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ABSTRACT 
In 2010 there were an estimated 216 million cases of malaria worldwide. In Honduras 
there were ~9000 cases of which 88% were due to Plasmodium vivax mono-infection. 
Chloroquine (CQ) resistant Plasmodium falciparum have spread throughout the world 
curtailing its use. The only exception appears to be north of Panama where CQ 
reportedly remains efficacious and the drug of choice for treating both P. falciparum 
and P. vivax. Resistance to antimalarials is associated with specific genetic 
polymorphisms and recently a putative H+ pump (pfvp2) has been suggested to be 
linked to CQ resistant P. falciparum. The aim of this thesis was to identify resistance 
associated genetic polymorphisms in P. falciparum and P.vivax from Honduras and to 
describe the worldwide distribution of pfvp2 polymorphisms and their correlation to 
CQ resistance.  
 
Resistance associated genetic polymorphisms in P. falciparum and P. vivax multidrug 
resistance gene (pfmdr1 and pvmdr1), dihydrofolate reductase (pfdhfr and pvdhfr), P. 
falciparum chloroquine resistance transporter (pfcrt), dihydropteroate synthase (pfdhps) 
and V-type H+ pyrophosphatase (pfvp2) were identified in field samples using PCR 
based methods. From Honduras, 37 P. falciparum and 64 P. vivax samples, collected 
from symptomatic patients were used. In addition, 50 samples from each of Colombia, 
Liberia, Guinea-Bissau, Tanzania, Iran, Thailand and Vanuatu were used. The samples 
represented a time period from 1978 to 2009 and areas with different prevalence of CQ 
resistant P. falciparum.  
 
In samples from Honduras no genetic polymorphisms associated with CQ or 
sulphadoxine-pyrimethamine (SP) resistance were found in P. falciparum. In P. vivax, 
the CQ resistance associated pvmdr1 976F allele was found in 7/37 samples and the SP 
resistance associated pvdhfr 57L+58R alleles were found in 2/57 samples. When 
analysing the worldwide collection of samples, the pfvp2 405V, 582K and 711P 
haplotype was associated with the for CQ resistance essential allele, pfcrt 76T 
(P=0.007). Samples with pfvp2 405I and/or 582R and/or 711S were significantly more 
common in Liberia in 1978-1980 (P=0.01), all African countries (P=0.004) and all 
African countries + Honduras (P=0.01) compared to the rest of the world. 
 
Our results suggest that P. falciparum and P. vivax in Honduras are sensitive to CQ and 
SP. However, small numbers of P. vivax had genetic polymorphisms suggesting a 
degree of tolerance to CQ and SP. The association between pfcrt 76T and the pfvp2 
405V, 582K and 711P haplotype suggest that this haplotype is associated with CQ 
resistance. This is in line with previous research that has described increased expression 
of pfvp2 during CQ exposure. The higher frequency of pfvp2 405I and/or 582R and/or 
711S in CQ sensitive settings in Africa and Honduras suggests a larger variation in the 
pfvp2 genome prior to the spread of CQ resistance further supporting the association 
between pfvp2 and CQ resistance. 



 

 

RESUMEN 
Se estima que en el 2010 hubo 216 millones de casos de malaria en todo el mundo. En 
Honduras se reportaron alrededor de 9000 casos de los cuales 88% se debieron a mono-
infecciones por Plasmodium vivax. El antimálarico cloroquina (CQ) se ha utilizado 
ampliamente, pero Plasmodium falciparum resistente se ha extendido por todo el 
mundo restringiendo su uso. La única excepción parece ser al norte de Panamá, donde 
se presume que CQ sigue siendo eficaz y es el medicamento de elección para el 
tratamiento de P. falciparum y P. vivax. La resistencia a los antimalaricos está asociada 
a polimorfismos genéticos específicos y recientemente se ha sugerido que una bomba 
putativa de H+ (pfvp2) esta relacionada con resistencia a CQ en P. falciparum. El 
objetivo de esta tesis fue identificar polimorfismos genéticos asociados a resistencia en 
P. falciparum y P. vivax en Honduras y describir la distribución mundial de 
polimorfismos en pfvp2 y su correlación con resistencia a CQ. 
 
Los cambios genéticos asociados a resistencia en el gen de resistencia múltiple 1 
(pfmdr1 y pvmdr1) y dihidrofolato reductasa, (pfdhfr and pvdhfr) de P. falciparum y P. 
vivax, dihidropteroato sintasa (pfdhps); el transportador de cloroquina resistente (pfcrt) 
y V-type H+ pyrophosphatase (pfvp2) de P. falciparum fueron identificados en muestras 
de campo utilizando métodos basados en PCR. De Honduras, se usaron muestras de 37 
P. falciparum y 64 de P. vivax, que fueron recolectadas de pacientes sintomáticos. 
Adicionalmente, 50 muestras de cada uno de los siguientes países: Colombia, Liberia, 
Guinea-Bissau, Tanzania, Irán, Tailandia y Vanuatu. Las muestras representaron el 
período tiempo de 1978-2009 y áreas con diferente prevalencia de P. falciparum 
resistente a CQ. 
 
En las muestras de Honduras con P. falciparum no se encontraron polimorfismos 
asociados con resistencia a CQ o sulfadoxina-pirimetamina (SP). El alelo pvmdr1 976F 
asociado a resistencia a CQ en P. vivax se encontró en 7/37 y los alelos en pvdhfr 
57L+58R asociados a resistencia a SP fueron encontrados en 2/57 muestras. Al analizar 
la colección mundial de muestras, el haplotipo de pfvp2, 405V, 582K and 711P fue 
asociado con el alelo esencial de resistencia a CQ, pfcrt 76T (P=0.007). Muestras con 
pfvp2 405I y/o 582R y/o 711S fueron significativamente más comunes en Liberia en 
1978-1980 (P=0.001), todos los países Africanos (P=0.004) y todos los países 
Africanos + Honduras (P=0.01) comparadas con el resto del mundo. 
 
Nuestros resultados sugieren que P. falciparum y P. vivax en Honduras son sensibles a 
CQ y SP. Sin embargo un pequeño número de P. vivax tenía polimorfismos genéticos 
lo que sugiere un grado de tolerancia. La asociación entre pfcrt 76T y el haplotipo de 
pfvp2, 405V, 582K y 711P sugiere que el haplotipo está asociado con resistencia a CQ. 
Esto apoya investigaciones previas que vincula la expresión del gen cuando se expone a 
CQ. La alta frecuencia pfvp2 405I, 582R y/o 711S en ambientes sensibles a CQ en 
África y América sugiere mayor variación en el genoma de pfvp2 antes de la 
propagación de resistencia a CQ lo cual apoya más la asociación entre pfvp2 y 
resistencia a CQ 
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Los Pobres  
Por Roberto Sosa 

 

Los pobres son muchos 
y por eso 

es imposible olvidarlos. 

 

Seguramente 
ven 

en los amaneceres 
múltiples edificios 

donde ellos 
quisieran habitar con sus hijos. 

 

Pueden 
llevar en hombros 

el féretro de una estrella. 

 

Pueden 
destruir el aire como aves furiosas, 

nublar el sol. 

 

Pero desconociendo sus tesoros 
entran y salen por espejos de sangre; 

caminan y mueren despacio. 

 

Por eso 
es imposible olvidarlos. 



 

 

The Poor 
By Roberto Sosa  
(Translated from the Spanish by Spencer Reece) 

 

The poor are many 
and so— 
impossible to forget. 

 

No doubt, 
as day breaks, 
they see the buildings 
where they wish 
they could live with their children. 

