely elastic and represented by the exogenous output price, P . 
This strict assumption ensures that the analysis focuses on the processors’ competition for input.c It 
requires that each processor’s output is small relative to the total output of the processed commodity. 
This is most likely to occur for (homogenous) bulk commodities. If the processors differentiate their 
products, imperfect competition will occur. This option is addressed in the Discussion section. 

Stage Two: The Output Decision 
In the second stage of the game, the quantity produced is determined and the payoff to farmers 

derived based on the distribution of farmers between the two processors determined in Stage one. The 
behavior of the players in this stage of the game is modeled below.  

 
The Investor-owned Firm (iof) maximizes profit by choosing the quantity fQ  of the 

intermediary input to process and market.  
The fn  atomistic farmers who decided to supply the iof in stage one act as price takers and are 

offered a price fω  per unit. Each farmer i  maximizes profit by choosing his output iq  so as to solve 
the following problem. 

( 4) ( ){ }max , 1, ,
i

f i i fq
q g q i nω − = K  

The first-order condition for maximum defines the inverse supply function  

( 5) ( ) ( ), , , where 0 as long as 0f i f i fg q i n q gω ω′ ′= > >K  
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For any number of suppliers determined in stage one, fn , the iof chooses the total quantity to 

process and market, fQ , so as to maximize profits ( );f f fQ nΠ . This is done under the restriction that 

it at least must break even, ( ); 0f f fQ nΠ ≥ . It is assumed to close down if earning negative profit. 
Since all the fn  producers are assumed identical, they supply identical quantities fq  to the iof in 
equilibrium and total quantity supplied can be defined as f f fQ n q≡ . Inserting this definition and 
equation ( 5) into the iof’s objective function gives the following problem to solve 

( 6) ( ) ( )max s.t.  ; 0
f

f
f f f f f f f fQ

f

Q
PQ b c Q g Q Q n

n

⎧ ⎫⎛ ⎞⎪ ⎪′− − − Π ≥⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
 

The first order condition for the unrestricted problem reads 

( 7) ( ) f f f
f f

f f f

Q Q Q
P c Q g g

n n n
⎛ ⎞ ⎛ ⎞

′ ′ ′′− − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

The right hand side of equation ( 7) is positive per definition. It follows that the output price is 
higher than total marginal costs in optimum, ( fP TMC> ), and consequently that production and 
processing will be lower than what is socially optimal. We have the classical underproduction problem 
caused by a firm exercising market power. 

Implicit derivation of fω  with respect to fn  in the inverse supply function ( )f f fg Q nω ′=  

holding fQ  constant, yields ( ) 2 0f f f f f fgn Q n Q nω ′′− <∂ ∂ = . Hence, the unit price paid to the 
suppliers, fω , decreases with the number of suppliers fn . It follows that the fewer the farmers 
supplying the iof (which is exogenous to the iof in stage two of the game), the lower is the firm’s 
margin. A minimum number of suppliers fn  is required for the iof to obtain non-negative profit and 

stay in business. It is defined by the break-even condition evaluated in optimum, ( ); 0f f fQ nΠ = .  
The payoff that the iof ‘s offer the suppliers in stage one of the game is a function with 

properties presented in Lemma 1. 

Lemma 1 (Properties of the iof payoff): Denote by N  the total number of producers, and let fn  
denote the minimum number of suppliers necessary for the iof to break even, defined by 

( ); 0f f fQ nΠ = . 

a) The payoff ( )*
f fnπ  is a function of the number iof suppliers, fn . It is zero for all )0,f fn n⎡∈ ⎣  and 

positive and strictly decreasing for all ,f fn n N⎡ ⎤∈ ⎣ ⎦ .  

( ) ) ( )*
*

0 0,
0 ,

0 ,

f f f f
f f f f

ff f

n n n
n and n n N

nn n N

π
π

⎧ ⎡= ∀ ∈ ∂⎪ ⎣ ⎡ ⎤< ∀ ∈⎨ ⎣ ⎦∂⎡ ⎤> ∀ ∈⎪ ⎣ ⎦⎩
 

b) An additional supplier will cause the individual output to decrease for all existing suppliers while 
the aggregate output will increase. 

0 , 0 ,f f
f f f f

f f

q Q
n n N and n n N

n n
∂ ∂

⎡ ⎤ ⎡ ⎤> ∀ ∈ > ∀ ∈⎣ ⎦ ⎣ ⎦∂ ∂
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■ Proof: See Appendix 
It follows from Lemma 1 that the more suppliers the iof attracts in stage one, the stronger is its 

market power towards the suppliers. As a result, the payoff the iof offers decreases with the number of 
suppliers as shown in Figure 1. Even if the individual output of the iof’s suppliers decreases with an 
additional supplier, the aggregate output increases. 

 
The Open Membership Cooperative (coop) is owned and operated by the members who 

produce and supply the intermediary input. It is assumed to practice an open membership policy, 
letting farmers join or resign from the organization without costs.d To be considered a cooperative it is 
assumed that at least three farmers must be associated, 3cn ≥ . The maximization of joint profit (JPM) 
and of net average revenue product (NARP) are the two most frequently objectives employed in 
analyses of marketing cooperatives. Both are examined further below. 

 
The objective of a Joint Profit Maximization Cooperative (JPM coop) is to maximize the joint 

profit ( );c c cQ nΠ  from the primary production of all farmers and from the processing activity (Enke; 
Taylor). Hence, the coop coordinates each member’s production quantity. The coop will close down if 
it cannot secure the members a non-negative profit. The maximization problem then reads 

( 8) ( ) ( )max s.t.  ; 0
c

c
c c c c c c c cQ

c

Q
PQ b c Q n g Q n

n
⎧ ⎫⎛ ⎞⎪ ⎪− − − Π ≥⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

 

The assumption that all coop farmers are identical and provides identical output in equilibrium, 
c c cq Q n= , results in a first order condition for the unrestricted problem stating that price equals total 

marginal costs in optimum. 

( 9) ( ) 0c
c c

c

Q
P c Q g

n
⎛ ⎞′ ′− − =⎜ ⎟
⎝ ⎠

  

It follows that the solution is socially optimal. The second order condition is assumed to be 
satisfied for all defined quantities.  

Lemma 2 (Properties of the JPM coop): Denote by N  the total number of suppliers. Further, let ˆcn  
denote the minimum numbers of members necessary for the coop to break even, defined by 

( )ˆ ˆ 0c c c c c cP b c n q n q− + =⎡ ⎤⎣ ⎦ . Then, [ ]ˆmax 3,c cn n≡  denotes the minimum number of members 

necessary for the coop to stay in business. ( ) ( )c c c c c c c c c cc n q b c n q n qα ′≡ − +⎡ ⎤⎣ ⎦  is a parameter 
capturing the degree of economies of scale in processing. 

fn
fn

N

( )*
f Nπ

0

( )*
f cN nπ −

( )*
f fnπ

( )*
f fnπ

Figure 1: Payoff function for the investor-owned firm. 
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The cooperative maximizing the joint profit (JPM), offers a payoff to the members, ( )*
c cnπ , that 

is zero for [ )0,c cn n∈  and positive for all [ ],c cn n N∈  and that holds the following properties:. 

a) The payoff is i) strictly increasing in cn  under economies of scale in processing 0cα < , ii) strictly 
decreasing under diseconomies of scale in processing, 0cα > , and iii) constant under constant 
returns to scale in processing, 0cα = . 

( ) [ )
[ ]

( ) [ ]
*

*

0 0
0 , 0,

0 0 ,
0 , ,

0 0

c
c c c c

c c c c c
c c c

c

if
n n n

n and if n n N
n n N n

if

α
π

π α
α

> <⎧
= ∈⎧ ∂ ⎪= = ∀ ∈⎨ ⎨> ∈ ∂⎩ ⎪< >⎩

 

b) An additional member will cause the individual output to decrease while the aggregate output 
increases. 

[ ]0 0 ,c c
c c

c c

q Q
and n n N

n n
∂ ∂

< > ∀ ∈
∂ ∂

 

 Proof: See Appendix 

A production (or processing) function exhibiting increasing returns to scale for low output levels 
and decreasing returns to scale as output increases is referred to by Frisch (1965) as the ultra-passum 
law of production. Above it is established that the aggregate output cQ  increases with the number of 
members. Hence, in a situation with ultra-passum law in processing, the scale parameter cα  will 
increase with increasing number of members, 0c cnα∂ ∂ > . It will start out being negative and 
eventually take on positive values. The payoff function associated with this type of processing 
technology is shown in figure 2. In the same figure, the payoff for overall increasing and overall 
decreasing returns to scale are demonstrated. 

It is shown that a new member causes an increase in the total output even if the individual output 
of each farmer is reduced. It follows that the new member produces more than the aggregate reduction 
in production of all existing farmers. This property is independent of the scale properties in 
production. 
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The Net Average Revenue Product Cooperative (NARP coop) is obliged to process and market 

all input the members choose to supply (Helmberger and Hoos). Consequently it has no control over 
the production of intermediary input and the quantity it has to process. It lacks the ablility of 
coordination found in the JPM-coop. The average net return per unit of input, also called net average 
revenue product (NARP) is in the present set-up defined bye 

( 10) 
( ) ( )c c c

c
c

b c Q
P NARP

Q
ω

+
= − ≡   

In this static model with only one single output sold in a competitive market, the coop has no 
direct influence on the NARP , but acts as a mere price clearing central for  the members.  