 

They 
can steady the coffin 
of a constellation on their shoulders. 

 

They can wreck 
the air like furious birds, 
blocking out the sun. 

 

But not knowing these gifts, 
they enter and exit through mirrors of blood, 
walking and dying slowly. 

 

And so, 
one cannot forget them 
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1 BACKGROUND 
 

1.1 GLOBAL MALARIA BURDEN 
Malaria is an infectious disease caused by a parasite and transmitted to humans by 

female Anopheles mosquitoes. Malaria generally occurs in tropical and subtropical 

areas, is commonly associated with poverty and represents a major burden to economic 

and social development, costing an estimated sum of greater than US$ 6 billion for the 

year 2010 [1, 2]. 

 

In 2010 it was estimated that 3.3 billion people were at risk of the disease. There were 

an estimated 216 million cases of malaria worldwide of which 91% were due to P. 

falciparum. Though P. falciparum is the most common malaria species, P. vivax is the 

most widespread. P. ovale, P. malariae and P. knowlesi are less common [3]. The 

African Region contributes the majority of malaria cases (81%) [2]. Worldwide, an 

estimated 1 238 000 deaths were attributed to malaria during 2010. Approximately 86% 

of malaria associated mortality occurred in children under 5 years of age and 91% of 

the deaths were in Africa [4].  

 

In 2009 it was estimated that 2.85 billion people were at risk of P. vivax malaria 

infection. The majority of the cases are concentrated in Southeast Asia, Middle East 

and the Pacific [5]. In the Americas, P. vivax accounts for more than 70% of malaria 

cases [2]. P. vivax was previously considered as benign and self-limiting disease and 

therefore neglected from research. However, recent evidence has shown that infection 

with P. vivax also results in severe illness and death [6]. 

 

1.2. THE PLASMODIUM PARASITE 
Plasmodium is a protozoan with more than 140 species that can infect birds, reptiles 

and mammals. Only five species have been shown to infect humans: P. falciparum, P. 

vivax, P. ovale, P. malariae and P. knowlesi [7]. The parasite was discovered in human 

blood by Alphonse Laveran in 1880. Later, in 1898, the parasite was observed in the 

mosquito by Ronald Ross that was able to complete a description of the life cycle. 
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1.2.1. Malaria Vectors 
Malarial parasites are transmitted by the female Anopheles mosquito of which there are 

over 500 hundred species. Worldwide ~40 anopheline species have been documented 

to transmit parasites to humans with varying efficiency [7]. The female anopheles 

needs a blood meal and water site for laying eggs. Some vectors prefer blood meals 

from humans (anthropophilic) or from animals (zoophilic). Some of the vectors have 

the tendency to enter and rest inside houses (endophilic) and other rest outside 

(exophilic) after taking a blood meal. Most vectors have nocturnal feeding timings but 

habits vary with species [8]. Anopheles species with the greatest capacity to transmit 

Plasmodium are found in the Amazon (An. darlingi) and Africa (the species complex of 

An. gambiae). In Southeast Asia a highly efficient vector is An. dirus [7]. 

 

 

1.2.2. Life cycle 
The female Anopheles mosquito injects sporozoites present in the saliva of the insect. 

Sporozoites infect the liver cells where they may remain dormant (hypnozoites) or 

produce schizonts and merozoites. When liver cells rupture, ~2 000 – 30 000 

merozoites are released into blood and infect the erythrocytes. P. ovale and P. vivax 

infect immature erythrocytes whereas P. malariae infects mature erythrocytes. P. 

falciparum infects both. In the erythrocytes, the parasites mature into trophozoites. 

These trophozoites develop via schizonts into merozoites in erythrocytes which 

ultimately burst releasing the merozoites. Some of the merozoites transform into male 

and female gametocytes while others enter erythrocytes to continue the erythrocytic 

cycle. The gametocytes are ingested by the female mosquito. The female gametocyte 

transforms into ookinete that is then fertilized forming an oocyst in the gut. The oocyte 

produces sporozoites which migrate to the salivary gland and are ready to infect 

another host. The liver cycle takes 5-15 days (up to 3 years if hypnozoites from P. vivax 

or P. ovale exist) and the erythrocytic cycle takes 48 hours or 72 hours (P. malariae). 

Malaria can also be transmitted by transfusion and transplacentally. 
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Figure 1 - The life-cycle of Plasmodium falciparum. The main phases in the liver and in the red 
blood cells (asexual and sexual erythrocytic stages) of the human host, and in the gut and in the 
salivary glands of the mosquito host are depicted. Reprinted from Trends in Parasitology [9], 
with permission from Elsevier. 
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1.3. CLINICAL PRESENTATION OF MALARIA 
In clinical practice, malaria is defined as uncomplicated or severe. The first symptoms 

of malaria are nonspecific: a lack of a sense of well-being, headache, fatigue, 

abdominal discomfort, and muscle aches are followed by fever. The classic malarial 

paroxysms, in which fever spikes, chills, and rigors occur at regular intervals, are 

unusual and suggest infection with P. vivax or P. ovale. Most patients with 

uncomplicated infections have few abnormal physical findings other than fever, 

anemia, and in some cases palpable spleenomegaly [7]. Anemia is common among 

young children living in areas with stable transmission, particularly where there is 

resistance to available antimalarials [10]. 

 

Severe malaria is an acute life threatening form of malaria with high (~ 10%) mortality 

in young children [11]. Severe malaria is commonly considered as a feature of P. 

falciparum though P. vivax can also result in severe disease and death. The 

characteristics of severe P. vivax are similar to those of severe P. falciparum malaria [6, 

12, 13]. Studies from Indonesia, Papua New Guinea, Thailand and India where both 

species coexist, showed that 20-40% of malaria admissions were due to P. vivax mono-

infections. In addition, in these mortality due to P. vivax (mono-infections) was 0.8-

1.6%, similar to that observed with P. falciparum mono-infections (1.6-2.2%) [14]. The 

underlying mechanisms of severe manifestations in P. vivax are not fully understood. 

 

1.4. MALARIA CONTROL  
Progress in shrinking the malaria map has been remarkable. There are 79 countries that 

have eliminated malaria since 1954 and the proportion of the world’s population who 

live in malaria-endemic regions has decreased from 70% to 50%. [15]. Malaria 

eradication was first undertaken by the WHO between 1955 and 1969. The malaria 

eradication programme used vector control and effective treatment as primary tools to 

manage malaria. Despite many gains made during the program, the eradication effort 

was terminated in 1969. Among the reasons for the stop of the program were 

widespread resistance to available insecticides, wars, massive population movements, 

difficult to obtain funding and finally the emergence of CQ resistance in the 1960s. 

 

In the last decade there has been renewed interest and action to support malaria 

research, control, and eradication. [7, 16]. The Current malaria control strategy was 

launched in the early 2000s. The principle aims are to prevent malaria and improve 
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case management as described below. The strategy appears to have been successful and 

[2, 17] coincident with the introduction of control measures including artemisinin based 

combinations (ACTs), the malaria attributed mortality decreased from approximately 1 

817 000 in 2004 to 1 238 000 in 2010 [4]. 

2.  

 

1.4.1. Vector control 
The goals of malaria vector control include protection of individual people against 

infective malaria mosquito bites and reduction of the intensity of local malaria 

transmission at community level. This should be achieved by reducing the longevity 

and density of the vector and human-vector contact. The two most powerful and most 

broadly applied interventions are long-lasting insecticidal nets (LLINs) and indoor 

residual spraying (IRS) [2]. LLINs have been shown to decrease morbidity and 

mortality in various malaria transmission settings thereby having a major impact on the 

malaria burden [18]. IRS involves application of insecticides to the inner surfaces of 

dwellings, where many vector species of Anopheles mosquito tend to rest after taking a 

blood meal. This strategy has also proved to effectively reduce malaria transmission in 

areas with low and variable/seasonal transmission [19]. Worryingly, a recent study in 

Senegal showed that the prevalence of insecticide tolerant mosquitoes and P. 

falciparum incidence increased 27-30 months after the introduction of LLINs [20]. 