The maximization approach of Albæk and Schultz is employed where each member i  chooses his 
quantity iq  so as to maximize his own profit. The member takes as given both the number of other 

coop members, 1cn − , and the production level they choose, 
1

,cn
c i jk

Q q k i− =
= ≠∑ . The individual 

member then seeks to maximize  

( 11) 
( ) ( ) ( )s.t. ; 0, 1, ,max

i

c c i c i
i i c i c c i c

q i c i

b c q Q
P q g q q n Q i n

q Q
π−

−
−

⎧ ⎫+ +⎛ ⎞⎪ ⎪− − ≥ =⎨ ⎬⎜ ⎟+⎪ ⎪⎝ ⎠⎩ ⎭
K  

Each farmer is assumed to require a non-negative profit and internalizes only the effect that his 
output decision has on his own profit. The effect imposed on the other members is ignored.  

Assume that all cn  suppliers in the coop are identical and produce the same output cq  in 
equilibrium. The first order condition for maximum in the unrestricted problem when using 

( )1c i c cQ n q− = −  and i cq q=  in equilibrium, is then given by 

( 12) ( ) ( ) ( ) ( )1c c c cc
c c c c

c c c

c

n b c QQ
P c Q g c Q

n n Q

α

− +⎛ ⎞⎛ ⎞′ ′ ′− − = − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠14444244443

 

The solution will only be socially optimal (price equal to marginal costs) when there are constant 
returns to scale in processing ( 0cα = ). Economies of scale ( 0cα < ) give underproduction since the 

cn
cn

N

( ) ,* a c
c Nπ

0

b

( )*
c cnπ

a

c

( )* b
c Nπ

Figure 2: Payoff function for the cooperative. Curve a describes the payoff under ultra-passum 
production technology in processing. Curve b describes the payoff under overall economies of 
scale, and c under overall diseconomies of scale. 
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price exceeds marginal costs in equilibrium and overproduction occurs under diseconomies of scale 
( 0cα > ).  

Lemma 3 (Properties of the NARP coop payoff): Denote by N  the total number of suppliers. Further, 
let ˆcn  denote the minimum numbers of members necessary for the coop to break even, defined by 

( )ˆ ˆ 0c c c c c cP b c n q n q− + =⎡ ⎤⎣ ⎦ . Then, [ ]ˆmax 3,c cn n≡  denotes the minimum number of members 
necessary for the coop to stay in business. The parameter capturing the degree of economies of scale 
in processing is denoted ( ) ( )c c c c c c c c c cc n q b c n q n qα ′≡ − +⎡ ⎤⎣ ⎦ . Since cα  is increasing in cQ , it 

follows that it also is increasing in cn . Let ( )( ) ( ) ( )( )1c c c c c c cn q n c n q g qδ ′′ ′′≡ − +  denote an “upper 

threshold” for the economies of scale such that cα δ> −  and let ( )( ) ( )2 0c c c c cn n q c n qβ ′′≡ − > . 

Assume that ( ) ( ) ( )2 0c c c c cn g q c n qγ ′′ ′′≡ − − > .  

a) The cooperative maximizing net average revenue product (NARP) offers a positive payoff, ( )*
c cnπ , 

to all members if [ ],c cn n N∈  and zero payoff for all [ )0,c cn n∈ . This implies that i) the payoff will be 
strictly increasing in the number of members, cn , for situations with economies of scale in processing, 

0cα < , where a limit δ  is set to the economies of scale so that cδ α< , ii)  The payoff will be strictly 
decreasing under diseconomies of scale, 0cα > , and iii) the payoff will be constant under constant 
returns to scale, 0cα = .  

( ) [ )
[ ]

( ) ( )

( )
[ ]

*
*

0 ,0
0 , 0,

0 0 ,
0 , ,

0 0,

c
c c c c

c c c c c
c c c

c

if
n n n

n and if n n N
n n N n

if

α δ
π

π α
α

> ∈ −⎧
= ∈⎧ ∂ ⎪= = ∀ ∈⎨ ⎨> ∈ ∂⎩ ⎪< ∈ ∞⎩

 

b) The production from an additional member will make the aggregated quantity increase in the 
number of members as long as 0γ ≥  and [ ],c cn n N∈ . The members’ individual output will i) 
increase for all existing members under economies of scale, ( ),0cα δ∈ − , ii) decrease for all existing 
members under diseconomies of scale, ( )0,cα ∈ ∞ , and iii) remain constant for all existing members 
under constant returns to scale, 0cα = .  