 

1.4.2. Diagnosis of malaria 
Prompt parasitological confirmation by microscopy or rapid diagnostic tests (RDTs) is 

recommended before treatment is started [2]. In settings with limited health facility 

access, diagnosis and treatment should be provided at community level through a 

programme of community case management [12]. 

 

1.4.3. Treatment of uncomplicated malaria 
P. falciparum has developed resistance to CQ, followed by SP followed by mefloquine 

when used as monotherapy. The WHO therefore recommends artemisinin based 

combination therapy (ACT) to treat uncomplicated P. falciparum malaria [21, 22]. In 

pre-elimination or elimination programs a single dose of primaquine is also 

recommended [2] 
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The choice of the ACT should be based on the efficacy of the combination in the 

country or area of intended use. Artemisinin and its derivatives should not be used as 

oral monotherapies for the treatment of uncomplicated malaria as poor adherence to the 

required 7 days of treatment results in partial clearance of malaria parasites which will 

promote resistance to this critically important class of antimalarials [12]. 

 

P. vivax malaria should be treated with CQ in areas where CQ is effective. When CQ 

resistance is present, an appropriate ACT should be used. In order to prevent relapses a 

14 day course of primaquine should be used in combination with both CQ and ACT.  

 

In Honduras, CQ is recommended for treatment of uncomplicated P. falciparum and P. 

vivax infection. In addition, primaquine is used for treatment of P. falciparum 

gametocytes and P. vivax hypnozoites [23, 24]. These drugs appear to remain effective 

despite being used for six decades and despite the spread of CQ resistance across most 

of the rest of the world. In addition CQ is cheap, well tolerated and available. 

 

1.4.4. Treatment of severe malaria  
Severe malaria should be treated with a parenteral artemisinin derivatives (artesunate 

and artemether) followed by a complete course of an effective ACT as soon as the 

patient can take oral medications [12].If artemisinin derivatives are not available 

parenteral quinine or quinidine can be used as alternative. Where complete parenteral 

treatment of severe malaria is not possible patients should be given pre-referral 

treatment and immediately be referred to an appropriate facility for further treatment. 

Options available for pre-referral treatment are: Rectal or intramuscular artesunate, 

intramuscular quinine or arthemeter [12]. 



 

  7 

1.5. ANTIMALARIAL DRUGS DISCUSSED IN THIS THESIS 
 

1.5.1. Quinolines and related compounds 
The first effective chemotherapy to treat malaria was extracts from the Cinchona bark 

tree. The extract was imported from South America to Europe in the mid 17th century 

were it became popular for the treatment of fevers including malaria. In 1820 pure QN 

was isolated from the Cinchona bark and replaced the extract in the treatment of 

malaria [21]. The basic quinoline ring structure has provided a group of synthetic 

antimalarials (chloroquine, amodiaquine, piperaquine, mefloquine and primaquine) 

collectively named quinolines. Based on more loosely related ring systems the 

antimalarials halofantrine and lumefantrine have also been synthesized [25]. 

 

CQ has been used extensively for the treatment and prevention of malaria since 1947. It 

is safe, cheap and is estimated to have saved countless millions of lives. As such it is 

one of the most successful drugs ever produced [26]. Widespread resistance has now 

rendered it virtually useless against P. falciparum infections in most parts of the world 

but not north of the Panama Canal. It is still efficacious for the treatment of P. vivax, P. 

ovale and P. malariae infections in most parts of the world.  

 
Amodiaquine (AQ) is a potent blood schizonticide that was developed in the late 1940s 

and has been used for the treatment of uncomplicated malaria particularly in Africa 

[27]. When used for malaria prophylaxes AQ cause neutropenia and for mainly that 

reason it was not used for many years. However, it has been revived as part of an ACT. 

 

Mefloquine was introduced to treat patients with CQ resistant parasites. It was used as 

monotherapy in areas of low transmission malaria [28]. The drug is effective against all 

forms of malaria, [29] however due to the spread of resistance it is now principally used 

in combination with artesunate to treat P. falciparum in Southeast Asia (Cambodia, 

Malasia, Myanmar, Thailand and Vietnam) and South America (Bolivia, Brazil, 

Colombia, Peru and Venezuela) [2] 

 

Lumefantrine is a blood schizonticide that was first synthesized in China and first 

mentioned in scientific literature outside China in 1990. It is only available as an oral 

preparation coformulated with arthemeter. This ACT is highly effective against P. 

falciparum and a corner stone of ACT in Africa.  
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The quinolines do not eradicate hypnozoites unlike primaquine that was developed 

during the Second World War. Primaquine is effective against intrahepatic forms of all 

types of malaria parasite. It is gametocytocidal against P. falciparum and has 

significant blood stages activity against P. vivax (and some against asexual stages of P. 

falciparum). The mechanism of action is unknown. The hemolytic effect in patients 

with glucose-6-dehydrogenase deficiency (G6PD) and gastrointestinal intolerance 

limits its use. 

 

1.5.1.1.1. Quinoline mechanism of action 

CQ is a week base that moves rapidly across cell membranes and accumulates in the 

acidic environment of the digestive vacuole because it becomes protonated [30]. In the 

digestive vacuole CQ disrupts the detoxification of heme when haemoglobin is digested 

by the parasite [31]. This results in heme complexes that are lethal to the parasite [32]. 

The mechanism of CQ activity against blood stages of P. vivax remains unknown [33]. 

Quinine, amodiaquine and piperaquine are believed to have similar modes of action to 

that of CQ [34]. Mefloquine, halofantrine and lumefantrine have also been shown to 

inhibit the detoxification of heme but they also appear to target other process in the 

parasite [35, 36]. 

 

1.5.2. Antifolates 
The antifolates are compound that bind to enzymes necessary for parasite folate 

biosynthesis. The principal antifolate drugs used against malaria are the combination 

sulphadoxine-pyrimethamine (SP). 

 

Sulfadoxine is a structural analogue and competitive antagonists of p-aminobenzoic 

acid. It potentiates the schizontocidal effect and improves clinical response of 

pyrimethamine when treating P. falciparum infection [37-39]. In 1951 pyrimethamine 

was shown to be effective for the treatment of P. falciparum [40, 41]. It inhibits 

dihydrofolate reductase (pfdhfr) thus indirectly blocking the synthesis of nucleic acids 

in the malaria parasite. It is a slow-acting blood schizontocide and is possibly active 

against pre-erythrocytic forms. Furthermore, it inhibits sporozoite development in the 

mosquito vector. During the 1950–1960s, pyrimethamine was mainly used for 

prophylaxis against P. falciparum infection or for mass drug administration because 

CQ was effective in all endemic regions [42-44]. In the late 1960s, an antifolate 
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combination of sulfadoxine and pyrimethamine, SP, was first introduced in Thailand 

where the frequency of CQ-resistant P. falciparum infections had reached an 

unacceptable level. 

 

1.5.3. Artemisinin 
Artemisinin, also known as qinghaosu, is a semisynthetic drug extracted from the 

leaves of Artemisia annua (sweet wormwood). It has been used in China for the 

treatment of fever for over a thousand years and artemisinin derivatives are now the 

cornerstone of antimalarial combination therapy. It is a potent and rapidly acting blood 

schizontocide and is active against all Plasmodium species. It has an unusually broad 

activity against asexual parasites. Furthermore it kills P. falciparum gametocytes [45]. 

The mechanism of action of the artemisinin is not fully understood [46]. Commonly 

used artemisinin derivatives are dihydroartemisinin, artemether, and artesunate. The 

two latter derivatives are in vivo converted back to dihydroartemisinin. The 5 ACTs 

currently recommended are arthemeter + lumefantrine, artesunate + amodiaquine, 

artesunate + mefloquine, artesunate + sulphadoxine-pyrimethamine and 

dihydroartemisinin + piperaquine [12] 

 

1.6. ANTIMALARIAL DRUG RESISTANCE 
One definition of clinical drug resistance is “the ability of a parasite strain to survive 

and/or to multiply despite the administration and absorption of antimalarial drug in the 

dose normally recommended.” Antimalarial drug resistance is not necessarily the same 

as malaria “treatment failure”, which is a failure to clear malarial parasitaemia and/or 

resolve clinical symptoms despite the administration of an antimalarial. So while drug 

resistance may lead to treatment failure, not all treatment failures are caused by drug 

resistance [47]. 

 

Drug resistance in malaria does probably not arise in a single step, but as a long process 

during which the parasites become gradually more and more tolerant to the drug in 

question. This is believed to be achieved through the gradual accumulation of genetic 

changes as discussed below. The changes alter the natural function of a specific protein 

that in turn may require additional compensatory genetic changes. Eventually a fully 

resistant and fit parasite emerges. For P. falciparum this process typically takes 1-12 

years. 
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The greatest problem with drug resistance occurs with P. falciparum but CQ resistant 

P. vivax is a developing problem. There are very few reports although there have also 

very few studies on drug resistant P. malariae and P. ovale. Of greatest concern at the 

moment are recent reports of P. falciparum that are resistant/tolerant to artemisinin and 

to ACT [47-52]. 

 

1.6.1. Development and spread of chloroquine resistance 
P. falciparum CQ resistance took a long time to develop (>10 years) [22] and only 

appears to have arisen 5 times [53]. In the late 1950s, CQ resistant P. falciparum was 

identified at the Thai-Cambodian border and simultaneously in two different locations 

in South America (Colombia and Venezuela) [21]. In Pacific regions CQ resistance was 

first reported 1959–1961 [54]. Resistance then spread to eastern parts of the Pacific 

region between 1976 and 1980. By the mid 1970s CQ resistance was spread in all 

Southeast Asia. All endemic areas in South America were affected by 1980 and almost 

all of Asia and the Pacific by 1989 [22]. In Africa CQ resistance first appeared on the 

east coast in 1978 [55, 56]. During the early 1980s it spread throughout East Africa and 

by the early 1990s, CQ resistant P. falciparum became a serious emerging problem in 

many West African countries [53]. CQ resistance has been reported from wherever 

falciparum malaria is endemic, except Central America [47, 57].  

 

P. vivax is still generally sensitive to CQ although sensitivity is decreasing in some 

areas. CQ resistant P. vivax was first described in 1989 when it was reported from 

Papua New Guinea [58]. Subsequently other reports from Indonesia confirmed those 

findings [59-61]. By 2002 there were reports from Malaysia, Myanmar, Vietnam, India 

and Iran [62-66] and by 2009 from Turkey and South Korea [67, 68]. In South America 

CQ resistance was first reported in 1996 from French Guyana [69]. By 2003 Brazil, 

Colombia and Peru had also reported cases of CQ resistant P. vivax [70-72]. First 

reports from Africa are from Ethiopia and Madagascar in 2008 [73, 74]. 

 

1.6.2. Development and spread of sulphadoxine-pyrimethamine 
resistance 

SP resistant P. falciparum were described at the Thai-Cambodia border in 1967, the 

same year that SP was introduced. SP resistance subsequently spread to other regions in 

Southeast Asia [22]. In 1996, high-level resistance was found simultaneously in a large 

part of Southeast Asia, Southern China and the Amazon Basin. Lower degrees and 
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frequencies of resistance were observed on the Pacific coast of South America [22]. 

Sensitivity to SP in Africa started to decline in the late 1980s. It is not known when 

pyrimethamine resistance was imported to Africa although a study indicates that the 

Asian origin mutant had arrived in Kenya by 1987. The picture is further complicated 

by evidence of an indigenous evolution in Ghana and Kenya [75]. 

 

In early reports from the 1950’s P. vivax appeared to be resistant to SP. Recently it was 

suggested that the early perception of poor efficacy may have been a product of 

confusion with the failure of SP to prevent relapse [76]. However, clinical failure 

following SP treatment has now been reported from Papua New Guinea and Indonesia 

in 1992 [77, 78]. By 2005 resistance had also been reported from, Myanmar, Vietnam, 

Vanuatu and India [79, 80].  

 

1.6.3. Artemisinin resistance 
In 2005, there was a report of reduced in vitro susceptibility to arthemeter in isolates 

from French Guyana and Senegal [81]. In vivo artemisinin resistance or perhaps more 

correctly tolerance is characterized by a slower rate of parasite clearance. This has been 

described from Western Cambodia, Western Thailand, Southeastern Burma and 

Southeastern Vietnam. A recent report from Western Thailand describes how the 

proportion of P. falciparum with reduced artesunate susceptibility increases over time. 

[50, 51, 82-84] 

 

1.7. RESISTANCE ASSOCIATED GENES 
Resistance appears to be caused by a change in the structure, function or quantity of a 

protein. The change in the protein is in turn mediated by genetic changes such as single 

nucleotide polymorphisms (SNP) or gene amplifications. An alteration in the structure 

of a protein may prevent the drug from binding to its target as in SP resistance [75, 85]. 

An alternative mechanism is to enhance or block a transport proteins function so that a 

drug is removed from its site of action (e.g. CQ efflux from the DV) or prevented from 

entering into its site of action (e.g. import of CQ or QN in to DV). Changes in two 

genes may act in combination to produce a specific phenotype [86].  

 

 



 

12 

1.7.1. Quinolines 
The two principle genes that appear to be involved in quinoline resistance are pfcrt and, 

pfmdr1. Both are located in the membrane of P. falciparum’s digestive vacuole. Both 

are believed to be transporters and different SNPs hinder or enable the transport of 

different quinolines. The net effect is most probably to decrease the concentration of 

the various drugs at their various sites of action. Molecular markers of drug resistance 

in P. vivax have been based on the analysis of P. falciparum orthologs pvcrt-o, pvmdr1 

genes  

 

1.7.1.1. P. falciparum chloroquine resistance transporter – pfcrt  

More than 40 years were necessary to go from clinical recognition of CQ resistance to 

the molecular basis of the phenomena which was unravelled in 2000 when pfcrt was 

identified [87]. Pfcrt is located in the membrane of the DV and a pfcrt K76T SNP has 

been shown to be essential for CQ resistance in vivo and in vitro [88-91]. Since then it 

has been shown that the replacement of Lysine (K) with Threonine (T) removes a 

positive charge enabling pfcrt to transport protonated CQ down its electrochemical 

gradient, out of the DV [92, 93]. The net result is lower non toxic CQ concentrations in 

the DV and continued parasite growth. Specific haplotypes at positions 72-76 are 

linked to the regional evolution of resistance [53].  

 

Pfcrt has also been shown to influence susceptibility to other antimalarial drugs. 