[ ]
( )

( )

( )

, ,

0 ,
and 0 , 0

0
0 ,

c c

c c
cc

cc
c

c

For n n N

if Q ifq nif
n

if

α δ β α δ γ
α β
α β

∈

> ∈ − −⎧ ∂
> ∀ ∈ − ∞ ≥∂ ⎪ ∂= = −⎨∂ ⎪< ∈ − ∞⎩

 

 Proof: See Appendix  

The properties of the payoff functions in the two different types of cooperatives are shown to be 
analogous. Figure 2 will hence apply also to the NARP coop. However, comparison of the two first 
order conditions given in equations ( 9) and ( 12) shows that only the JPM coop entails a Pareto 
optimal solution. The reason is that the individual farmer in the NARP coop does not take into account 
the impact his action has on the outcome of all other farmers; it leads to too low production in a 
situation with economies of scale in processing, and too high production in a situation with 
diseconomies of scale. It follows that the payoff in the NARP coop always will be lower than the one 
of the JPM coop for any given number of suppliers, except for constant returns to scale, 0cα =  where 
they are equal. This is due to lack of coordination in the NARP coop. It follows that under an ultra-
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passum technology in processing, maximum payoff will occur for a lower number of members in a 
JPM coop than in a NARP coop, all other things equal. If the farmers could freely decide the objective 
of the coop they should obviously choose the JPM-objective. However, the objective of the NARP 
coop may be seen as the outcome of a former constitution game in the organization, and as such, 
difficult to change. It is often a result of restrictions made by the Government and/or the Anti-trust 
authorities.  

Lemmas 2 and 3 cover a wide range of firms and situations since they are based on quite general 
functional forms.  

Stage 1: Farmers’ Choice of Processor – The Market Game 
The farmers are assumed to be rational and will hence seek to maximize utility. In this analysis, 

utility conveniently is assumed to be identical to profit.  
In the two preceding sections we have derived the payoff functions for the coop, ( )*

c cnπ , and 

for the iof, ( )*
f fnπ .  These two functions represent the maximum payoff obtainable for the individual 

supplier of the coop and the iof respectively, given the number of members/suppliers of each firm. 
Whenever there is a higher economic return through the coop, producers will switch from the iof to the 
coop and vice versa.f Farmer i  will hence always choose the processor that offers him the highest 
profit.  

( 13) ( ) ( )* *,c c f fmax n nπ π⎡ ⎤⎣ ⎦  

To simplify the analysis it is assumed that ( ) 0c Nπ >  and ( ) 0f Nπ > . In other words, the payoff 
will be positive so that all the N  farmers will produce under all possible market structures. The 
producers will keep on switching between the two processors until an equilibrium distribution of 
producers ( )* *,c fn n  is obtained where all receive an identical payoff ( )* * *,c fn nπ .g If no producer has 

the incentive to alter his own choice when the choices of all the other producers are revealed to him, 
this distribution constitutes a sub game perfect Nash equilibrium.  

Possible outcomes of the market game are a single coop with the payoff ( ) ( )* *,0 cN Nπ π≡ , a 
single iof with payoff ( ) ( )* *0, fN Nπ π≡ , or a mixed market equilibrium where both firms coexist, 

offering the farmers identical profit: ( ) ( ) ( )* * * * * * *, s.t.c f c c f f c fn n n n n n Nπ π π≡ ≡ + = .  

Based on the characteristics of the payoff functions of the iof and the coop described in Lemmas 
1, 2 and 3 respectively, the Nash-equilibria for the input market can be found. By using the definition 

f cn N n≡ −  in the iof’s payoff function, the payoff functions of both processors can conveniently be 
inserted into a common diagram and the equilibrium can be demonstrated and discussed graphically. 
The number of members in the coop is measured on the x-axis from the left to the right. The total 
number of farmers N  is the maximum. Evidently, the number of suppliers of the iof will be displayed 
from right to left. The characteristics of the equilibria are presented in Proposition 1–3 below. They 
refer to the crossing or non-crossing of the two firms’ payoff-functions in the common diagram  

PROPOSITION 1 (Non-Crossing of Payoff Functions): The payoff functions of both the coop and the 
iof are shown to be continuous over their range. It follows that there exists a market structure with a 
single firm if no crossing of the two payoffs take place. Depending on the costs, the market will consist 
of a: 

a) Single coop defined by, ( ) ( )* *, ,0c fn n N=  with the payoff ( ) ( )* * * *,c f cn n Nπ π=  if  

( ) ( ) ( )* * ,c c f c c c fn N n n n N nπ π ⎡ ⎤> − ∀ ∈ −⎣ ⎦  
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b) Single iof defined by ( ) ( )* *, 0,c fn n N=  with the payoff ( ) ( )* * * *,c f fn n Nπ π=  if 

( ) ( ) ( )* * ,c c f c c c fn N n n n N nπ π ⎡ ⎤< − ∀ ∈ −⎣ ⎦  

 Proofs follows directly from Lemmas 1, 2 and 3. 
 