Amodiaquine resistance is linked to pfcrt 76T just as CQ whereas allelic exchange 

experiments has linked pfcrt 76T to decreased sensitive to mefloquine, artemisinin and 

quinine [89, 94, 95]. Furthermore, K76 has been linked to reduced susceptibility to 

lumefantrine [96] and 76I showed increased sensitivity to quinine but reduced 

sensitivity to quinidine in vitro [94].¨ 

 

1.7.1.2. P. falciparum multidrug resistance 1 – pfmdr1 

Before the discovery of pfcrt most attention was given to pfmdr1 [97]. The first pfmdr1 

polymorphism that was correlated to drug resistance was gene copy number [98-100]. 

Multiple pfmdr1 copies were shown to be a molecular marker of in vitro [101] and in 

vivo [49] mefloquine resistance. Decreased in vitro susceptibility to lumefantrine, 

halofantrine, quinine and artemisinin has also been linked to amplifications. 

Furthermore, amplifications have been associated with an increased risk of failure 

following arthemeter-lumefantrine treatment (4 doses) [52, 102]. 
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Drug resistance associated SNPs in pfmdr1 include N86Y, Y184F, S1034C, N1042D, 

F1226Y and D1246Y. Various constellations of these SNPs have been shown to 

modulate the level of drug resistance/tolerance to quinine, chloroquine, mefloquine, 

halofantrine and lumefantrine [48, 103, 104]. SNPs in pfmdr1 do not confer CQ 

resistance [103, 105] however pfmdr1 N86Y together with pfcrt K76T has been 

associated with high levels of CQ resistance [106, 107].  

 

 

1.7.1.3. P. falciparum V-type H+ pyrophosphatase – pfvp2 

Pfvp2 is a novel class of H+ pump found in plants and some protozoa [108-112]. Pfvp2 

is located in the DV membrane and increased transcription of pfvp2 has been observed 

in vitro when P. falciparum are exposed to CQ [112] and lumefantrine [96]. 

Specifically a ten-fold up-regulation of pfvp2 was observed when the CQ resistant 

(pfcrt 76I) P. falciparum 106/1 clone was exposed to CQ but no up-regulation was seen 

with the CQ sensitive 106/1 (pfcrt 76K) clone. A two-fold up-regulation of pfvp2 was 

seen when lumefantrine tolerant P. falciparum V1S (pfcrt 76K) clone was exposed to 

lumefantrine. As described above CQ resistance involves the removal of protonated CQ 

from the DV. This is likely to cause a loss of H+ that needs to be replaced if the DV is 

to remain acidic. The up-regulation of pfvp2 suggests that it could be involved in 

maintaining the H+ balance in the parasite DV and to compensate for H+ loss caused by 

removal of protonated CQ [112].  

 

 

1.7.1.4. P. vivax chloroquine resistance transporter – pvcrt-o and P. vivax 

multidrug resistance 1 - pvmdr1 

In P. vivax the mechanism of CQ activity against blood stages remains unknown. The 

search for molecular markers of resistance in P. vivax has focused on the orthologs P. 

vivax multidrug resistance gene 1 (pvmdr1) and chloroquine resistance transporter gene 

(pvcrt-o) [33]. However, no association between mutations in the pvcrt-o and CQ in 

vivo or in vitro response has been found [113, 114]. The pvmdr1 976F allele has been 

associated with reduced susceptibility to CQ and increased susceptibility to mefloquine 

and artesunate in Southeast Asia [115]. Amplifications of pvmdr1 have been associated 

with reduced susceptibility to mefloquine and artesunate [115-117]. 
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1.7.2. Dihydrofolate reductase–dhfr and dihydropteroate synthase–dhps 
The dhfr coding region was cloned from P. falciparum in 1987 [118] and the P. vivax 

gene was identified in 1998 [119]. The dhfr genes from both species are ~66% identical 

and the active site regions are strongly conserved [120]. The gradual acquisition of 

resistance associated SNPs (N51I, C58R, S108N and I164L) in pfdhfr results in 

increasing levels of drug tolerance [121]. The triple dihydrofolate reductase (pfdhfr) 

haplotype N51I/C59R/S108N has been associated with SP treatment failure and when 

dihydropteroate synthase (pfdhps) SNPs G437A and K540E are added, highly SP 

resistant P. falciparum are generated [116, 122-125]. Twenty single nucleotide 

polymorphisms have been described in P. vivax dihydrofolate reductase (pvdhfr) 

including F57L, S58R, T61M and S117N/T that correspond to codons 50, 51, 59 and 

108 in pfdhfr, respectively [79, 126-128]. Pvdhfr S58R and S117N result in decreased 

binding of pyrimethamine [120] and quadruple (F57L, S58R, S117N and I173L) SNPs 

have been associated with SP treatment failure [79, 126, 127]. In the pvdhfr gene small 

in-frame insertions and deletions (indels) are frequently observed. 
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2. AIMS OF THE THESIS 
 

Overall Aim: 
 

The overall aim is to identify genetic changes associated with antimalarial resistance  

 
Specific aims: 
 

Paper I: Determine the proportion of chloroquine and SP resistance associated genetic 

polymorphisms in P. falciparum and P. vivax collected in Honduras. 

 

Paper II: Identify genetic changes in pfvp2 and to describe their worldwide prevalence 

and association with polymorphisms in pfcrt and pfmdr1. 
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3. MATERIALS AND METHODS 
 
3.1. STUDY SITES 
For study I blood samples were collected from the Hospital Escuela that is a teaching 

hospital in Distrito Central-Tegucigalpa, the regional hospitals in Trujillo, La Ceiba and 

Juticalpa, two primary health centres in Puerto Lempira and Iriona and one regional 

laboratory in Juticalpa. For study II Blood samples from 385 patients collected in the 

following countries were analysed; Liberia (1978-1981), Vanuatu (2002), Guinea 

Bissau (2001-2004), Honduras (2004-2009), Tanzania (2008), Iran (2001-2002), 

Colombia (1999-2001) and Thailand (2002-2008). 

 

3.1.1. Honduras 
 

3.1.1.1. Malaria distribution 

In Honduras the transmission is seasonal and A. albimanus and A. darling are the two 

main vectors responsible for transmitting malaria. They transmit the parasite during the 

rainy and dry seasons, respectively. Before the 1980s most of the malaria cases were in 

the south of the country due to the high density of anopheles and the extensive rice 

crops. With the collapse of these crops in the Pacific and the rise of agribusiness 

(African palm, banana, citrus and maquilas) on the Atlantic coast in the 1990s the 

malaria cases moved to the North of the country [129]. 

 

In 2010 there were 9,078 reported malaria cases. P. vivax mono-infection accounted for 

88% and 12% were due to P. falciparum mono-infection and mixed P. vivax and P. 

falciparum infections. Typically 95% of the cases are reported from the five Atlantic 

regions (of 18 national health regions) of which Gracias a Dios region reports 87% of 

P. falciparum in the country [24] 

 

3.1.1.2. Malaria Diagnosis 

Malaria cases are mainly reported by microscopy and through passive case detection. 

Since 2006 the country has a Standard operating procedures manual for malaria 

diagnosis by microscopy (SOPM) [130]. This SOPM has proved to be a valuable tool 

at all levels of diagnostics when microscopy is available. Thick and thin smears are 

made and stained using Giemsa. Slides are viewed under X100 magnification. Trained 



 

  17 

laboratory technician examine at least 100 microscopy fields before considering a 

sample negative. Microscopy is quality controlled at the National Malaria Laboratory 

were microscopists routinely re-examine all positive and approximately 10% of 

negative slides.  