The two equilibrium solutions from Proposition 1 are described in figures 3 panel a and b 
respectively. These market outcomes are likely to occur if one of the firms has very low processing 
costs relative to the other. 

 

PROPOSITION 2 (Single Crossing of Payoff Functions): The payoff functions of both the coop and 
the iof are shown to be continuous over their range. The payoffs will cross once and only once in a 
point where the distribution of producers is denoted ( ),k k

c fn n  under the following conditions: 

( )*
f fnπ

fn
cn

N

( )*
c Nπ

0

( )*
f fnπ

( )*
f Nπ

( )*
c cnπ

fn
cn

Figure3 a: No crossing of payoffs where the coop payoff surpasses the iof payoff for all 
( ),

c f
n n . The equilibrium solution results in a single cooperative (corner solution). 

( )*
f fnπ

fn
cn

N

( )*
c Nπ

0

( )*
f fnπ

( )*
f Nπ

( )*
c cnπ

fn
cn

Figure 3 b: Non-crossing of payoffs where the iof payoff surpasses the coop payoff for all 
( ),

c f
n n . The equilibrium solution results in a single investor-owned firm (corner solution). 
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a) Assume that ( ) ( ) ( ) ( )* * * *
c c f c c f f fn N n and N n nπ π π π< − − > . From Lemma 1-3 we have that 

( )* 0c c cn nπ∂ ∂ >  and ( )* 0f c cN n nπ∂ − ∂ > , evaluated for the distribution of producers, 

( ),k k
c fn n . 

i) If ( ) ( )* *k
c c cn Nπ π> , we will have a mixed market equilibrium defined by 

( ) ( )* *, ,k k
c f c fn n n n=  where ( )k

c c fn n N n≤ ≤ −  and ( )k
f f cn n N n≤ ≤ − . The equilibrium  

payoff will be ( ) ( ) ( )* * * * * * *,c f c c f fn n n nπ π π= = . (See figure 4 panel a) 

ii) If ( ) ( )* *k
c c cn Nπ π≤ , we will have a single coop in equilibrium defined by 

( ) ( )* *, ,0c fn n N= . The equilibrium payoff will be ( ) ( )* * * *,c f cn n Nπ π= . (See figure 4 panel 

b) 

iii) Let ( ) ( ) ( ) ( )* * * *
c c f c c f f fn N n and N n nπ π π π> − − < . Here ( )* 0c c cn nπ∂ ∂ <  and 

( )* 0f c cN n nπ∂ − ∂ >  evaluated in ( ),k k
c fn n . These conditions yield a stable mixed 

market equilibrium defined by ( ) ( )* *, ,k k
c f c fn n n n= , where ( )k

c c fn n N n≤ ≤ −  and 

( )k
f f cn n N n≤ ≤ − . The resulting payoff will be ( ) ( ) ( )* * * * *, k k

c f c c f fn n n nπ π π= = . (See 

figure 4 panel c) 

 Proof follows directly from Lemmas 1, 2 and 3. 

 
If the coop has overall economies of scale it will crowd out the iof under “single crossing” of 

payoffs. This situation is described in Figure 4a. However, if it has an ultra-passum technology in 
processing and single crossing, the equilibrium solution will depend on whether the single firm payoff 
is higher or lower than the mixed market. A situation where a mixed market is the equilibrium is 
described in Figure 4b. 

 

( )*
f fnπ

fn
cn

N

( )*
c Nπ

0

( )*
f fnπ

( )*
f Nπ

( )*
c cnπ

fn
cn

Figure 4 a: Single crossing of payoffs where the coop payoff is increasing at the crossing point. 
The mixed equilibrium will be Pareto-dominated by the single cooperative equilibrium (corner 
solution). 
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If the coop has overall diseconomies of scale and there exists a single crossing of payoffs, a 
mixed market will emerge. This situation is described in figure 4 panel c. 

 
 
PROPOSITION 3 (Double Crossing of Payoff Functions): The payoff functions of both the coop and 
the iof are shown to be continuous over their range. Assume that ( ) ( )* *

c c f cn N nπ π≤ −  and 

( ) ( )* *
c f f fN n nπ π− ≤ . It follows then from Lemmas 1–3 that the payoff functions will cross twice. 

Let ( ),k k
c fn n  and ( ),l l

c fn n  denote the distribution of producers in the two crossings of the payoff 

functions and let k l
c cn n< .  

We have that ( ) ( )* 0 ,f c c c c fN n n n n N nπ ⎡ ⎤∂ − ∂ > ∀ ∈ −⎣ ⎦ . It follows that 

( ) ( )* *, ,k k l l
c f c fn n n nπ π<  and we will have a mixed market equilibrium defined by ( ) ( )* *, ,l l

c f c fn n n n=  

with the equilibrium payoff ( ) ( ) ( )* * * * *, l l
c f c c c fn n n nπ π π= = . 

Figure 4 b: Single crossing of payoffs where the coop payoff is increasing at the crossing point. 
The single cooperative equilibrium (corner solution) will be Pareto-dominated by the mixed 
equilibrium. 

Figure 4 c: Single crossing of payoffs where the coop payoff is decreasing at the crossing point. 
A mixed market will be the equilibrium solution. 
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cn

*π *π
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cn
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 Proof follows directly from Lemmas 1, 2 and 3. 

The mixed market described in Proposition 3 is illustrated in figure 5. In this setting the coop is 
assumed to have an ultra passum processing technology. 

 

 
A two-tier market has been analyzed where only two potential processors, an open membership 

coop and a regular iof, operate in the input market. They are price takers in the final market. It is 
proved that all types of market structures, including a mixed market, are possible equilibria in the 
market game. Depending on the cost structure and cost level of the processors, we may expect a single 
cooperative, a single investor-owned firm or a mixed market concisting of both processors to emerge. 

Discussion  
Since a coop has maximum profit or maximum price to the member producers as objective, one 

may think that it will benefit the producers if the coop is the only processor in the market. However, 
according to the analysis performed, this is not always the case. Situations will exist where a mixed 
market is superior to a single coop for all producers. The reason is diseconomies of scale in the coop’s 
processing activity. It results in decreasing payoff when the number of members increases because 
each new member causes the total output to increase. The problem is impossible to avoid as long as 
the coop practices an open membership policy. It is proved that the payoff for a coop pursuing the 
NARP objective always will be lower than the one offered by a JPM coop, except for a situation with 
constant returns to scale in processing. This is due to the problem of non-optimal quantity produced by 
the NARP coop members under both economies and diseconomies of scale in processing. The 
individual producer does not take into account the loss his marginal increase in production inflicts 
upon all the other members. As a result, the likelihood of a mixed market will be highest if the coop 
maximizes NARP. A JPM coop is more efficient and hence more likely to crowd out the iof. 

The output market is assumed to be perfectly competitive. It follows that the payoff to the coop 
members will be decreasing in the number of members only under diseconomies of scale in 
processing. Diseconomies of scale are claimed to be rare in the food processing industry. However, we 
may experience diseconomies of scale when a cooperative grows into a “large” organization with a 
“loose” management. A reduction in efficiency may also be caused by increasingly diverging 
objectives of the members as the organization grows. It can also be shown that the payoff will decline 
if the cooperative offers its output in a market with a downward-sloping demand curve. Hence, 
imperfect competition in the output market may cause decreasing payoff in the coop for an additional 
supplier even if no diseconomies of scale in processing exist. This makes a mixed market more likely 
to evolve and become an equilibrium solution.  

Figure 5:  Double-crossing of payoffs where the mixed market equilibrium a will be Pareto-
dominated by equilibrium b. 

fn
cn
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f fnπ( )*
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cn
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This brings us back to the article of Albæk and Schultz. They analyze a duopoly in the output 
market and suggest that the coop will always be superior to the iof with regard to the payoff, 
eventually driving the iof out of the market. The result is based on the two firms producing identical 
output and competing in a Cournot manner in the output market. Hence, the price of output is linking 
the two firms’ strategies together in the second stage of the game. The cooperative is shown to always 
produce more than the iof, forcing the price of output down for both firms. Eventually, the iof will be 
driven out of the market. Differentiating the output can help moderate this extreme situation since it 
will bring a higher degree of independence between the players at the second stage of the game. The 
iof will be less sensitive to the coop’s strategy and may earn enough profit to remain in the market.  

The introduction of heterogeneous farmers, as in the contribution of Sexton, will also reduce the 
dependency in the input market. This may advance a mixed market equilibrium. 

The model of Karantininis and Zago turns out to be a special case of the general model developed 
in this article. They model a situation where the coop is of the NARP type and exhibits diseconomies 
of scale for all quantities processed. There are no fixed costs so the iof  has no binding break-even 
restriction. It follows that they always will find a mixed market equilibrium. 

Sexton formalizes the notion of the salutary effect the coop has on its rivals’ behavior as a 
“yardstick of competition” for the possible exercise of oligopsony power in a structural oligopsony. 
The present article shows that in the case of an open membership coop, the iof may serve as a 
“yardstick of production” for the coop. It helps the member farmers to achieve an increased payoff 
relative to a situation with a single coop by offering an outside option. In the case of diseconomies of 
scale it will help reduce the problem of excess production. Competition with another cooperative 
would have ensured the same or even a better outcome. However, because of the common ownership 
of capital in cooperatives it can be a slow process to set up a new one. Probably, the formation of an 
investor-owned firm will be faster and an iof will be more likely to enter the market first. One thing to 
notice is that even competition from an iof may enhance the situation for members of a single coop 
with open membership. 