 

3.1.1.3. Sample collection 

Samples were collected from patients that sought medical attention at Hospital Escuela 

between 2004 and 2006 and during 2009 at all other sites. At the Hospital Escuela 

sample collection was considered to be part of routine malaria surveillance and did not 

involve additional sampling or collection of patient data. At the other health facilities 

patients who sought medical attention and were diagnosed with malaria were invited to 

participate in the study after written informed consent. 

 

3.1.2. Colombia 
Malaria transmission presents an endemic/epidemic condition that maintains unstable 

endemic transmission levels throughout the country. Malaria is caused mainly by P. 

vivax and P. falciparum and occasionally by P. malariae [131]. Samples were collected 

between 2001 and 2005 and were provided by Centro Internacional de Entrenamiento e 

Investigaciones Medicas (CIDEIM) in Cali, Colombia. When the samples were 

collected the national drug policy was amodiaquine + SP [131]. 

 

3.1.3. Liberia 
Malaria in Liberia is considered to be holoendemic. Samples were collected between 

1978 and 1981 and in 1985 it was reported that malaria was caused mainly by P. 

falciparum but P. malariae and P. ovale were present [132, 133]. At the time of sample 

collection the official antimalarial drug policy was CQ. 

 

3.1.4. Guinea-Bissau 
Malaria is generally considered to be meso or hyperendemic in Guinea-Bissau. The 

main malaria species is P. falciparum. From December 2001 to May 2004, blood 

samples were collected as part of a clinical trial in the semi-urban area of Bandim on 

the outskirts of Bissau [134]. The national policy for the treatment of uncomplicated 

malaria at the time was CQ. 
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3.1.5. Tanzania 
Malaria is transmitted throughout the year with seasonal peaks during rainfalls in 

March-May and October-December. The main malaria species is P. falciparum. The 

survey, used for study II, was conducted in Fukayosi primary health care centre in 

2008. The Fukayosi village is located in Bagamoyo district on mainland, Tanzania. 

Artemether + lumefantrine was used as first line treatment in Tanzania during the 

sample collection. 

 

3.1.6. Iran 
Malaria transmission occurs during the whole year and P. falciparum and P. vivax are 

both causes of malaria in the country. Samples were collected at the Chabahar City 

Public Health Department in the Sistan-Baluchistan province of Iran. The study was 

conducted from April 2001 to March 2002 and the first line treatment was CQ 

according to national guidelines [135]. 

 

3.1.7. Thailand 
Malaria in Thailand is endemic especially in the forest regions and the border areas. 

Both P. falciparum and P. vivax are present in the country. Thailand’s Western border 

with Burma/Myanmar and eastern border with Cambodia are epicentres of emerging 

antimalarial drug resistance. P. falciparum isolates were collected from 2002 to 2008 

from patients in Mae Sot, in the Tak Province. The isolates were provided by the 

Shoklo Malaria Research Unit. Artesunate + mefloquine was used as the first line 

treatment for uncomplicated confirmed P. falciparum during sample collection [136]. 

 

3.1.8. Vanuatu 
Vanuatu is a South Pacific archipelago made up of over 80 islands, each with varying 

levels of malaria. Malaria transmission is perennial but seasonal in intensity [137]. P. 

falciparum and P. vivax both occur in Vanuatu. Samples were collected in Ambae 

Island in 2002. At the time CQ + SP was the first line treatment for uncomplicated P. 

falciparum malaria.  
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3.2. ETHICAL CONSIDERATIONS 
Studies conducted in Guinea-Bissau, Honduras, Iran and Thailand were approved by 

local authorities as published elsewhere [57, 134, 135, 138]. Studies conducted in 

Tanzania, Vanuatu and Colombia were approved by the National Institute for Medical 

Research Tanzania (NIMR/HQ/R.8A/Vol. IX/344), the ethical committee in Tokyo 

Women's Medical University (Approval 2004-7-05/No. 69)  and the Ethical Committee 

of CIDEIM, Cali, Colombia, respectively. Molecular analyses were approved by the 

Stockholm regional ethics board (reference number 2011/832-32/2). 

 

3.3. MOLECULAR ANALYSIS 
3.3.1. Sample storage, DNA extraction and amplification 
DNA was extracted from the filter papers using an ABI Prism® 6100 Nucleic Acid Prep 

Station (Applied Biosystems, Fresno, CA) according to the manufacturer’s instructions 

with minor modifications [139]. Extracted DNA was stored at -20◦C. 

 

3.3.2. Restriction Fragment Length Polymorphism (RFLP) 
Previously described multiplex PCR-RFLP methods were used to identify the 

following SNPs; pfcrt K76T, pfmdr1 N86Y, pfdhfr N51I, C59R, N108T/S and pfdhps 

G437A and K540E [140, 141]. Pfvp2 SNPs V405I and P711S were identified using 

nested PCR amplifications followed by restriction. A first set of primers were used to 

amplify nucleotide 1112 to 2260 to include all 3 described SNP’s. Two primer pairs 

were then used to amplify fragments that included codons 405 and 711. Primers were 

designed using Primer Express software (Applied Biosystems, Fresno, CA, USA) 

based on published sequence of P. falciparum (Gene Bank Accession No. AF283528). 

All reactions included Taq polymerase reaction buffer, magnesium chloride, dNTPs, 

forward and reverse primer pair and GoTaq® DNA polymerase. Restriction enzymes 

(New England Biolabs) used to analyse SNP’s 405 and 711 were AseI and DpnI.  

PCR products were resolved on 2% agarose gels (Amresco, Solon, OH). All gels were 

stained with ethidium bromide and visualized under UV transillumination (GelDoc®, 

Biorad, Hercules, Ca, USA). 

 

3.3.3. Sequencing 
Pfcrt 72-76 haplotypes were identified as described elsewhere [142]. For identification 

of pfvp2 K582R allele new primers (nucleotides 1484-1929) were designed for a nested 

PCR amplification followed by sequencing. Previously described nested PCRs were 
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used to amplify codons 917 to 1118 of pvmdr1 and codons 1 to 238 of pvdhfr [115, 

143]. Pvmdr1 and pvdhfr SNPs were then identified by sequencing. PCR products were 

purified and sequenced commercially (Macrogen Inc. Seoul, Korea). 

 

The Sequencher ™ software version 4.6 (Gene Codes Corporation, Ann Arbor, MI) 

was used for sequence analysis. The P. falciparum 3D7 clone sequence obtained from 

NCBI database (pfcrt Gen-Bank Accession no. NC_004328 and pfvp2 Gene Bank 

Accession No. AF283528) was used as reference for pfcrt and pfvp2. For pvdhfr the P. 

vivax ARI/Pakistan isolate sequence (Gen-Bank accession no. X98123) and for pvmdr1 

the P. vivax Sal-1 isolate sequence (Gen-Bank accession no. AY618622) were used as 

references.  

 

3.3.4. Real-Time PCR 
Pfmdr1 and pvmdr1 copy numbers were determined using real time PCR (ABI Prism® 

7000 Sequence Detection System) as previously described [49, 144]. All samples were 

run in triplicate. For pfmdr1 3D7, D10 and K1 clones were used as single copy 

calibrators and FCB and Dd2 were multiple copy controls. Pvmdr1 single and double 

copy calibrators were created by the insertion of pvmdr1 nucleotides 2751-3354 and 

pvbtubulin nucleotides 860-1056 in the pCR2.1 vector using the TOPO TA-cloning kit 

(Invitrogen, Carlsbad, CA) at 1:1 and 2:1 proportions, respectively. The sample copy 

numbers were calculated using a comparative threshold method (ΔΔCt). Copy number 

>1.6 and copy number >2.6 were defined as 2 and 3 copies of pfmdr1, respectively. 