Concluding Remarks 
It has been argued that mixed markets consisting of investor-owned processors and open 

membership cooperatives cannot be a long term stable equilibrium. Further, it is suggested that the 
cooperative eventually will crowd out the investor-owned firm leading to a single cooperative in the 
market. However, we observe many mixed markets in the agricultural sector. 

This article has proven that a mixed market may exist as a stable equilibrium under quite general 
conditions. Diseconomies of scale in processing cause the payoff to producers to decrease with an 
additional coop member (crowding). In such a situation a single coop will experience excessive 
supply, causing too low returns for the producers. The problem originates in the open membership 
policy. The inability to restrict production in the NARP coop (lack of coordination) aggravates the 
problem. In this situation the entry of an iof into the market will serve as a “yardstick of production”; it 
offers an outside option to the farmers that eventually may result in higher profits for all farmers, 
independent of which one of the processors they choose to supply. 

A task for further research is to explore the possible effect of differentiating the output in an 
imperfect output market. Also, empirical work regarding the predictions made in this article would be 
useful. More insight is needed regarding different market types and their dependence on economies of 
scale in processing. 
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Appendix 

Proof of Lemma 1 
The envelope theorem is used on the first order condition for maximum in equation ( 7) to first 

find the effect of an additional supplier on total output.   

( 14) 

( )

2
0 0,

2

f f f

f f ff f
f f f

f ff f f
ff f

f f f

QQ Q
g g

n n nQ Q
Q n n N

n nQQ Q
n c Q g g

n n n

⎡ ⎤⎛ ⎞ ⎛ ⎞
′′ ′′′+⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠= > ∀ > ≤ ≤⎢ ⎥∂ ⎛ ⎞ ⎛ ⎞⎢ ⎥′′ ′′ ′′′+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Due to the assumption that ( ) 0fg q′′′ ≥ , total output is strictly increasing in the number of 

suppliers, fn . 
The effect on the individual supplier’s quantity of an additional supplier is found by 

substituting the equilibrium condition f f fQ n q=  into the first order condition ( 7) and then using the 
envelope theorem 

( 15) 
( )

( ) ( ) ( ) 0
2

f f f ff
f f

f f f f f f f f

c n q qq
n n N

n n c n q g q g q q

′′−∂
= < ∀ ≤ ≤

∂ ′′ ′′ ′′′+ +
 

The net payoff offered, is obtained by inserting the optimal quantity from equation ( 7) into the 
iof supplier’s profit function, equation( 4). It is a function of the number of suppliers from stage one of 
the game. 

( 16) ( ) ( ) ( ) ( ) ( ) ( )* wheref f f f f f f f f f fn q n g q g q q g q q q nπ ω ′= − = − =  

From equation ( 16) and ( 15) it follows that  

( 17) 
( ) ( )

*

0f f f
f

f f

n q
g q qfn n

π∂ ∂
′′= <

∂ ∂
 

 

Proof of Lemma 2 
From equation ( 9) we have  

( 18) 
( )

( ) ( )
0 , 0c c c cc

c
c c c c c c

c n q qq
q

n c n q n g q
′′∂

= − < ∀ >
′′ ′′∂ +

 

The joint profit is distributed symmetrically so the individual farmer’s profit (payoff) takes the 
form of ( )* *

c c c cn nπ = Π . By using the envelope theorem we find that  

( 19) 
( )*

2
c c c

c
c c

n Q
n n

π
α

∂
= −

∂
 

Inserting n c cQ n q=  into the first order condition ( 9) yields 
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( 20) ( )
( )1 1 1 0 ,c cc c

c c
c c cc c

g Q nQ Q
n n N

c Q nn n
⎡ ⎤′′⎛ ⎞∂

= − + > ∀ ≤ ≤⎢ ⎥⎜ ⎟′′∂ ⎢ ⎥⎝ ⎠⎣ ⎦
 

Proof of Lemma 3 
The profit for the individual member in equation ( 11), is a sum of concave and strictly concave 

functions in cq . It follows that it must be strictly concave and that the second order condition for 
maximum will be satisfied for all positive quantities cq , that is 

( 21) 
( )

( ) ( ) ( ) ( )
2 *

2

12 1 0c c c cc c
c c c c c c c

c c c c c cc

c

b c n qn
c n c n q g q q

n n q n q nq
π

α

+⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞∂ − ′ ′′ ′′= − − − + < ∀⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠14444244443

 

By using the envelope theorem on the first order condition from equation ( 12) where c c cQ n q≡ , 
we find that  

( 22) 
( ) ( )

( ) ( )

2

1

c
c c c c

c c c cc

c c c
c c c c c

c c

n c n q
q n n qq

n n n c n q g q
n q

α

α

⎡ ⎤⎛ ⎞− ′′+⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥= −
⎢ ⎥∂ ⎛ ⎞− ′′ ′′+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