Assays were repeated if the following results were obtained: copy number 1.3-1.6 and 

2.3-2.6 or Ct value >35 or standard deviation value >0.5 

 

3.4. STATISTICS 
Data were entered, validated and analysed on Microsoft Excel 2003. Allele proportions 

were calculated by dividing the number of samples with a certain allele by the number 

of samples with an identifiable allele at that position. Thus mixed infections contributed 

to the proportion of both alleles. When the association between pfvp2 alleles and alleles 

in pfcrt and pfmdr1 were assessed patient samples with mixed pfcrt K76T and/or 

pfmdr1 N86Y alleles were excluded. When the association between the number of 

patient samples with SNPs in pfvp2 and pfcrt K76T and pfmdr1 N86Y were assessed 

(Table 2) only patient samples in which all alleles had been successfully identified were 

used. Associations were determined using Fishers Exact test using StataCorp 12. 
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4. RESULTS AND DISCUSSION 
 

4.1. POLYMORPHISMS IN P. FALCIPARUM 
The pfcrt 72-76 haplotype was sequenced in samples from 8 different countries and 3 

(of 5) different CQ resistance associated haplotypes were found. The haplotypes found 

were in line with previous reports and represent CQ resistance originating from 

Colombia (SVMNT), Papua New Guinea (SVMNT) and Thailand (CVIET, which 

subsequently spread to Africa). The CQ sensitive haplotype found in Liberia prior to 

the arrival of CQ resistance was the same as that found in CQ sensitive parasites in 

Guinea-Bissau where CQ resistance has never gained the upper hand. In Honduras the 

same CQ sensitive haplotype was also found. This is to our knowledge the first report 

on these haplotypes from Mesoamerica and West Africa prior to the arrival of CQ 

resistant P. falciparum.  

 

The proportion of P. falciparum with pfcrt 76K was significantly higher in Liberia 

(50/50) and Honduras (30/30) compared to all other countries (P<0.001). The 

proportion was also higher in Guinea-Bissau (36/50) and Tanzania compared to 

Colombia, Iran, Thailand and Vanuatu (P<0.001). Irrespective of whether Liberia was 

included (119/150) or not (69/100), the proportion of pfcrt 76K was significantly higher 

(P<0.001) in African countries compared to Asia (2/99) or South America (0/50).  

Allele frequencies in each country are presented in table 1. Finding a higher proportion 

of pfcrt 76K in Guinea-Bissau and Tanzania is in line with previous studies. A probable 

explanation is that pfcrt 76T is associated with a loss of fitness in Africa. This causes 

the prevalence of the SNP to rapidly decrease when the CQ pressure decreases [145-

147]. Considering this loss of fitness it is interesting to note that the pfcrt 76T 

prevalence remains fixed in Thailand and Colombia where CQ resistance developed 

unlike Africa where CQ resistance was imported. 
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Table 1 – Frequencies of polymorphisms in pfvp2, pfcrt 76 and pfmdr1 

Country 
Pfvp2 pfcrt pfmdr1 Pfmdr1 CNd 

405I 582R 711S K76a 76T N86 86Y 1 2 3 

Liberia 3/48 1/48 4/49 50/50 0/50 46/47 2/47 30/30   

Guinea Bissau 3/50 1/50 3/50 36/50 16/50b 28/50 24/50 50/50   

Tanzania 0/49 1/50 2/48 33/50 17/50b 34/50 16/50 46/46   

Iran 1/50 1/50 1/50 2/50 49/50c 13/50 37/50 36/36   

Thailand 1/49 0/49 1/49 0/49 49/49b 49/49 0/49 26/49 18/49 5/49 

Vanuatu 0/31 0/32 0/38 4/38 38/38c 6/32 31/32 9/9   

Honduras 2/30 0/30 1/30 30/30 0/30 30/30 0/30 28/28   

Colombia 0/46 0/46 0/50 0/50 50/50 50/50 0/50 38/44 8/44  
aPfcrt 72-76 haplotype was CVMNK. bpfcrt 72-76 haplotype was CVIET. cpfcrt 72-76 haplotype was 

SVMNT. dCN: Copy number.  

 

The Frequencies and geographic distribution of pfvp2 V405I, K582R and P711S are 

shown in Table 1. The pfvp2 405V, 582K and 711P haplotype was associated with pfcrt 

76T (P=0.007) and the pfcrt 76T + pfmdr1 86N haplotype (P=0.025) as shown in Table 

2. As pfcrt 76T is essential for CQ resistance these results suggest that the pfvp2 405V, 

582K and 711P haplotype is associated with CQ resistance. Pfvp2 up-regulation has 

been shown to occur in P. falciparum with the CQ resistant allele pfcrt 76I but not with 

the CQ sensitive allele 76K under CQ pressure [112]. This was proposed to be due to a 

need for increased H+ transport into the parasite DV to compensate for H+ loss when 

protonated CQ was transported out [92, 93]. Assuming that pfvp2 functions as 

suggested our results indicate that in P. falciparum with the pfcrt 76T genotype the 

pfvp2 405V, 582K and 711P haplotype provides the most efficient H+ pump.  

 

Table 2 – The frequency of pfvp2 alleles in P. falciparum with varying pfcrt K76T and 

pfmdr1 N86Y alleles  

pfvp2 
Pfcrt Pfmdr1 pfcrt 76K pfcrt 76T 

76K 76T 86N 86Y 
pfmdr1 

86N 
pfmdr1 

86Y 
pfmdr1 

86N 
pfmdr
1 86Y 

405V 138/145 195/198 237/243 93/95 117/124 17/17 115/116 74/76 
582K 143/146 197/198 241/244 96/97 122/125 17/17 116/116 75/76 
711P 138/146 201/204 238/247 97/98 116/124 17/17 120/122 75/76 
Patient samples 
with VKP 
haplotype 

131/145a 189/194 225/241 90/93b 111/124 17/17 114/115c 71/74  

a P=0.007, bP=0.3, cP=0.025. Patients with both pfcrt 76K and 76T and patients with both pfmdr1 86N 
and 86Y were excluded. When total SNPs were compared only patients in whom all relevant alleles had 
been identified were included in the analyses. 
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Compared to all other countries the proportion of patient samples with any of pfvp2 

405I, 582R and/or 711S was significantly more common in the following countries 

(table1); Liberia (P=0.01), the two West African countries Liberia + Guinea-Bissau 

(P=0.01), all African countries (Liberia + Guinea-Bissau + Tanzania, P=0.004) and 

Liberia + Guinea-Bissau + Tanzania + Honduras (P=0.01). In line with these findings 

there was also an association between samples with any of pfvp2 405I, 582R and/or 

711S with pfcrt 76K (P=0.007) and the pfcrt 76K + pfmdr1 86N haplotype (P=0.002). 

Finding pfvp2 405I, 582R and/or 711S alleles in CQ sensitive settings in both Africa 

and the Americas suggests that there was a larger variation in the pfvp2 genome prior to 

the spread of CQ resistance supporting the association between pfvp2 and CQ 

resistance.  

 

Fourteen of twenty patient samples with pfvp2 405I, 582R and/or 711S came from 

African countries and 11/20 from West Africa. This might suggest that the association 

between pfvp2 and pfcrt is incidental. Though this is possible a more probable 

explanation for the relatively common occurrence in Africa is instead as follows: CQ 

resistance had not reached Liberia at the time of sampling and the proportion of CQ 

resistant P. falciparum has remained relatively low ~25% in Guinea-Bissau [147]. 