This expression is negative under diseconomies of scale in processing, 0cα > , when 2cn > . For 
0cα < , the expression will depend upon the sign of the nominator relative to the denominator. In the 

subsequent analysis it is assumed that ( ) ( )
1

c c
c c c c c

c

n q
c n q g q

n
α δ′′ ′′> − + ≡ −⎡ ⎤⎣ ⎦−

 to assure that the 

denominator in equation ( 22) remains positive. The interpretation of this assumption is that an upper 
limit is set for economies of scale in processing. By using the envelope theorem on the first order 
condition and that c c cQ n q=  we find how the total quantity changes when the number of members 
increases. 

( 23) 
( )

( )

1
1

c
c c

c c c

c c c c
c c c

c c

Qg Q
Q n n

n n n Qc Q g
Q n

α

α

⎡ ⎤⎛ ⎞′′+⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎢ ⎥=
⎢ ⎥∂ ⎛ ⎞ ⎛ ⎞− ′′ ′′+ +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Again, for 0cα >  (diseconomies of scale), total quantity increases with the number of members. 
Rearranging the denominator that is assumed to be positive entails the following condition 

( 24) ( ) ( ) ( ) ( )( )2
1

c
c c c c c c c

c

Q
Q g q c Q n g q

n
α ′′ ′′ ′′> − − − −

−
 

It follows that the nominator will be non-negative for 0cα <  if ( ) ( ) ( )2c c c c cc n q n g q′′ ′′≤ − , which 
is assumed in the subsequent analysis.h The interpretation of this condition is that the marginal cost of 
processing the optimal quantity for any number of members, is increasing less than ( )2cn − times the 
marginal cost of production of the member farmers. It follows that the total quantity always will 
increase with an increasing number of members under the given conditions. 

 Next the derivate of the payoff ( )*
c cnπ  with respect to the number of members and insert the 

result from equation ( 22) 
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( 25) 
( ) ( ) ( )

( ) ( )( )

*

12 1

1

c
c c c c c

c c c c c cc
c

c c c
c c c c c

c c

n c n q g q
n n n q nq

n n n c n q g q
n q

α
π

α
α

⎡ ⎤⎛ ⎞ ⎛ ⎞− ′′ ′′− − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎢ ⎥=
⎢ ⎥∂ ⎛ ⎞− ′′ ′′+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

The numerator in the large brackets is the expression from the second order condition in equation 
( 21) and thus negative for all cα . The sign of the denominator is already assumed to be positive. 
Hence, the sign of the expression will be equal to the sign of cα . Payoff will thus increase for an 
increasing number of members as long as there are economies of scale in processing. When production 
reaches a level where an extra member causes diseconomies of scale, the payoff will decrease with an 
increase in members. For constant returns to scale, the payoff will be insensitive to the number of 
members. 

The NARP includes the coop’s fixed cost, cb . A certain number of members is hence required to 
generate a sufficient volume of production to cover this fixed cost. This reflects the existence of 
economies of scale in the market. By inserting the optimal quantity from the first order condition in 
equation ( 12) into equation ( 10), the optimal NARP is found. The minimum number of members 
required for the coop to break even, cn , is defined by ( ) 0c c c c c cP b c n q n q− + =⎡ ⎤⎣ ⎦   

  
                                                      

Endnotes 
 
a Notice that the set-up includes both a single coop, cn N=  and a single iof, fn N= . 
b To ensures that the second order condition for maximum profit is satisfied, it is assumed that 

( ) 0fg q′′′ ≥  (sufficient condition). The assumption signifies an increasing rate of change in the 

convex curvature of the inverse supply function. A rationale for the assumption is a limited production 
capacity for each producer. It holds true for all power and exponential functions. 

c This set-up is similar to that used by Helmberger in his seminal article on cooperatives. It 
deviates however from that of Albæk and Schultz where the two firms compete in the output market, 
and not for input. Hence, it is not straightforward to compare the results.  

d Normally, the coop requires new members to subscribe a small premium for the entry of new 
members. This premium (investment) often pays no or low dividend or interest. For the purpose of the 
present analysis the premium may be ignored without loss of generality. 

e This is a simplified version of the NARP since units are chosen so that one unit of input 
yields one unit of output. The quantities of both are hence conveniently denoted by cQ . 

f This is in accordance with Helmberger who states: “The cooperative will be seeking new 
members so long as net returns are less than the maximum amount obtainable […]. If the profit 
seeking firms fail to match the cooperative’s price, their suppliers will seek, presumably with success, 
cooperative membership.”  

g This has parallels to the Theory of Clubs and the “voting with the feet equilibrium” 
(Buchanan; Tiebout). 

h This is a sufficient, but not a necessary condition. 
 