There has thus been less selective pressure on pfvp2 in these 2 countries. In Tanzania 

the occurrence of pfvp2 405I, 582R and/or 711S is probably secondary to the re-

emergence of the CQ sensitive pfcrt 76K genotype in Tanzania following the 

replacement of CQ with artemether + lumefantrine for the treatment of uncomplicated 

malaria [148]. 

 

A weakness of study II is that we only found 20 patient samples with any SNP and only 

26 SNPs in pfvp2 despite analysing 385 samples from 8 countries with varying origins 

and proportions of CQ resistant P. falciparum. Though this suggest that pfvp2 is highly 

conserved it does not oppose our finding that the pfvp2 405V, 582K and 711P 

haplotype is associated with pfcrt 76T. Furthermore, a strength of the study is the wide 

time and geographic span and the fact that 3/5 chloroquine resistance origins are 

represented. 
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This is also the first report on molecular markers associated with drug resistance from 

Mesoamerica [149]. No SNPs associated with CQ and or SP resistance were found in 

Honduras indicating that P. falciparum remain sensitive to both drugs (Table 3). The 

results are in line with previous in vitro (1980) and in vivo (1998-2000) reports of CQ 

efficacy [150, 151]. This suggest that CQ in combination with PQ for treatment of 

uncomplicated P. falciparum malaria and SP when CQ fails as recommended in the 

national treatment guidelines should be efficacious [23].  

 

Table 3 – Single nucleotide polymorphisms and amplifications in pfcrt, pfmdr1, 

pfdhfr and pfdhps 

Origin 

pfcrt pfmdr1 Pfdhfr Pfdhps 
Number 

(Proportion %) 76 86 
Copy 

Number 
51 59 108 437 540 

Honduras Ka N 1 N C S A K 30 (94) b 

Pacific Tb Y 1 I R N A K 1 (3) 

Africa Ka Y 1 I R N G/A K 1 (3) 

* Resistance associated alleles are shown in bold.  
a All had the pfcrt 72-76 CVMNK haplotype.  
b Presented SVMNT haplotype. All infections were acquired in Honduras. 

 

In Paper I we also report 2 patients with imported malaria that most probably 

contracted P. falciparum on a Pacific Island and West Africa. Both patients had ≥3 

SNPs associated with SP resistance and the patient with P. falciparum from a pacific 

island had the CQ resistance associated pfcrt 72-76 haplotype SVMNT (Table 1). 

These 2 patients highlight the risk of importing drug resistance to Honduras. La 

Mosquitia, from where 90% of P. falciparum cases of the country are reported is 

known to be used for drug trafficking from South America [152]. Commonly 

smugglers come by boat or aeroplane presumably from Colombia. It is not difficult to 

envisage resistant P. falciparum also being imported this way. The risk of resistant 

genes crossing over into local P. falciparum is thus probably highest here. Yet this 

has not happened. Considering this, it is worth noting that malaria is often diagnosed 

clinically in Honduras and that it is then treated presumptively with primaquine 

(0,25mg/kg) for five days in addition to CQ. Primaquine reduces the gametocytes 

carriage time thus reducing transmission and it is certainly possible that this has 

contributed to stop resistant P. falciparum from becoming established [153, 154] 
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4.2. POLYMORPHISM IN P. VIVAX 
In paper I we report pvmdr1 976F allele in 7/41 (17%) samples with P. vivax. These 

results might indicate a degree of CQ tolerance but probably not resistance in 

Honduras [115, 155, 156]. In line with this, an in vivo evaluation conducted in 

Honduras (1998-2000) found that 73/73 P. vivax infections were successfully treated 

with CQ and primaquine [151]. We also reported 2 pvmdr1 gene copies in one sample 

(with 976Y). These findings should be interpreted with caution as neither mefloquine 

nor artesunate are commonly used in Honduras [157]. It may however suggest the 

natural occurrence of this genetic change in Honduras. 

 
Table 4 - Pvmdr1 Y976F and F1076L haplotype proportions 

Haplotypes Y976F F1076L 
Number (Proportion 

%) 
1 Y F 29 (71) 
2 Y L 1 (2) 
3 F F 3 (7) 
4 F L 4 (10) 
5 Y ND 4 (10) 

*Resistance associated alleles are shown in bold. ND Not Determined 

 
Double (57L+117N), triple (57L+58R+117N) and quadruple (57L+58R+61M+117T) 

pvdhfr mutations have been associated with SP resistant P. vivax [158-160]. In paper 

I we report double mutation 57L + 58R in 2/57 (3%) samples. Allele Proportions are 

presented in Table 5. Similar proportions have been reported in Asia but not in South 

America [143, 158, 160-164]. Our results may suggest a degree of tolerance but 

probably not resistance to SP that should be efficacious for treatment of P. vivax in 

Honduras [76]. However, only CQ is used in Mesoamerica and efficacy of SP has not 

been assessed in the area [149]. Finding the double mutation despite a probably low 

consumption of SP suggests that resistance might develop rapidly if SP usage 

increases. A possible explanation for the occurrence of 57L and 58R despite the low 

use of SP for malaria might be that trimethoprim/sulfamethoxazole is the first line 

drug for treatment of acute respiratory tract infections in Honduras [165].  

 
Table 5 – Pvdhfr F57L, S58R, T61M and S117N/T haplotype proportions 

Alleles F57L S58R T61M S117N/T
Number 

(Proportion %) 

1 F S T S 57 (97) 

2 L R T S 2 (3) 

* Resistance associated alleles are shown in bold 
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5. CONCLUSIONS  
 

Paper I 

 

In P. falciparum infections originating in Honduras only SNPs linked to chloroquine or 

sulphadoxine-pyrimethamine sensitivity were found indicating that chloroquine and 

sulphadoxine-pyrimethamine should remain efficacious. 

 

Chloroquine and sulphadoxine-pyrimethamine resistance associated SNPs were found 

in patients that contracted P. falciparum overseas highlighting the risk of drug 

resistance being imported to and spreading in Honduras. 

 

In P. vivax infections contracted in Honduras genetic polymorphisms associated with 

chloroquine and sulphadoxine-pyrimethamine tolerance were found in eight (13%) and 

two (3%) samples, respectively, suggesting that a degree of tolerance exists in the 

country. 

 

 

Paper II 

 

There was a significant association between the chloroquine resistance causing pfcrt 

76T and the pfvp2 haplotype 405V, 582K and 711P. This indicates that there is a 

specific pfvp2 haplotype that is associated with chloroquine resistance. The results are 

in line with previous data indicating that pfvp2 is involved in chloroquine resistance. 

However, the number of samples with SNPs in pfvp2 was small. 
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6. FUTURE 
 

We are currently assessing pfvp2 amplification to complete study II. A detailed 

sequencing based study to describe parts of the genome in resistance associated pfmdr1, 

pfdhfr, pfdhps, pfnhe1 (Sodium/Hydrogen exchanger gene 1) and possibly other genes 

in Liberian samples is planned. We are also planning an in vitro study to determine if P. 

falciparum are able to “shut down” when stressed. When both CQ sensitive and 

resistant P. falciparum are exposed to high chloroquine concentrations for periods of up 

to one week very few small dots generally considered to be dead parasites remain. 

When these dots are followed for a long enough period of time they often revive. A 

hypothesis to explain this finding is that P. falciparum have an innate ability to shut 

down all non essential systems and thereby survive. This could in turn explain why P. 

falciparum survive treatment even when adequate concentrations of a drug to which 

they are not resistant are achieved. Similar mechanisms have been described in bacteria 

and are believed to be a survival response to for example lack of essential nutrients.  
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